Probabilistic Algorithms and Ramsey-Type Principles in Reverse Mathematics

Laurent Bienvenu Ludov

Ludovic Patey

Paul Shafer

LIAFA

February 25, 2013

Summary

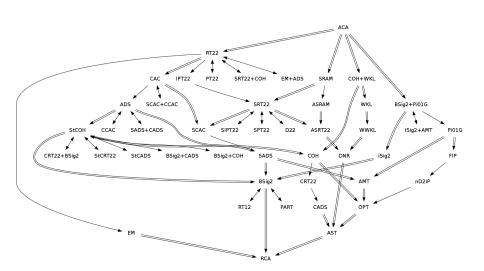
- Introduction
- 2 Probabilistic Algorithms
- 3 Ramsey's Theorems
- 4 Ramsey-Type Weak König's Lemmas
- Conclusion

Plan

- 1 Introduction
- 2 Probabilistic Algorithms
- 3 Ramsey's Theorems
- 4 Ramsey-Type Weak König's Lemmas
- 6 Conclusion

The "big five" subsystems

The reverse mathematics zoo



Plan

- Introduction
- 2 Probabilistic Algorithms
- 3 Ramsey's Theorems
- ¶ Ramsey-Type Weak König's Lemmas
- 6 Conclusion

Why probabilistic algorithms?

- Faster algorithms using randomness.
 - Primality testing
 - $\bullet \ \, {\rm Cryptographic}$
 - Sorting
- Crucial questions in Complexity Theory
 - BPP vs P
- Which computational power ?

Weak Weak König's Lemma

Definition (Tree)

A tree T is a set closed under prefixes:

$$\forall \sigma \in T, \, \tau \prec \sigma \Rightarrow \tau \in T$$

Definition (Measure of a tree)

$$\mu(T) \stackrel{def}{=} \lim_{n \to \infty} \frac{\operatorname{card}\left\{\sigma \in T : |\sigma| = n\right\}}{2^n}$$

Definition ($WWKL_0$)

 $\mathbf{RCA_0}$ + Every subtree of $2^{<\omega}$ of positive measure has a path.

Why does $WWKL_0$ captures randomness?

Properties of Martin-Löf randoms

Theorem (A. Kucera, 1985)

A Martin-Löf random is a path (up to prefix) in a tree iff the tree has positive measure.

Theorem

There is a tree capturing only Martin-Löf randoms.

Power of WWKL₀

Theorem (Simpson et al.)

 $WKL_0 \Rightarrow WWKL_0 \Rightarrow RCA_0$

And Ramsey version?...

What about knowing only an infinity of random digits?

Plan

- Introduction
- 2 Probabilistic Algorithms
- 3 Ramsey's Theorems
- 1 Ramsey-Type Weak König's Lemmas
- 6 Conclusion

Ramsey's Theorems

Notation

 $[\mathbb{N}]^n$ is the collection of subsets of ω of size n

Definition (System **RT**)

 $\mathbf{RCA_0}$ + "given n and $k \in \omega$, for every function (called a coloring) $f \in \{0, \dots, k-1\}^{[\mathbb{N}]^n}$, there is an infinite set $H \subseteq \omega$ which is given one color by f".

Definition (System $\mathbf{RT_k^n}$)

Restriction of \mathbf{RT} to a fixed n and k.

Difficulty of Ramsey theorems

Difficulty of predicting power of a Ramsey principle.

Example

- ullet Peano completion: complete for WKL_0 .
- Infinite subset of a Peano completion: computable.

Ramsey's Theorems

Theorem (Simpson)

- (i) For each $n \geq 3$ and $k \geq 2$, $RCA_0 \vdash RT_k^n = ACA_0$.
- (ii) RT is not provable in ACA₀.

Theorem

- $RCA_0 \vdash RT_1^2$
- $RCA_0 \vdash ACA_0 \Rightarrow RT_2^2$
- RT₂ \neq WKL₀
- RT₂² \rightarrow WKL₀

- (1995)
 - (2001)
 - (2011)

Plan

- Introduction
- 2 Probabilistic Algorithms
- 3 Ramsey's Theorems
- 4 Ramsey-Type Weak König's Lemmas
- 6 Conclusion

Ramsey-Type Weak König's Lemmas

Definition (Homogeneous set)

A set H is homogeneous for $\sigma \in 2^{<\omega}$ with color $c \in \{0,1\}$ if $\sigma(x) = c$ for each $x \in H$ s.t. $x < |\sigma|$. H is homogeneous for a path trough T if $\exists c \in \{0,1\}$ s.t. H is homogeneous for σ with color c for arbitrarily long $c \in T$.

Definition $(RWKL_0)$

 $\mathbf{RCA_0}$ + "each binary tree T has an infinite set which is homogeneous for a path through T."

Ramsey-Type Weak König's Lemmas

Theorem (Flood)

- (i) $RT_2^2 \Rightarrow RWKL$
- (ii) $WKL_0 \Rightarrow RWKL$
- (iii) $RWKL \rightarrow DNC$

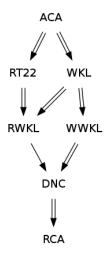
Definition ($RWWKL_0$)

 $\mathbf{RWWKL_0}$ is obtained from $\mathbf{RWKL_0}$ by considering only trees of positive measure.

Power of RWWKL₀

What is the expressive power of $\mathbf{RWWKL_0}$?

Local zoo: version 1



Diagonally Non-Computable functions

X is a set, f a function and e a Turing index.

DNC

 $\forall X, \exists f \in \omega^{\omega} \text{ such that } \forall e, f(e) \neq \Phi_e^X(e).$

FPF

 $\forall X, \exists f \in \omega^{\omega} \text{ such that } \forall e, \Phi^{X}_{f(e)} \neq \Phi^{X}_{e}.$

Theorem (Jockusch, Lerman, Soare & Solovay)

 $RCA_0 \vdash DNC = FPF$

The system $RWWKL_0$

Theorem (Bienvenu, Patey, Shafer)

 $RCA_0 \vdash DNC = RWWKL_0$

Intuition

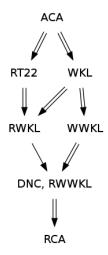
- $WWKL_0 \Leftrightarrow existence of a Martin-Löf Random$
- $\mathbf{RWWKL_0} \Leftrightarrow \mathbf{existence}$ of an infinite subset of a Martin-Löf Random

Theorem (Kjos-Hanssen, Greenberg & Miller)

The following are equivalent:

- (i) A computes a DNC function.
- (ii) A computes an infinite subset of a Martin Löf random.

Local zoo: version 2



Graph Colorability

Definition ($RCOLOR_k$)

RCOLOR_k = **RCA**₀ + "for every infinite graph G = (V, E), if every finite $V_0 \subseteq V$ induces a k-colorable subgraph, then there is an infinite $H \subseteq V$ such that every finite $V_0 \subseteq V$ induces a subgraph that is k-colorable by a coloring that colors every $v \in V_0 \cap H$ by color 0."

Definition ($LRCOLOR_k$)

LRCOLOR_k = **RCA**₀ + "for every infinite graph G = (V, E) and every infinite $X \subseteq V$, if every finite $V_0 \subseteq V$ induces a k-colorable subgraph, then there is an infinite $H \subseteq X$ such that every finite $V_0 \subseteq V$ induces a subgraph that is k-colorable by a coloring that colors every $v \in V_0 \cap H$ color 0."

Some results

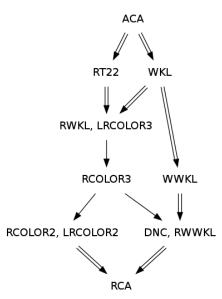
Theorem (Bienvenu, Patey, Shafer)

 $RCA_0 \vdash LRCOLOR_3 = RWKL_0 \rightarrow RCOLOR_3 \rightarrow DNC$

Theorem (Bienvenu, Patey, Shafer)

 $RCA_0 \vdash RCOLOR_3 \rightarrow LRCOLOR_2 = RCOLOR_2$

Local zoo: version 3



$WWKL_0$ and $RWKL_0$ are incomparable

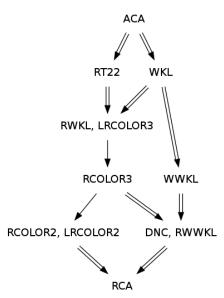
Theorem (Jiayi Liu, 2011)

 $RCA_0 \not\vdash RT_2^2 \to WWKL_0$

Theorem (Bienvenu, Patey, Shafer)

 $RCA_0 \not\vdash WWKL_0 \Rightarrow RCOLOR_2$

Local zoo: version 4



Plan

- Introduction
- 2 Probabilistic Algorithms
- 3 Ramsey's Theorems
- 4 Ramsey-Type Weak König's Lemmas
- 6 Conclusion

References

Reverse mathematics and a ramsey-type könig's lemma. 2011.

S.G. Simpson, Association for Symbolic Logic, and Inc ebrary. Subsystems of second order arithmetic, volume 42. Springer Berlin, 1999.

Questions

Thank you for listening!