Reverse mathematics: Classifying principles by the no randomized algorithm property.

Laurent Bienvenu Ludovic Patey

Paul Shafer

LIAFA, Université Paris 7

September 23, 2013

Bienvenu - Patev - Shafer

Classifying by the NRA property

September 23, 2013 1 / 35

Classification

Conclusion

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 2 / 35

◆□> <@> < E> < E> E

NRA property

Classification

Conclusion

Plan

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 3 / 35

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

What is Reverse Mathematics ?

Definition

Program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics.

- Weak system (RCA_0)
- $\bullet\,$ Prove equivalence of theorems and axioms over RCA_0
- Lattice of systems

Applications

- Soundness
- Heuristic for new proofs

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 4 / 35

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Reverse Mathematics

Observation

Most theorems of "ordinary" mathematics

- live in weak systems.
- \bullet are equivalent to axioms over RCA_0

- Refine our structure of weak systems.
- Weaker than Ramsey theorem and König's lemma.

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 5 / 35

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Language of Second Order Arithmetic L_2

Numerical terms

$$t ::= 0 \mid 1 \mid x \mid t_1 + t_2 \mid t_1 \cdot t_2$$

Formulas

$$\begin{array}{rll} f ::= & t_1 = t_2 \mid t_1 < t_2 \mid t_1 \in X \mid \forall x.f \\ & \mid \exists x.f \mid \forall X.f \mid \exists X.f \mid \neg f \mid f_1 \lor f_2 \end{array}$$

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 6 / 35

◆□ → ◆□ → ◆三 → ◆三 → 三三

Axioms of Second Order Arithmetic Z_2

Basic axioms

$$\begin{array}{ll} n+1 \neq 0 & m+1 = n+1 \Rightarrow m = n \\ m+0 = m & m+(n+1) = (m+n)+1 \\ m \cdot 0 = 0 & m \cdot (n+1) = (m \cdot n) + m \\ \neg m < 0 & m < n+1 \Leftrightarrow (m < n \lor m = n) \end{array}$$

Induction axiom

$$(0 \in X \land \forall n. (n \in X \Rightarrow n+1 \in X)) \Rightarrow \forall n. (n \in X)$$

Comprehension scheme

$$\exists X. \forall n. (n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is any formula of L_2 in which X does not occur freely.

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 7 / 35

Subsystem of Z_2

Definition (Subsystem of Z_2)

System based of L_2 whose axioms are theorems of Z_2

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 8 / 35

The system RCA_0

Basic axioms

 Σ_1^0 Induction scheme

$$(\varphi(0) \land \forall n.(\varphi(n) \Rightarrow \varphi(n+1))) \Rightarrow \forall n.\varphi(n)$$

where $\varphi(n)$ is any Σ_1^0 formula of L_2

 Δ_1^0 Comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \Rightarrow \exists X. \forall n. (x \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is any Σ_1^0 formula of L_2 in which X does not occur freely and $\psi(n)$ is any Π_1^0 formula of L_2 .

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 9 / 35

・ロト ・四ト ・ヨト ・ヨー

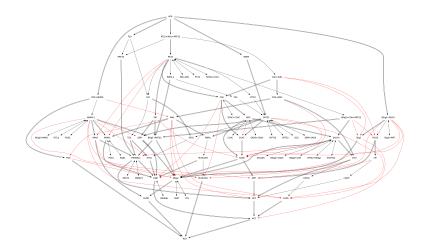
The "Big Five" subsystems

Bienvenu - Patey - Shafer

Classifying by the NRA property

・ロト ・回ト ・ヨト ・ヨー うへぐ September 23, 2013

Reverse mathematics zoo



Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 11 / 35

◆□ → ◆□ → ◆臣 → ◆臣 → □ 臣

Conclusion

ω -structure

Definition (ω -structure)

$$\mathcal{M}_S = (\omega, S, +_\omega, \times_\omega, <_\omega)$$

Example (Minimal ω -model of RCA_0) COMP is the ω -structure where

 $S = \{ X \in 2^{\omega} : X \text{ is computable} \}$

Bienvenu - Patey - Shafer

Classifying by the NRA property September 23, 2013

2013 12 / 35

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

NRA property

Classification

Conclusion

Plan

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 13 / 35

æ

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

Definition

Let \vec{X}_i be a sequence of sets. $COMP(\vec{X}_i)$ is the ω -structure where

$$S = \bigcup_{i \in \omega} \left\{ Y : Y \leq_T X_0 \oplus \cdots \oplus X_i \right\}.$$

Question

Fix a system P and pick a sequence \vec{X}_i at random. What is the probability that $COMP(\vec{X_i}) \models \mathsf{P}$?

Bienvenu - Patev - Shafer

Classifying by the NRA property

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの September 23, 2013

Definition

A system P has the *no randomized algorithm property* if when picking a sequence of sets X_i , the probability that $COMP(\vec{X_i}) \models \mathsf{P}$ is null.

Question

Which systems have the NRA property?

Bienvenu - Patev - Shafer

Classifying by the NRA property

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの September 23, 2013

Why no randomized algorithm property ?

- Consider a principle $\mathsf{P} = \forall Y \exists Z \Phi(Y, Z)$.
- If P has the NRA property, then for almost every sequence \vec{X}_i there is a $Y \in COMP(\vec{X}_i)$ such that no probabilistic algorithm computes a Z such that $\Phi(Y, Z)$.

Bienvenu - Patey - Shafer

Classifying by the NRA property September 23, 2013 16 / 35

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへの

n-RAN (*n*-randomness)

For every X, there is a set Y which is n-random relative to X.

n-WWKL (*n*-weak weak König's lemma)

Every subtree of $2^{<\omega}$ of positive measure computable in $\emptyset^{(n-1)}$ has an infinite path.

Theorem (Avigdad, Dean & Rute)

For every standard n,

$\mathsf{RCA}_{0} + \mathsf{B}\Sigma_{n} \vdash n - \mathsf{RAN} \leftrightarrow \mathsf{n} - \mathsf{WWKL}$

Bienvenu - Patev - Shafer

Classifying by the NRA property

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの September 23, 2013 17 / 35

Theorem

If a system S has the NRA property

$\forall n \quad \mathsf{RCA}_{\mathsf{0}} \not\vdash n \text{-WWKL} \rightarrow \mathsf{S}$

Proof.

Pick the \vec{X}_i at random. With probability 1, for all i, X_{i+1} is *n*-random relative to the join of the X_k , k < i. Therefore, with probability 1, $COMP(\vec{X}_i)$ is a model of *n*-WWKL.

Bienvenu - Patey - Shafer

Classifying by the NRA property September 23, 2013

Classification

Conclusion

Plan

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013

◆□▶ ◆御▶ ◆理▶ ◆理▶

19 / 35

æ

Classification

Conclusion

No randomized algorithm property

Which systems have the NRA property ?

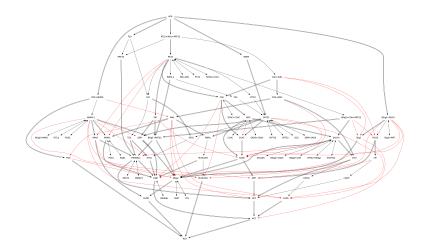
Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

We can take the zoo ...



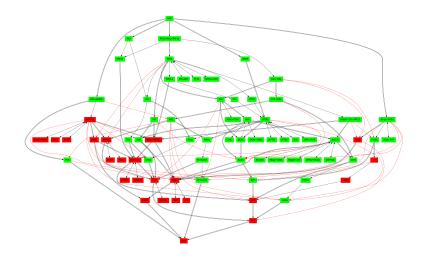
Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 21

◆□ → ◆□ → ◆臣 → ◆臣 → □ 臣

... and classify it



Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013

NRA property

Classification

Conclusion

A remark

A lot of (weak) principles have the NRA property

. . .

Bienvenu - Patey - Shafer

Classifying by the NRA property

 < □ > < ⊡ > < ⊡ > < ≧ > < ≧ > < ≧ > < ≧ > ≧

 xy
 September 23, 2013

Ordering

SADS (Stable ascending descending sequence)

Every linear order of order type $\omega + \omega^*$ has an infinite suborder of order type ω or ω^* .

Theorem (Csima & Mileti) SADS has the NRA property

Proof.

There is a computable linear order of order type $\omega + \omega^*$ such that the measure of oracles computing an infinite suborder of order type ω or ω^* is null.

Bienvenu - Patev - Shafer

Classifying by the NRA property

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ September 23, 2013

Conclusion

Ordering

CADS (Cohesive ascending descending sequence) Every linear order has a suborder of order type $\omega + \omega^*$ or ω or ω^* .

Theorem (Bienvenu, Patey & Shafer)

CADS has the NRA property

Proof.

There is a computable linear order such that the measure of oracles computing an infinite suborder of order type $\omega + \omega^*$ or ω or ω^* is null.

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Genericity

$\Pi_1^0 \mathsf{G} (\Pi_1^0 \text{ genericity})$

Any uniformly Π_1^0 collection of dense sets $D_i \subseteq 2^{<\omega}$ has a G such that $\forall i \exists s (G \upharpoonright s \in D_i)$.

Theorem (Kurtz)

The upward closure of the weakly 2-generic degrees has measure 0.

Theorem (Bienvenu, Patey & Shafer) $\Pi^0_1 \mathsf{G}$ has the NRA property

Bienvenu - Patev - Shafer

Classifying by the NRA property

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの September 23, 2013

Classification

Conclusion

First remark

... but there are non-trivial problems solved by randomness.

Bienvenu - Patey - Shafer

Classifying by the NRA property

 <□>
 <</td>
 >
 ≥
 ≥
 ≥

 xy
 September 23, 2013

Conclusion

Genericity

1-GEN (1-genericity)

For any set X, there exists a set 1-generic relative to X.

Theorem (Kurtz)

Almost every set computes a 1-generic set.

Corollary 1-GEN does not have the NRA property.

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013

Rainbow Ramsey Theorem

Definition (k-bounded function)

A coloring function $\mathbb{N}^n \to \mathbb{N}$ is k-bounded if $\operatorname{card} \{x \in \mathbb{N}^n : f(x) = c\} \le k$ for every color c.

RRT_{k}^{n} (Rainbow Ramsey Theorem)

For every k-bounded coloring function $f : \mathbb{N}^n \to \mathbb{N}$ there is an infinite set H such that $f \upharpoonright H^n$ is injective.

Bienvenu - Patey - Shafer

Classifying by the NRA property September 23, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Conclusion

Rainbow Ramsey Theorem

Theorem (Csima & Mileti)

$\mathsf{RCA}_0 \vdash 2\text{-}\mathsf{RAN} \to \mathsf{RRT}_2^2$

Theorem (Bienvenu, Patey & Shafer)

 RRT_2^3 has the NRA property.

Proof.

There is a computable 2-bounded coloring $c : [\mathbb{N}]^3 \to \mathbb{N}$ such that the measure of oracles computing an infinite rainbow for c is null.

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Classification

Conclusion

Plan

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 31 / 35

æ

◆□▶ ◆御▶ ◆理▶ ◆理▶

Conclusion

- The following principles have the NRA property: Π_1^0 G, CADS, SEM, RRT₂³, POS, STS(2) RCOLOR₂.
- Any principle below *n*-WWKL for some *n* does not have the NRA property.
- This suffices to classify the whole zoo.

Bienvenu - Patey - Shafer

Classifying by the NRA property September 23, 2013 32 / 35

イロト イロト イヨト イヨト 三日

Further research

- The NRA property: computing or not a solution with
 - randomness
- What about the ability to compute a solution with
 - randomness
 - other oracles (eg. 0')

Bienvenu - Patey - Shafer

Classifying by the NRA property \qquad September 23, 2013 \qquad 33 / 35

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Conclusion

References

	Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A Slaman.
	Comparing DNR and WWKL. Journal of Symbolic Logic, pages 1089–1104, 2004.
	Jeremy Avigad, Edward T Dean, and Jason Rute.
_	Algorithmic randomness, reverse mathematics, and the dominated convergence theorem. Annals of Pure and Applied Logic, 2012.
	CT Chong, Theodore A Slaman, and Yue Yang.
_	The metamathematics of stable Ramsey's theorem for pairs. To appear.
	Stephen Flood.
	Reverse mathematics and a ramsey-type könig's lemma. Journal of Symbolic Logic, 77(4):1272–1280, 2012.
	Jiayi Liu.
	RT22 does not imply WKL0. Journal of Symbolic Logic, 77(2):609–620, 2012.
	Henry Towsner Manuel Lerman, Reed Solomon.
_	Separating principles below Ramsey's Theorem for Pairs. 2013.
	Stephen G Simpson.
	Subsystems of second order arithmetic, volume 42. Springer Berlin, 1999.
	《曰》《御》《道》《道》 [] [] 《

Bienvenu - Patey - Shafer

Classifying by the NRA property

September 23, 2013 34 / 35

Classification

Conclusion

Thank you for listening !

Bienvenu - Patey - Shafer

Classifying by the NRA property

 <□>
 <</td>
 ≥

 ≥
 ≥
 ≥

 xy
 September 23, 2013
 33