Rainbow Ramsey theorem for pairs

Laurent Bienvenu Ludovic Patey

Paul Shafer

LIAFA, Université Paris 7

July 4, 2013

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 1 / 31

Erdös-Moser

Thin se

Conclusion

Introduction

Ramsey Theorem

Erdös-Moser Theorem

Thin set

Conclusion

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 2 / 31

・ロト ・四ト ・ヨト ・ヨト 三日

Plan

Introduction

Ramsey Theorem

Erdös-Moser Theorem

Thin set

Conclusion

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 3 / 31

◆□> <@> < E> < E> E

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 4 / 31

Reverse mathematics zoo

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 5 / 31

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

Erdös-Moser

Thin se

Conclusion

Plan

Introduction

Ramsey Theorem

Erdös-Moser Theorem

Thin set

Conclusion

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 6 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Erdös-Mosei

Thin se

Conclusion

Ramsey theorems

$\mathbf{RT^n_k}$ (Ramsey theorem for n-tuples)

For every coloring function $f: \mathbb{N}^n \to \{0, .., k\}$ there is an infinite set H such that $f \upharpoonright H^n$ is monochromatic.

 $\begin{array}{l} \mathbf{RT} \text{ (Ramsey theorem)} \\ (\forall n)(\forall k) \mathbf{RT_k^n} \end{array}$

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 7 / 31

Ramsey's Theorems

Theorem (Simpson)

- (i) For each $n \geq 3$ and $k \geq 2$, $\mathbf{RCA_0} \vdash \mathbf{RT_k^n} \leftrightarrow \mathbf{ACA_0}$.
- (ii) **RT** is not provable in ACA_0 .

Theorem

- $\mathbf{RCA}_0 \vdash \mathbf{RT}_k^1$
- $\operatorname{RCA}_0 \vdash \operatorname{ACA}_0 \Rightarrow \operatorname{RT}_2^2$
- $\operatorname{RT}_2^2 \not\leftarrow \operatorname{WKL}_0$
- $\mathbf{RT}_2^2 \not\rightarrow \mathbf{WKL}_0$

(1995) (2001) (2011)

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 8 / 31

Stable Ramsey Theorem

Definition (Stable function)

A function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is stable if for some c

 $(\forall x)(\forall^\infty y)(f(x,y)=c)$

$\mathbf{SRT}^{\mathbf{n}}_{\mathbf{k}}$ (Stable Ramsey theorem)

For every stable coloring function $f : \mathbb{N}^n \to \{0, .., k\}$ there is an infinite set H such that $f \upharpoonright H^n$ is monochromatic.

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 9 / 31

Rainbow Ramsey Theorem

Definition (k-bounded function)

A coloring function $\mathbb{N}^n \to \mathbb{N}$ is k-bounded if $\operatorname{card} \{x \in \mathbb{N}^n : f(x) = c\} \le k$ for every color c.

$\mathbf{RRT}^{\mathbf{n}}_{\mathbf{k}}$ (Rainbow Ramsey Theorem)

For every k-bounded coloring function $f: \mathbb{N}^n \to \mathbb{N}$ there is an infinite set H such that $f \upharpoonright H^n$ is injective.

Theorem (Galvin) $\mathbf{RCA}_0 \vdash \mathbf{RT}_2^2 \to \mathbf{RRT}_2^2$

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 10 / 31

Diagonally Non-Computable function

Definition (Diagonally Non-Computable function) A function f is DNC if $(\forall e)(f(e) \neq \Phi_e(e))$

DNC

For every set X there is a function **DNC** relative to X.

DNC[0']

For every set X there is a function **DNC** relative to X'.

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 11 / 31

4日 + 4日 + 4日 + 4日 + 1日 - 900

Erdös-Moser

Thin se

Conclusion

Rainbow Ramsey Theorem

Theorem (Miller) $\mathbf{RCA}_0 \vdash \mathbf{DNC}[0'] \leftrightarrow \mathbf{RRT}_2^2$

Theorem (Hirschfeldt & al.) $\mathbf{RCA}_0 \vdash \mathbf{SRT}_2^2 \to \mathbf{DNC}$

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 12 / 31

Over **RCA**₀...

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 13 / 31

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ● ● ●

Conclusion

How do \mathbf{RRT}_2^2 and \mathbf{SRT}_2^2 relate over \mathbf{RCA}_0 ?

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 14 / 31

Relating \mathbf{RRT}_2^2 to \mathbf{SRT}_2^2

Theorem (Bienvenu, Patey & Shafer) There is an ω -model of \mathbf{RRT}_2^2 not model of \mathbf{SRT}_2^2 .

Note: In fact principles much weaker than \mathbf{SRT}_2^2 aren't implied by \mathbf{RRT}_2^2 .

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 15 / 31

Relating \mathbf{RRT}_2^2 to \mathbf{SRT}_2^2

Theorem (Chong, Slaman, Yang)

There exists a non-standard model of \mathbf{SRT}_2^2 with only Δ_2^0 (in fact low) sets.

Corollary $\mathbf{RCA}_0 \not\vdash \mathbf{SRT}_2^2 \to \mathbf{DNC}[0']$

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 16 / 31

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Erdös-Moser

Thin set

Conclusion

Over \mathbf{RCA}_0 ...

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 17 / 31

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Erdös-Moser

Plan

Erdös-Moser Theorem

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

・ロト ・雪 ト ・ 画 ト July 4, 2013 18 / 31

æ

Definition (Tournament)

A tournament is a set $T \subseteq \mathbb{N} \times \mathbb{N}$ such that

 $(x,y)\in T \leftrightarrow (y,x)\not\in T$

Definition (Transitive tournament)

A tournament T is transitive if

$$(x,y)\in T\wedge(y,z)\in T\rightarrow(x,z)\in T$$

Definition (Stable tournament) A tournament T is stable if

$$(\forall x)[(\forall^{\infty}y)((x,y)\in T)\vee(\forall^{\infty}y)((x,y)\not\in T)]$$

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 19 / 31

EM (Erdös-Moser Theorem)

Every infinite tournament has an infinite transitive subtournament.

SEM (Stable Erdös-Moser Theorem)

Every stable infinite tournament has an infinite transitive subtournament.

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 2

20 / 31

Theorem (Bovykin and Weiermann)

- $\mathbf{RCA_0} \vdash \mathbf{RT_2^2} \leftrightarrow \mathbf{EM} + \mathbf{ADS}$
- $\mathbf{RCA_0} \vdash \mathbf{SRT_2^2} \leftrightarrow \mathbf{SEM} + \mathbf{SADS}$

Theorem (Bienvenu, Patey & Shafer) There is an ω -model of \mathbf{RRT}_2^2 not model of \mathbf{SEM} .

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 21 / 31

(日) (四) (돈) (돈) (돈)

Theorem (Bienvenu, Patey & Shafer)

- $\mathbf{RCA}_0 \vdash \mathbf{EM} \Rightarrow \mathbf{DNC}[0']$
- $\mathbf{RCA}_0 \vdash \mathbf{SEM} \Rightarrow \mathbf{DNC}$

Idea: Diagonalize (modulo encoding) against finite 0'-c.e. sets using tournaments (respectively finite c.e. sets using stable tournaments).

Question

Is there a direct proof of $\mathbf{RCA_0} \vdash \mathbf{EM} \to \mathbf{RRT_2^2}$?

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 22 / 31

Over \mathbf{RCA}_0 ...

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 23 / 31

Plan

Introduction

Ramsey Theorem

Erdös-Moser Theorem

Thin set

Conclusion

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 24 / 31

・ロト ・雪 ト ・ 画 ト

Erdös-Moser

Thin set

Conclusion

Thin Set

Definition (Thin Set)

 $\mathbf{TS}(\mathbf{k})$: For every coloring function $f: \mathbb{N}^k \to \mathbb{N}$ there exist an infinite set H such that $f(H^k) \neq \mathbb{N}$.

Definition (Stable Thin Set)

 $\mathbf{STS}(\mathbf{k})$: For every stable coloring function $f : \mathbb{N}^k \to \mathbb{N}$ there exist an infinite set H such that $f(H^k) \neq \mathbb{N}$.

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 25 /

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

25 / 31

Ramsey Theorem

Erdös-Moser

Thin set

Conclusion

Thin Set

Theorem (Cholak & al.) $\mathbf{RCA}_0 \vdash \mathbf{RT}_2^2 \to \mathbf{TS}(2)$

Theorem (Bienvenu, Patey, Shafer) $\mathbf{RCA}_0 \vdash \mathbf{SRT}_2^2 \rightarrow \mathbf{STS}(2)$

Theorem (Rice) $\mathbf{RCA}_0 \vdash \mathbf{STS}(2) \rightarrow \mathbf{DNC}$

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 26 / 31

Erdös-Moser

Thin set

Conclusion

Thin Set

Theorem (Bienvenu, Patey, Shafer) $\mathbf{RCA_0} \vdash \mathbf{TS}(2) \rightarrow \mathbf{DNC}[0']$

Theorem (Bienvenu, Patey, Shafer) There is an ω -model of \mathbf{RRT}_2^2 not model of $\mathbf{STS}(2)$.

Idea: Creating an instance whose class of solutions is almost surely non-computed by an oracle.

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 27 / 31

Over **RCA**₀...

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013

æ

・ロト ・四ト ・ヨト ・ヨト

28 / 31

Conclusion

Plan

Introduction

Ramsey Theorem

Erdös-Moser Theorem

Thin set

Conclusion

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 29 / 31

æ

ヘロア 人間ア 人間ア 人間ア

	Referen	ices	
	Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen	Lempp, and Theodore	A Slaman.
	Comparing DNR and WWKL.		
	John March Dight D		
	Algorithmic randomness, reverse mathematics, a	and the dominated conv	ergence theorem.
_	Annals of Pure and Applied Logic, 2012.		
	CT Chong, Theodore A Slaman, and Yue Yang.		
	The metamathematics of stable Ramsey's theorem To appear.	m for pairs.	
	Stephen Flood		
	Reverse mathematics and a Ramsey-type König's	s Lemma.	
	2011.		
	Jiayi Liu.		
	<i>KI</i> ²² does not imply WKL0. Journal of Symbolic Logic, 77(2):609–620, 2012.		
	Henry Towsner Manuel Lerman, Reed Solomon,		
	Separating principles below Ramsey's Theorem for 2013.	or Pairs.	
	Stephen George Simpson and Stephen G Simpson	1.	
Subsystems of second order arithmetic, volume 42. Springer Berlin, 1999.			
<ロ> <問> <見> <見> <見> <見> 三			
Bienvenu	1 - Patey - Shafer Rainbow Ramsey theorem	n for pairs	July 4, 2013

Erdös-Moser

Conclusion

30 / 31

Thank you for listening !

Bienvenu - Patey - Shafer

Rainbow Ramsey theorem for pairs

July 4, 2013 31 / 31

(日)、(四)、(E)、(E)、(E)、(E)