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What is Reverse Mathematics ?

Definition

Program in mathematical logic that seeks to determine which
axioms are required to prove theorems of mathematics.

• Weak system (RCA0)

• Prove equivalence of theorems and axioms over RCA0

• Lattice of systems

Applications

• Soundness

• Heuristic for new proofs
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Reverse Mathematics

Observation

Most theorems of “ordinary” mathematics

• live in weak systems.

• are equivalent to axioms over RCA0

• Refine our structure of weak systems.

• Weaker than Ramsey theorem and König’s lemma.
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Language of Second Order Arithmetic L2

Numerical terms

t ::= 0 | 1 | x | t1 + t2 | t1 · t2

Formulas

f ::= t1 = t2 | t1 < t2 | t1 ∈ X | ∀x.f
| ∃x.f | ∀X.f | ∃X.f | ¬f | f1 ∨ f2
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Axioms of Second Order Arithmetic Z2

Basic axioms

n+ 1 6= 0 m+ 1 = n+ 1⇒ m = n
m+ 0 = m m+ (n+ 1) = (m+ n) + 1
m · 0 = 0 m · (n+ 1) = (m · n) +m
¬m < 0 m < n+ 1⇔ (m < n ∨m = n)

Induction axiom

(0 ∈ X ∧ ∀n.(n ∈ X ⇒ n+ 1 ∈ X))⇒ ∀n.(n ∈ X)

Comprehension scheme

∃X.∀n.(n ∈ X ⇔ ϕ(n))

where ϕ(n) is any formula of L2 in which X does not occur
freely.
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Subsystem of Z2

Definition (Subsystem of Z2)

System based of L2 whose axioms are theorems of Z2
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The system RCA0

Basic axioms

Σ0
1 Induction scheme

(ϕ(0) ∧ ∀n.(ϕ(n)⇒ ϕ(n+ 1)))⇒ ∀n.ϕ(n)

where ϕ(n) is any Σ0
1 formula of L2

∆0
1 Comprehension scheme

∀n(ϕ(n)⇔ ψ(n))⇒ ∃X.∀n.(x ∈ X ⇔ ϕ(n))

where ϕ(n) is any Σ0
1 formula of L2 in which X does not occur

freely and ψ(n) is any Π0
1 formula of L2.
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The “Big Five” subsystems
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Reverse mathematics zoo
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ω-structure

Definition (ω-structure)

MS = (ω, S,+ω,×ω, <ω)

Example (Minimal ω-model of RCA0)

COMP is the ω-structure where

S = {X ∈ 2ω : X is computable}
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No randomized algorithm property

Definition

Let ~Xi be a sequence of sets. COMP ( ~Xi) is the ω-structure
where

S =
⋃
i∈ω
{Y : Y ≤T X0 ⊕ · · · ⊕Xi} .

Question

Fix a system P and pick a sequence ~Xi at random.
What is the probability that COMP ( ~Xi) |= P ?
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No randomized algorithm property

Definition

A system P has the no randomized algorithm property if when
picking a sequence of sets ~Xi, the probability that
COMP ( ~Xi) |= P is null.

Question

Which systems have the NRA property ?
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No randomized algorithm property

Why no randomized algorithm property ?

• Consider a principle P = ∀Y ∃ZΦ(Y,Z).

• If P has the NRA property, then for almost every sequence
~Xi there is a Y ∈ COMP ( ~Xi) such that no probabilistic
algorithm computes a Z such that Φ(Y, Z).
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No randomized algorithm property

n-RAN (n-randomness)

For every X, there is a set Y which is n-random relative to X.

n-WWKL (n-weak weak König’s lemma)

Every subtree of 2<ω of positive measure computable in ∅(n−1)

has an infinite path.

Theorem (Avigdad, Dean & Rute)

For every standard n,

RCA0 + BΣn ` n-RAN↔ n-WWKL
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No randomized algorithm property

Theorem

If a system S has the NRA property

∀n RCA0 6` n-WWKL→ S

Proof.

Pick the ~Xi at random. With probability 1, for all i, Xi+1 is
n-random relative to the join of the Xk, k < i. Therefore, with
probability 1, COMP ( ~Xi) is a model of n-WWKL.
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No randomized algorithm property

Which systems have the NRA property ?
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We can take the zoo ...
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... and classify it
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A remark

A lot of (weak) principles have the NRA property
...
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Ordering

SADS (Stable ascending descending sequence)

Every linear order of order type ω + ω∗ has an infinite suborder
of order type ω or ω∗.

Theorem (Csima & Mileti)

SADS has the NRA property

Proof.

There is a computable linear order of order type ω + ω∗ such
that the measure of oracles computing an infinite suborder of
order type ω or ω∗ is null.
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Ordering

CADS (Cohesive ascending descending sequence)

Every linear order has a suborder of order type ω + ω∗ or ω or
ω∗.

Theorem (Bienvenu, Patey & Shafer)

CADS has the NRA property

Proof.

There is a computable linear order such that the measure of
oracles computing an infinite suborder of order type ω + ω∗ or
ω or ω∗ is null.
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Genericity

Π0
1G (Π0

1 genericity)

Any uniformly Π0
1 collection of dense sets Di ⊆ 2<ω has a G

such that ∀i∃s(G � s ∈ Di).

Theorem (Kurtz)

The upward closure of the weakly 2-generic degrees has
measure 0.

Theorem (Bienvenu, Patey & Shafer)

Π0
1G has the NRA property
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First remark

... but there are non-trivial problems
solved by randomness.
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Genericity

1-GEN (1-genericity)

For any set X, there exists a set 1-generic relative to X.

Theorem (Kurtz)

Almost every set computes a 1-generic set.

Corollary

1-GEN does not have the NRA property.
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Rainbow Ramsey Theorem

Definition (k-bounded function)

A coloring function Nn → N is k-bounded if
card {x ∈ Nn : f(x) = c} ≤ k for every color c.

RRTn
k (Rainbow Ramsey Theorem)

For every k-bounded coloring function f : Nn → N there is an
infinite set H such that f � Hn is injective.
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Rainbow Ramsey Theorem

Theorem (Csima & Mileti)

RCA0 ` 2-RAN→ RRT2
2

Theorem (Bienvenu, Patey & Shafer)

RRT3
2 has the NRA property.

Proof.

There is a computable 2-bounded coloring c : [N]3 → N such
that the measure of oracles computing an infinite rainbow for c
is null.
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Conclusion

• The following principles have the NRA property:
Π0

1G, CADS, SEM, RRT3
2, POS, STS(2) RCOLOR2.

• Any principle below n-WWKL for some n
does not have the NRA property.

• This suffices to classify the whole zoo.
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Further research

• The NRA property: computing or not a solution with
• randomness

• What about the ability to compute a solution with
• randomness
• other oracles (eg. 0′)
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Questions

Thank you for listening !
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