A Calculus of Primitive Recursive Constructions

Ludovic PATEY PPS, Paris 7

Joint work with Hugo HERBELIN

May 12, 2014

SUMMARY

Introduction

A typed calculus of PRA

Typing translation

Untyping translation

Conclusion

PRIMITIVE RECURSIVE ARITHMEWHAT?

- ► Quantifier-free formalization of natural numbers
- ► Finitist reasonning (Tait, 1981)
- ► Good metatheory for relative consistency proofs

PRIMITIVE RECURSIVE ARITHMETIC

- ► Talks about natural numbers
- ► Logic-free version with judgements of the form

$$u_0 = v_0, \ldots, u_n = v_n \vdash_{PRA} u = v$$

where u_i , v_i are arithmetical expressions with free variables.

FORMAL DEFINITION

```
Functions:
   f^0, g^0 ::= 0^0
Terms:
     u, v_i ::= x \mid f^n(v_1, \dots, v_n)
 Context:
       \Gamma ::= \epsilon \mid \Gamma, u = v
```

$$\Gamma \vdash_{\mathsf{PRA}} t = t$$

$$\Gamma \vdash_{PRA} \xi^1(t) = 0^0$$

$$\frac{1 \le m \le n}{\Gamma \vdash_{\mathsf{PRA}} \kappa_m^n(t_1, \dots, t_n) = t_m}$$

$$u = v \in \Gamma$$

$$\Gamma \vdash_{PRA} u = v$$

INTRODUCTION

RULES: COMPOSITION AND RECURSION SCHEME

$$\Gamma \vdash_{\text{PRA}} (\text{comp } f^m g_1^n \dots g_m^n)(t_1, \dots, t_n)$$

$$= f^m(g_1^n(t_1, \dots, t_n), \dots, g_m^n(t_1, \dots, t_n))$$

$$\Gamma \vdash_{\mathtt{PRA}} (\mathtt{rec} \ f^n \ g^{n+2})(0^0, t_1, \ldots, t_n) = f^n(t_1, \ldots, t_n)$$

$$\Gamma \vdash_{\text{PRA}} \begin{cases} (\text{rec } f^n \, g^{n+2})(\sigma^1(m), t_1, \dots, t_n) = \\ g^{n+2}(m, (\text{rec } f^n \, g^{n+2})(m, t_1, \dots, t_n), t_1, \dots, t_n) \end{cases}$$

$$\frac{\Gamma \vdash_{\mathsf{PRA}} u = v}{\Gamma \vdash_{\mathsf{PRA}} v = u} \qquad \frac{\Gamma \vdash_{\mathsf{PRA}} u = v \quad \Gamma \vdash_{\mathsf{PRA}} v = w}{\Gamma \vdash_{\mathsf{PRA}} u = w}$$

$$\frac{\Gamma \vdash_{\text{PRA}} u_1 = v_1 \quad \dots \quad \Gamma \vdash_{\text{PRA}} u_n = v_n}{\Gamma \vdash_{\text{PRA}} f^n(u_1, \dots, u_n) = f^n(v_1, \dots, v_n)}$$

RULES: INDUCTION SCHEME

$$\Gamma \vdash_{PRA} f^{n+1}(0^0, u_1, \dots, u_n) = g^{n+1}(0^0, u_1, \dots, u_n)$$

$$\Gamma, f^{n+1}(x, u_1, \dots, u_n) = g^{n+1}(x, u_1, \dots, u_n) \vdash_{PRA} f^{n+1}(\sigma^1(x), u_1, \dots, u_n) = g^{n+1}(\sigma^1(x), u_1, \dots, u_n) \quad x \text{ fresh}$$

$$\Gamma \vdash_{PRA} f^{n+1}(t, u_1, \dots, u_n) = g^{n+1}(t, u_1, \dots, u_n)$$

CODING WITHIN PRA

- ► A large collection of basic structures can be coded
 - ► Booleans
 - ► Tuples
 - ▶ ...
- ► Easier to manipulate as primitive objects

CODING WITHIN PRA

- ► We need a formalism which distinguishes object's kinds
- ► And it is, guess what?

Type theory

SUMMARY

INTRODUCTION

A typed calculus of PRA

Typing translation

Untyping translation

Conclusion

CALCULUS OF INDUCTIVE CONSTRUCTIONS

- ► Distinguishes between object's kinds
- ► Enables to define naturally simple and complex structures

RESTRICTING CIC (PARCE QUE LE MONDE BOUGE)

Idea: restricting to objects of type

$$A_0 \rightarrow A_1 \rightarrow \cdots \rightarrow A_n$$

where A_i has no arrow.

```
Types:
```

INTRODUCTION

$$A, B ::= X u | 0 | 1 | A + B | (\Sigma_{x:A}.B)$$

 $| u =_A v | (\mu X^{A o \text{Type}} x^A.B) u$
 $C ::= A | \Pi_{x:A}.C$

Terms:

$$u,v,w$$
 ::= $x \mid eq_{refl} A u \mid match \ u$ return A end $\mid () \mid match \ u$ as x return A with $() \Rightarrow N$ end $\mid inl \ u \mid inr \ u \mid match \ u$ as x return A with inl $y \Rightarrow v$; inr $z \Rightarrow w$ end $\mid (u,v) \mid match \ u$ as y in z return P with $(i,w)_{x:A:T} \Rightarrow v$ end $\mid (fix_k \ f \ x_1 \dots x_n := u) \ u_1 \dots u_n$ q ::= $u \mid \lambda x^A.q$

Typing translation

FORMAL DEFINITION

Context:

$$\Gamma ::= \epsilon \mid \Gamma, x : A \mid \Gamma, X : Type$$

INTRODUCTION

Sum-C
$$\Gamma \vdash A : \texttt{Type} \qquad \Gamma \vdash B : \texttt{Type}$$
 $\Gamma \vdash A : \texttt{Type}$

$$\operatorname{Sum-L} \frac{\Gamma \vdash A + B : \operatorname{Type} \quad \Gamma \vdash t : A}{\Gamma \vdash \operatorname{inl} \ t : A + B}$$

Sum-R
$$\frac{\Gamma \vdash A + B : \texttt{Type} \quad \Gamma \vdash u : B}{\Gamma \vdash \texttt{inr} \ u : A + B}$$

TYPING RULES: SUM TYPE

Sum-E
$$\frac{\Gamma \vdash u : A + B}{\Gamma, x : A + B \vdash P : \text{Type}} \frac{\Gamma, y : A \vdash v : P[x \setminus \text{inl } y]}{\Gamma, z : A \vdash w : P[x \setminus \text{inr } z]}$$

$$\frac{\text{match } u \text{ as } x \text{ return } P \text{ with}}{\Gamma \vdash \text{ inl } y \Rightarrow v} : P[x \setminus u]$$

$$\text{inr } z \Rightarrow w \text{ end}$$

INTRODUCTION

Unit-T
$$\overline{\Gamma \vdash 1 : \text{Type}}$$
 Unit-O $\overline{\Gamma \vdash () : 1}$

Typing translation

TYPING RULES: EMPTY TYPE & INDUCTIVE TYPE

$$\text{Ind-T} \frac{\Gamma \vdash u : A \qquad \Gamma, X : A \to \texttt{Type}, x : A \vdash F : \texttt{Type}}{\Gamma \vdash (\mu X^{A \to \texttt{Type}} \ x^A.F) \ u : \texttt{Type}}$$

Eq-R
$$\frac{\Gamma \vdash u : A}{\Gamma \vdash \text{ eq}_{\text{refl}} A u : u = u}$$

$$\begin{array}{c|c} \Gamma \vdash u : A & \Gamma, z : A \vdash P : \texttt{Type} \\ \hline \Gamma \vdash v : A & \Gamma \vdash w : P[z \backslash u] & \Gamma \vdash p : u = v \\ \hline \hline \Gamma \vdash \texttt{match} \ p \ \texttt{in} \ _ = z \ \texttt{return} \ P \ \texttt{with} \\ \hline \texttt{eq}_{\textbf{refl}} \ \Rightarrow w \, \texttt{end} : P[z \backslash v] \end{array}$$

TYPING RULES: PROPER INDICES

Pair-T
$$\frac{\Gamma \vdash A : \texttt{Type} \quad \Gamma, x : A \vdash T : \texttt{Type}}{\Gamma \vdash (\Sigma_{x:A}T) : \texttt{Type}}$$

$$\text{Pair-C} \frac{\Gamma \vdash \Sigma_{x:A}T : \texttt{Type} \quad \Gamma \vdash u : A \quad \Gamma \vdash v : T[x \backslash u]}{\Gamma \vdash (u,v)_{x:A.T} : \Sigma_{x:A}T}$$

$$\begin{array}{c} \Gamma \vdash \Sigma_{x:A}T \quad \Gamma, y : \Sigma_{x:A}T \vdash P : \texttt{Type} \\ \Gamma, i : A, w : T[x \backslash i] \vdash v : P[y \backslash (i, w)_{x:A.T}] \\ \hline \Gamma \vdash \begin{array}{c} \texttt{match } u \texttt{ as } y \texttt{ return } P \texttt{ with} \\ (i, w)_{x:A.T} \Rightarrow v \end{array} : P[y \backslash u] \end{array}$$

SUMMARY

INTRODUCTION

A typed calculus of PRA

Typing translation

Untyping translation

Conclusion

TYPING TRANSLATION

► There exists a natural embedding of natural integers into

$$Nat = \mu X.1 + X$$

► PRA rules are simulated by typing rules

TYPING TRANSLATION: FUNCTIONS

$$\begin{bmatrix}
 0^0 \end{bmatrix} () & = inl () \\
 \hline{ } [\sigma^1] (t) & = inr t \\
 \hline{ } [\xi^1] (t) & = inl () \\
 \hline{ } [\kappa^n_m] (t_1, \dots, t_n) & = t_m
 \end{aligned}$$

where *t* is a term of TT-PRA.

TYPING TRANSLATION: FUNCTIONS

SOUNDNESS AND COMPLETENESS

Theorem

$$u_1 = v_1, \ldots, u_n = v_n \vdash_{PRA} u = v$$

is a valid PRA judgement iff for some proof term p,

$$x_1 : [\![u_1]\!] =_{Nat} [\![v_1]\!], \dots, x_n : [\![u_n]\!] =_{Nat} [\![v_n]\!] \vdash_{\mathsf{TT}} p : [\![u]\!] =_{Nat} [\![v]\!]$$

is a valid judgement.

SUMMARY

INTRODUCTION

A typed calculus of PRA

Typing translation

Untyping translation

Conclusion

UNTYPING TRANSLATION

- ► Inhabitants of types in TT-PRA can be mapped to natural integers
- ► A type is transformed into its characteristic function
- ► A judgement $\vdash_{\mathsf{TT}} p : A \text{ becomes } \vdash_{\mathsf{PRA}} \llbracket A \rrbracket \llbracket p \rrbracket = 0$

SOUNDNESS

Theorem *If*

$$x_1:A_1\ldots,x_n:A_n\vdash_{TT}p:A$$

is a valid TT-PRA judgement, then

$$[\![A_1]\!] x_1 = 0, \dots, [\![A_n]\!] x_n = 0 \vdash_{PRA} [\![A]\!] [\![p]\!] = 0$$

is a valid PRA judgement.

INTRODUCTION

UNTYPING TRANSLATION: TERMS

UNTYPING TRANSLATION: TERMS

$$\llbracket \operatorname{inl} \, u \rrbracket = <2, \llbracket u \rrbracket > \qquad \llbracket \operatorname{inr} \, v \rrbracket = <3, \llbracket v \rrbracket >$$

[match
$$u$$
 as x return P with inl $y \Rightarrow v$; inr $y \Rightarrow P$ end] = $(\lambda z.(1 \div ((\pi_1 z) == 2) \cdot \llbracket v \rrbracket [y \setminus (\pi_2 z)] + (1 \div ((\pi_1 z) == 3) \cdot \llbracket P \rrbracket [y \setminus (\pi_2 z)]) \llbracket u \rrbracket$

UNTYPING TRANSLATION: TERMS

$$[x] = x$$

INTRODUCTION

CONCLUSION

- ► There exists a "natural" restriction of CIC capturing PRA.
 - ► Collection of primitive types
 - ▶ Proof relevance
- ► Implementation in Coq?

coq -pra MyPraProof.v

REFERENCES

- Hugo Herbelin and Arnaud Spiwack. The rooster and the syntactic bracket. arXiv preprint arXiv:1309.5767, 2013.
- Daniel Leivant.
 Global semantic typing for inductive and coinductive computing.
 arXiv preprint arXiv:1312.6323, 2013.

QUESTIONS

Thank you for listening!