Conclusion

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

The complexity of satisfaction problems in reverse mathematics

Ludovic PATEY PPS, Paris 7

June 24, 2014

イロト 不得 とうほ とうせい

3

Dac

SUMMARY

INTRODUCTION Satisfiability in complexity theory From satisfiability to satisfying assignment

A dichotomy theorem for satisfaction principles

A dichotomy theorem for Ramsey-type satisfaction principles

Conclusion

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Some terminology

Definition

- 1. A *literal* is either *x* (positive literal) or $\neg x$ (negative literal) for a variable *x*.
- 2. A *k*-clause is a disjunction of *k* literals.
- A finite set of clauses {*φ*₁,...,*φ_n*} over a set of variables *V* is *satisfiable* if there exists an assignment *ρ* : *V* → {T,F} such that each clause is true under the assignment.

SATISFIABILITY IN COMPLEXITY THEORY

Definition ISAT : Given a *finite* set of clauses, is it satisfiable ?

Theorem (Cook (1971), Levin (1973)) ISAT *is NP-complete*

SATISFIABILITY IN COMPLEXITY THEORY

Definition

- 1. A Boolean relation *R* is a subset of $\{T, F\}^n$
- 2. Given a set *S* of Boolean relations, an *S*-formula is a formula $R(x_0, ..., x_n)$ for some $R \in S$.

Definition

Fix a finite set *S* of Boolean relations. ISAT(S) : Given a finite set of *S*-formulas, is it satisfiable ?

SATISFIABILITY IN COMPLEXITY THEORY

Definition A clause is

- 1. *bijunctive* if it contains at most 2 literals
- 2. horn if it contains at most one positive literal
- 3. *co-horn* if it contains at most one negative literal

Note:

$$(\neg x_0 \lor \ldots \neg x_n \lor y) \equiv (x_0 \land \cdots \land x_n \to y)$$

SATISFIABILITY IN COMPLEXITY THEORY

Definition A formula φ is

- 1. *0-valid* if $\varphi(F, \ldots, F)$ is true.
- 2. *1-valid* if $\varphi(T, \ldots, T)$ is true.
- 3. *bijunctive* if it is a conjunction of bijunctive clauses.
- 4. *horn* if it is a conjunction of horn clauses.
- 5. *co-horn* if it is a conjunction of co-horn clauses.
- 6. *affine* if it is a conjunction of formulas of the form $x_1 \oplus \cdots \oplus x_n = i$ for $i \in \{0, 1\}$ where \oplus is the exclusive or.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SATISFIABILITY IN COMPLEXITY THEORY

Given a formula φ and a canonical ordering of the variables, define $[\varphi]$ to be the corresponding relation, i.e. the set of assignments satisfying it.

Example

$$[(x \lor y) \land x] = \{10, 11\}$$

Define in a natural way 0-valid, 1-valid, ... relations

SATISFIABILITY IN COMPLEXITY THEORY

- Theorem (Schaefer's dichotomy (1978))
- Let S be a finite set of Boolean relations. If S satisfies one of the conditions (a) (f) below, then ISAT(S) is in P. Otherwise, ISAT(S) is NP-complete.
- (a) Every relation in S is 0-valid.
- (b) Every relation in S is 1-valid.
- (c) Every relation in S is horn
- (d) Every relation in S is co-horn
- (e) *Every relation in S is affine.*
- (f) Every relation in S is bijunctive.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

WHAT IS REVERSE MATHEMATICS ?

Definition

Reverse mathematics is program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics.

- ► Weak system (RCA₀)
- ► Prove equivalence of theorems and axioms over RCA₀

Applications

- Deeper undestanding
- Search for more elementary proofs

Reverse mathematics

- ► RCA₀ contains
 - basic Peano axioms
 - the comprehension scheme restricted to Δ_1^0 formulas
 - ► the induction scheme restricted to Σ⁰₁ formulas
- ► RCA₀ captures "computational mathematics".

Reverse mathematics

Observation

Most theorems of "ordinary" mathematics

- ► live in weak systems.
- ► are equivalent to axioms over RCA₀

SATISFACTION IN REVERSE MATHEMATICS

Definition An infinite set *C* of formulas is *finitely satisfiable* if every finite subset of *C* has a satisfying assignment.

Definition SAT : Every finitely satisfiable set *C* of formulas has a satisfying assignment.

SATISFACTION IN REVERSE MATHEMATICS

Definition WKL: Every infinite binary tree has an infinite path.

Theorem (Simpson) $\mathsf{RCA}_0 \vdash \mathsf{SAT} \leftrightarrow \mathsf{WKL}$

SUMMARY

NTRODUCTION Satisfiability in complexity theory From satisfiability to satisfying assignment

A dichotomy theorem for satisfaction principles

A dichotomy theorem for Ramsey-type satisfaction principles

Conclusion

A FEW DEFINITIONS

Definition Let *S* be a finite set of relations. SAT(S) : Every finitely satisfiable set *C* of *S*-formulas has a satisfying assignment.

Is there a similar dichotomy theorem ?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

A FEW DEFINITIONS

Definition

A relation *R* is *i*-default for i = 0, 1 if for every assignment $\vec{r} \in R$ and every position $j < |\vec{r}|$, the assignment

$$\vec{s}(k) = \begin{cases} i & \text{if } k = j \\ \vec{r}(k) & \text{otherwise} \end{cases}$$

is also in *R*.

Example: If $01101 \in R$ for a 0-default relation *R*, then $01100, 01001, 00101, 01000, 00100, 00001, 00000 \in R$.

In particular every *i*-default relation is *i*-valid.

A FIRST DICHOTOMY THEOREM

Theorem If *S* satisfies one of the conditions (a) - (d) below, then SAT(S) is provable in RCA₀. Otherwise SAT(S) is equivalent to WKL₀ over RCA₀.

- (a) Every relation in S is 0-valid.
- (b) Every relation in S is 1-valid.
- (c) *If* $R \in S$ *is not* 0-*default then* $R = [x](=\{1\})$ *.*
- (d) *If* $R \in S$ *is not* 1-*default then* $R = [\neg x](= \{0\})$ *.*

RAMSEY-TYPE VERSION OF SATISFACTION

Question What if we only ask for an assignment of infinitely many variables ?

▲□▶▲□▶▲□▶▲□▶ □ のへで

SUMMARY

INTRODUCTION Satisfiability in complexity theory From satisfiability to satisfying assignment

A dichotomy theorem for satisfaction principles

A dichotomy theorem for Ramsey-type satisfaction principles

Conclusion

RAMSEY-TYPE VERSION OF SATISFACTION

Definition

A set $H \subseteq \mathbb{N} \times \{T, F\}$ is *homogeneous* for a set of formulas *C* if every finite subset of *C* has a satisfying assignment ν such that $\nu(i) = t$ for each $(i, t) \in H$.

Definition

- 1. LRSAT : For every infinite set *X* and every finitely satisfiable set of formulas, there exists an infinite homogeneous subset of $X \times \{T, F\}$.
- 2. Fix a finite set *S* of Boolean relations. LRSAT(S) : For every infinite set *X* and every finitely satisfiable set of *S*-formulas, there exists an infinite homogeneous subset of $X \times \{T, F\}$.

A DICHOTOMY THEOREM

Theorem

Either $RCA_0 \vdash LRSAT(S)$ *or* LRSAT(S) *is equivalent to one of the following principles over* RCA_0 :

- 1. LRSAT
- 2. LRSAT($[x \neq y]$)
- $3. \ \mathsf{LRSAT}(\mathit{Affine})$
- 4. LRSAT(*Bijunctive*)

The proof

How to prove dichotomy theorems on Boolean satisfaction problems ?

... use universal algebra

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A FIRST GAP

Theorem If *S* satisfies one of (*a*)-(*d*) below then $\text{RCA}_0 \vdash \text{LRSAT}(S)$. Otherwise $\text{RCA}_0 \vdash \text{LRSAT}(S) \rightarrow \text{LRSAT}([x \neq y])$.

- (a) Every relation in S is 0-valid.
- (b) Every relation in S is 1-valid.
- (c) Every relation in S is horn.
- (d) Every relation in S is co-horn.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

THE CO-CLONES COWARDS

Definition

For any set *S* of relations, the *co-clone* of *S* is the closure of *S* by existential quantification, equality and conjunction. We denote it by $\langle S \rangle$.

 $\begin{array}{l} \text{Lemma} \\ \textit{If} \; \mathsf{RCA}_0 \vdash \mathsf{LRSAT}(S) \rightarrow \mathsf{LRSAT}([x \neq y]) \; \textit{then} \\ \mathsf{RCA}_0 \vdash \mathsf{LRSAT}(S) \leftrightarrow \mathsf{LRSAT}(\langle S \rangle) \end{array}$

CO-CLONES, POLYMORPHISMS AND CLONES

Definition An *m*-ary function *f* is a *polymorphism* of a relation $R \subseteq \{0, 1\}^n$ if for every *m*-tuple $\langle v_1, \ldots, v_m \rangle$ of vectors of $R, \vec{f}(v_1, \ldots, v_m) \in R$ where \vec{f} is the coordinate-wise application of the function *f*.

Co-clones are characterized by their polymorphisms.

POST'S LATTICE

POST'S LATTICE AND DICHOTOMIES

All remains is making a case analysis over Post's lattice.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

CONCLUSION

- Full and Ramsey-type satisfaction principles admit dichotomy theorems
- ► The dichotomy differs from complexity theory
- ► It is unknown whether the systems LRSAT, LRSAT([x ≠ y]), LRSAT(Affine) and LRSAT(Bijunctive) are strictly different over RCA₀.

- Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer.
 The complexity of satisfiability problems: Refining schaefers theorem.
 In <u>Mathematical Foundations of Computer Science 2005</u>, pages 71–82. Springer, 2005.

Ludovic Patey.

The complexity of satisfaction problems in reverse mathematics. In Language, Life, Limits, pages 333–342. Springer, 2014.

Thomas J. Schaefer.

The complexity of satisfiability problems.

Dichotomy for satisfaction

In Proceedings of the tenth annual ACM symposium on Theory of computing, pages 216–226, 1978.

Conclusion

QUESTIONS

Thank you for listening !

(日)