CONCLUSION 0000

Introduction to Reverse Mathematics

Ludovic PATEY LIAFA, Paris 7

January 29, 2014

INTRODUCTION

INTRODUCTION Problem 1 Problem 2

A WEAK SYSTEM Which system to choose ? Formal definition

CAPTURING COMPACTNESS Weak König's lemma Gödel's completeness theorem Gödel's compactness theorem

CONCLUSION The dark side

Problem 1

Question (Bac S, 2006) *Prove Gauss theorem using Bézout theorem.*

- How to express the relation between theorems ?
- What does it mean that a true theorem implies another true theorem ?

Problem 2

Theorem If $n \equiv 0 \mod 4$ and n > 42 then n is even.

- Are our theorems optimal ?
- Are all the premises truly required ?
- ► How to formalize "optimality" ?

A WEAK SYSTEM (

CAPTURING COMPACTNESS

CONCLUSION 0000

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ■ 目 ● の < @

THE ANSWER

Reverse Mathematics

PROBLEM 1 : A FIRST ATTEMPT

- How to express the relation between theorems ?
- What does it mean that a true theorem implies another true theorem ?

Example $ZF + AC \vdash$ Zorn's lemma

► What about theorems provable in ZF?

... use a weaker system

WHAT TO EXPECT OF SUCH A SYSTEM ?

- Many theorems should not be provable over it.
- ► Not too weak (eg. invariant under coding)
- ► Should give some insights on theorems.

WHAT DO WE FOCUS ON ?

- Constructivity
 - ► Type theory
 - Intuitionistic Reverse mathematics
- Time/Space constraints
 - Complexity theory
- Effectiveness
 - ► Computability
 - Reverse mathematics

CAPTURING COMPACTNESS 000000000 CONCLUSION 0000

WHAT IS EFFECTIVENESS ? (FOR US)

Effectiveness \neq constructivity

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

WHAT IS EFFECTIVENESS ? (STILL FOR US)

Theorem

For every infinite binary sequence there exists a value which appears infinitely many times.

- Effective theorem
- Not constructive

SETTLING REVERSE MATHEMATICS

To formalize Reverse Mathematics we need

- ► a language
- a logic
- ► a base theory

WHICH LANGUAGE ?

- Express naturally most ordinary theorems
- (König's lemma) Every infinite finitary branching tree has an infinite path.
- ► (Bolzano Weierstrass) Every infinite sequence has an infinite converging subsequence.
- ► (Ramey theorem) *Every coloring of tuples with finitely many colors has an infinite monochromatic subset.*

▶ ...

WHICH LANGUAGE ?

Remark Most of our theorems are of the form

 $(\forall X)(\exists Y)\Phi(X,Y)$

where Φ has only first order quantifiers

Example (König's lemma)

 $(\forall X)(\exists Y)[Tree(X) \rightarrow Path(Y,X)]$

CAPTURING COMPACTNESS

WHICH LANGUAGE ?

Second order arithmetic (L_2)

Numerical terms

$$t ::= 0 \mid 1 \mid x \mid t_1 + t_2 \mid t_1 \cdot t_2$$

Formulas

$$f ::= t_1 = t_2 \mid t_1 < t_2 \mid t_1 \in X \mid \forall x.f \\ \mid \exists x.f \mid \forall X.f \mid \exists X.f \mid \neg f \mid f_1 \lor f_2$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

WHICH LOGIC ?

- ► Intuitionistic ⇒ Intuitionistic reverse mathematics
- ► Classical ⇒ Reverse mathematics

Historical reasons ?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

WHICH AXIOMS ?

- Effectiveness is about infinite objects
- Finite objects should behave as usual

Basic axioms

$$\begin{array}{ll} n+1 \neq 0 & m+1 = n+1 \Rightarrow m = n \\ m+0 = m & m+(n+1) = (m+n)+1 \\ m\cdot 0 = 0 & m\cdot (n+1) = (m\cdot n) + m \\ \neg m < 0 & m < n+1 \Leftrightarrow (m < n \lor m = n) \end{array}$$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

WHICH AXIOMS ?

► Full second order arithmetic (Z₂) ?

Induction axiom

$$(0 \in X \land \forall n.(n \in X \Rightarrow n+1 \in X)) \Rightarrow \forall n.(n \in X)$$

Comprehension scheme

$$\exists X. \forall n. (n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is any formula of L_2 in which X does not occur freely.

WHICH AXIOMS ?

- ► Most ordinary theorems are already provable in Z₂
- ► No notion of effectiveness in proofs in Z₂

EFFECTIVENESS

Definition (Σ_1^0 , Π_1^0 and Δ_1^0 relations)

- Σ_1^0 : definable by a formula $\exists n.\phi$
- Π_1^0 : definable by a formula $\forall n.\phi$
- Δ_1^0 : both Σ_1^0 and Π_1^0

where ϕ is a *L*₂-formula containing only bounded quantifiers.

Theorem (Post's theorem)

A set A is computably enumerable (resp. computable) in $B_1, B_2, ...$ iff it is definable by a Σ_1^0 relation (resp. a Δ_1^0 relation) with parameters $B_1, B_2, ...$

WHICH AXIOMS ?

Δ_1^0 Comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \Rightarrow \exists X. \forall n. (x \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is any Σ_1^0 formula of L_2 in which *X* does not occur freely and $\psi(n)$ is any Π_1^0 formula of L_2 .

WHICH AXIOMS ?

Σ_1^0 Induction scheme

$$(\varphi(0) \land \forall n.(\varphi(n) \Rightarrow \varphi(n+1))) \Rightarrow \forall n.\varphi(n)$$

where $\varphi(n)$ is any Σ_1^0 formula of L_2

• Σ_1^0 can be replaced by Δ_1^0

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

WE GET... RCA_0

Recursive Comprehension Axiom (RCA₀)

- Basic Peano axioms
- Σ_1^0 induction scheme
- Δ_1^0 comprehension scheme

How to think about RCA_0 ?

RCA₀ captures computable mathematics

Many of our principles are of the form $(\forall X)(\exists Y)\Phi(X,Y)$.

- *X* is called an *instance*
- ► *Y* is called a *solution*

If there is a computable instance with no computable solution then RCA_0 does not prove the principle.

How to think about RCA_0 ?

RCA₀ captures computable mathematics

We can create a model \mathcal{M}_0 of RCA₀ taking

- ω as the first order part
- $COMP = \{X \in 2^{\omega} : X \text{ is computable }\}$ as second order part
- If we have a computable instance *X* then $X \in COMP$.
- ► If *X* has no computable solution, *X* has no solution in *COMP*.

Problem 1 revisited

- ► Formal framework to reason about theorems
- ► Is it weak enough ?

We can use the question about computable instance with no computable solution.

Problem 1 revisited

Theorem *There exists an infinite computable binary tree with no infinite computable path.*

$\mathcal{M}_0 \not\models \text{ König's lemma}$

• This is the case for many theorems.

Problem 2 revisited

- Are our premises optimal ?
- ► What does "optimal" mean ?
- Prove the premise assuming the conclusion.
- This can be formalized over RCA₀.

A WEAK SYSTEM

CAPTURING COMPACTNESS

CONCLUSION 0000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

PROBLEM 2 REVISITED

Observation 1 Most ordinary theorems are provable from weak axioms.

Observation 2 Most ordinary theorems are *equivalent* to those axioms.

Plan

INTRODUCTION Problem 1 Problem 2

A WEAK SYSTEM Which system to choose ? Formal definition

CAPTURING COMPACTNESS Weak König's lemma Gödel's completeness theorem Gödel's compactness theorem

Conclusion The dark side CAPTURING COMPACTNESS

CONCLUSION 0000

THE BATTLE

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

WEAK KÖNIG'S LEMMA

Definition (Tree) A set $T \subseteq 2^{<\omega}$ is a tree iff it is closed under prefixes:

 $\forall \sigma \in T, \tau \prec \sigma \Rightarrow \tau \in T$

Definition (Path)

 $P \subseteq \omega$ is a path in a tree *T* iff all prefixes of *P* are in *T*.

 $\forall \sigma \prec P, \sigma \in T$

A WEAK SYSTEM C

CAPTURING COMPACTNESS 00000000 CONCLUSION 0000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

WEAK KÖNIG'S LEMMA

Definition (WKL₀)

 RCA_0 + "Every infinite subtree of $2^{<\omega}$ has a path."

• We saw that $\mathsf{RCA}_0 \not\vdash \mathsf{WKL}_0$

GÖDEL'S COMPLETENESS THEOREM

Definition (Countable model)

A *countable model* is a function $M : T_M \cup S_M \rightarrow |M| \cup \{0, 1\}$ where

- $|M| \subseteq \omega$ is the *universe of* M
- T_M is the set of closed terms
- S_M is the set of sentences

over $L_M = L \cup \{\underline{m} : m \in |M|\}$ where *M* obeys the familiar clauses of Tarski's truth definition.

GÖDEL'S COMPACTNESS THEOREM

Definition (Gödel's completeness theorem) Every countable consistent set *X* of sentences has a model, i.e. there exists a countable model *M* such that $(\forall i)(\varphi_i \in X \rightarrow M(i) = 1).$

Definition (Gödel's compactness theorem) If each finite subset of *X* has a model, then *X* has a model.

Compactness follows from completeness

König 1 - Gödel 0

Theorem $\mathsf{RCA}_0 \vdash \mathsf{WKL}_0 \rightarrow \mathit{G\"odel's} \ \mathit{completeness} \ \mathit{theorem}$

Part 1/3.

- Given an consistent enumeration X of sentences
 - Define a set of constant symbols $C = \langle \underline{c}_n : n \in \omega \rangle$.
 - Let Φ be the set of all formulas $\varphi(x)$ in $L_1 = L \cup C$.
 - Define $X_1 = X \cup \{(\exists x \varphi_n(x)) \to \varphi_n(\underline{c}_n) : n \in \omega\}$
- X_1 is consistent
- Fix an enumeration of all sentences S_0, S_1, \ldots over L_1

König 1 - Gödel 0

Theorem $RCA_0 \vdash WKL_0 \rightarrow G\"{odel's}$ completeness theorem

Part 2/3.

- ► Define a binary tree *T* as follows:
 - Add by default all nodes $\sigma \in 2^{<\omega}$
 - If at stage *s*, $X_1[s] \vdash S_i$, remove all σ such that $\sigma(i) = 0$.
 - If at stage *s*, $X_1[s] \vdash \neg S_i$, remove all σ such that $\sigma(i) = 1$.
- Any path X_1^* in *T* is a completion of X_1

König 1 - Gödel 0

Theorem $\mathsf{RCA}_0 \vdash \mathsf{WKL}_0 \rightarrow \mathit{G\"odel's} \ \mathit{completeness} \ \mathit{theorem}$

Part 3/3.

- ► Build a model *M* of *X*₁ as follows:
 - ► Let |M| be the set of $\underline{c}_n \in C$ such that $\neg \exists m(m < n \land (\underline{c}_m = \underline{c}_n) \in X_1^*$
 - For all $\varphi \in S_M$ set $M(\varphi) = 1$ iff $\varphi \in X_1^*$.

= nac

König 1 - Gödel 1

Theorem $RCA_0 \vdash \textit{Gödel's compactness theorem} \rightarrow WKL_0$

Proof.

- Prop logic with atomic formulas $\langle a_n : n \in \omega \rangle$
- Given an infinite tree $T \subseteq 2^{<\omega}$
 - Define the formula (where $a_i^1 = a_i$ and $a_i^0 = \neg a_i$)

$$\varphi_n = \bigvee \left\{ \bigwedge \left\{ a_i^{\sigma(i)} : i < n \right\} : \sigma \in T, |\sigma| = n \right\}$$

イロト 不得 とうほ とうせい

- φ_i is satisfiable
- $\varphi_{n+1} \rightarrow \varphi_n$ is a tautology
- $\{\varphi_n : n \in \omega\}$ is satisfiable
- Any model of $\{\varphi_n : n \in \omega\}$ is a path in *T*

König 1 - Gödel 1

Theorem *The following are equivalent over* RCA₀*:*

- ► WKL₀
- ► Gödel's completeness theorem
- ► Gödel's compactness theorem

Plan

INTRODUCTION Problem 1 Problem 2

A WEAK SYSTEM Which system to choose ? Formal definition

CAPTURING COMPACTNESS Weak König's lemma Gödel's completeness theorem Gödel's compactness theorem

CONCLUSION The dark side

A PERFECT WORLD ?

- Most of our theorems lie nicely in a few main subsystems.
- They are even equivalent to those systems.
- ... however a class of theorems breaks the rules

RAMSEYAN THEOREMS

Theorem

Every coloring of tuples with two colors has an infinite monochromatic subset...mouahahah (evil laugh)

:▶ ≣ ⁄\<@

References

- Denis R Hirschfeldt. Slicing the truth. 2013.
- Stephen G Simpson. Subsystems of second order arithmetic, volume 1. Cambridge University Press, 2009.

INTRODUCTION 0000 A WEAK SYSTEM CA

CAPTURING COMPACTNESS

CONCLUSION 0000

QUESTIONS

Thank you for listening !

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで