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Introduction
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Ramsey’s theorem

[X]n is the set of unordered n-tuples of elements of X

A k-coloring of [X]n is a map f : [X]n → k

A set H ⊆ X is homogeneous for f if |f([H]n)| = 1.

RTnk
Every k-coloring of [N]n admits
an infinite homogeneous set.
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Ramsey’s theorem for pairs

RT2
k

Every k-coloring of the infinite clique admits
an infinite monochromatic subclique.
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RCA0

Robinson arithmetics (Q)

m+ 1 ̸= 0 m+ 0 = m
m+ 1 = n+ 1 → m = n m+ (n+ 1) = (m+ n) + 1
¬(m < 0) m× 0 = 0
m < n+ 1 ↔ (m < n ∨m = n) m× (n+ 1) = (m× n) +m

Σ0
1 induction scheme

φ(0) ∧ ∀n(φ(n) ⇒ φ(n+ 1))
→ ∀nφ(n)

where φ(n) is a Σ0
1 formula

∆0
1 comprehension scheme

∀n(φ(n) ⇔ ψ(n))
→ ∃X∀n(n ∈ X ⇔ φ(n))

where φ(n) is a Σ0
1 formula where X

appears freely, and ψ is a Π0
1 formula.
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Reverse mathematics

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

Except for Ramsey’s theory...

RCA0

WKL

ACA

ATR

Π1
1CA

RT2
2
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The first order-part of a theory T is the set of its theorems
in the language of first-order arithmetic.

What is the first-order part of
Ramsey’s theorem for pairs?
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Weak arithmetic 101
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Induction scheme
φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀yφ(y)

for every formula φ(x)

Collection scheme
(∀x < a)(∃y)φ(x, y) → (∃b)(∀x < a)(∃y < b)φ(x, y)

for every a ∈ N and every formula φ(x, y)
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Over Q + I∆0
0 + exp

Induction Collection Least principle Regularity
...

...
...

...

IΣ0
2 ≡ IΠ0

2 LΠ0
2 ≡ LΣ0

2 Σ0
2-regularity

I∆0
2 BΣ0

2 ≡ BΠ0
1 L∆0

2 ∆0
2-regularity

IΣ0
1 ≡ IΠ0

1 LΠ0
1 ≡ LΣ0

1 Σ0
1-regularity

I∆0
1 BΣ0

1 ≡ BΠ0
0 L∆0

1 ∆0
1-regularity

� exp: totality of the exponential
� A set X is M-regular if every initial segment of X is M-coded
� Least principle: every non-empty set admits a minimum element
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RCA0 ≡ Q +∆0
1-comprehension+ IΣ0

1
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RCA∗
0 ≡ Q +∆0

1-comprehension+ I∆0
0 + exp
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First-order parts

Induction System First-order part
...

...
...

IΣ0
2 ≡ IΠ0

2 RCA0 + IΣ0
2 Q + IΣ2

I∆0
2 RCA0 + BΣ0

2 Q + I∆2

IΣ0
1 ≡ IΠ0

1 RCA0 Q + IΣ1

I∆0
1 + exp RCA∗

0 Q + I∆1 + exp
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Failure of induction
≡

Existence of proper cuts

� A non-empty set I ⊆ M is a cut if it is an initial segment
of M closed under successor

� A cut is exponential if it is closed under exponential

� A cut is semi-regular if for every M-coded set F ⊆ M
such that |F| ∈ I, F ∩ I is bounded in I.
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Given a first-order structure M and a proper cut I, let

Cod(M/I) = {F ∩ I : F is M-coded}

If M |= PRA and I semi-regular,
then (I, Cod(M/I)) |= WKL0

WKL0 is Π2-conservative
over PRA.

The RCA0-provably total
functions are the primitive
recursive functions.

If M |= EFA and I exponential,
then (I, Cod(M/I)) |= WKL∗

0

WKL∗
0 is Π2-conservative

over EFA.

The RCA∗
0-provably total

functions are the elementary
functions.

� WKL: Every infinite binary tree admits an infinite path
� WKL0 ≡ RCA0 + WKL and WKL∗0 ≡ RCA∗

0 + WKL
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Conservation theorems
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Fix a family of formulas Γ.

A theory T1 is Γ-conservative over T0 if every Γ-sentence
provable over T1 is provable over T0.

If T1 is a Π1
1-conservative extension of T0,

then they have the same first-order part.
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A second-order structure N = (N,T) is an ω-extension of
M = (M,S) if N = M, T ⊇ S, +N = +M and <N=<M.

Theorem
If every countable model of M |= T0 admits an ω-extension N |= T1,
then T1 is Π1

1-conservative over T0.

� Suppose T0 ⊬ ∀Xϕ(X). Let M |= T0 ∧ ∃X¬ϕ(X).
� Let N |= T1 be an ω-extension of M.
� Then N |= T1 ∧ ∃X¬ϕ(X). So T1 ⊬ ∀Xϕ(X).
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Let M = (M,S) be a second-order structure, and G ⊆ M.
M[G] is the smallest ω-extension containing the ∆0

1(M∪ {G})
sets.

Theorem
Let P be a Π1

2-problem and T be a theory. If for every countable
model M |= T and every X ∈ M such that M |= (X ∈ domP), there is
a set Y ⊆ M such that M[Y] |= T+ (Y ∈ P(X)), then T+ P is
Π1

1-conservative over T.

M ⊆ M[Y0] ⊆ M[Y0][Y1] ⊆ . . .
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Preliminary results
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Theorem (Hirst)

RCA0 ⊢ RT2
2 → BΣ0

2.

Theorem (Cholak, Jockusch and Slaman)

For every countable model M = (M,S) |= RCA0 + IΣ0
2 and every

coloring f : [M]2 → 2 in M, there is an infinite f-homogeneous set
G ⊆ M such that M[G] |= RCA0 + IΣ0

2.

Thus RCA0 + IΣ0
2 + RT2

2 is Π1
1-conservative over RCA0 + IΣ0

2.

Theorem (Chong, Slaman and Yang)

RCA0 + RT2
2 ⊬ IΣ0

2.
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Is RCA0 + RT2
2 Π

1
1-conservative

over RCA0 + BΣ0
2?

Question
Given a countable model M = (M,S) |= RCA0 + BΣ0

2 + ¬IΣ0
2 and a

coloring f : [M]2 → 2 in M, is there an infinite f-homogeneous set
G ⊆ M such that M[G] |= RCA0 + BΣ0

2 + ¬IΣ0
2?
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An infinite set C is R⃗-cohesive for some sets R0,R1, . . .
if for every i, either C ⊆∗ Ri or C ⊆∗ Ri.

COH : Every collection of sets has a cohesive set.

Theorem (Mileti ; Jockusch and Lempp)

RCA0 ⊢ RT2
2 → COH.

The following are equivalent over RCA0:
� COH + BΣ0

2

� “Every ∆0
2 infinite binary tree admits an infinite ∆0

2 path”
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The jump of a structure M = (M,S) is the smallest
ω-extension containing the ∆0

2(M) sets.

Lemma (Belanger)

Let M |= RCA0 and N be its jump. Then

� M |= BΣ0
2 + ¬IΣ0

2 iff N |= RCA∗
0 + ¬IΣ0

1.

� M |= BΣ0
2 + COH + ¬IΣ0

2 iff N |= WKL∗
0 + ¬IΣ0

1.
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In the jump realm

Theorem (Simpson and Smith)

For every countable model M = (M,S) |= RCA∗
0 and every infinite

tree T ⊆ 2<M, there is an infinite path P ∈ [T] such that M[P] |= RCA∗
0.

Thus WKL∗
0 is Π1

1-conservative over RCA∗
0.

Theorem (Fiori-Carones, Kołodziejczyk, Wong and Yokoyama)

Les M0 = (M,S0) and M1 = (M,S1) be countable models of WKL∗
0

such that (M,S0 ∩ S1) |= ¬IΣ0
1. Then M0

∼= M1.

A Π1
2 problem P is Π1

1-conservative over RCA∗
0 + ¬IΣ0

1 iff
WKL∗

0 + ¬IΣ0
1 ⊢ P.
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In the ground realm

Theorem (Fiori-Carones, Kołodziejczyk, Wong and Yokoyama)

Let M0 = (M,S0) and M1 = (M,S1) be countable models
of RCA0 +BΣ0

2 +COH such that (M,S0 ∩S1) |= ¬IΣ0
2. Then their jump

models are isomorphic.

Conservation over RCA0 + BΣ0
2 + ¬IΣ0

2 can be done without
loss of generality by first-jump control.

Theorem (Fiori-Carones, Kołodziejczyk, Wong and Yokoyama)

Let P be a ∀∃Π0
k-sentence, where k ≥ 3. Then P is Π1

1-conservative
over RCA0 + BΣ0

2 + ¬IΣ0
2 iff it is ∀Π0

k+2-conservative
over RCA0 + BΣ0

2 + ¬IΣ0
2.
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Well-foundedness
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Effective constructions in non-standard models

Proper cut I

R0

Model M

R1

σ0 σ2σ1

R2 R3 ... Ra Ra+1

Shore blocking

R<a0 R<a1 R<a2 R<a3

where a0, a1, . . . is cofinal in M
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Definition
WF(α): There is no infinite decreasing sequence of ordinals < α

Let M = (M,S) be a countable model of RCA0.

WF(ωM) = {a ∈ M : M |= WF(ωa)}

� WF(ωM) is an additive cut

� There is a model M and some non-standard a such that

WF(ωM) = sup{a · n : n ∈ ω}
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Bounded monotone enumerations

� E0 ⊆ E1 ⊆ . . . finite trees in N<N

� New nodes in Es+1 extend only
leaves in Es

� E is k-bounded if ∀σ ∈ E, |σ| ≤ k

Theorem (Kreuzer and Yokoyama)

RCA0 ⊢ WF(ωω) ↔ “Every bounded monotone enumeration of a tree
is finite”
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Theorem (Le Houérou, Levy Patey and Yokoyama)

Let M = (M,S) |= RCA0 + BΣ0
2 + WF(ωα

4 ) be a countable, topped by
a set Y ∈ S, where α ≤ ϵ0. Then, for every coloring f : [M]2 → 2 in S
and every set P ≫ Y′ such that M[P] |= RCA∗

0, there exists G ⊆ M
such that G is an M-infinite f-homogeneous set, P ≥T (G⊕ Y)′ and
M[G] |= RCA0 + BΣ0

2 + WF(α).

Theorem (Le Houérou, Levy Patey and Yokoyama)

WKL0 +RT2
2 +WF(ϵ0) is Π1

1-conservative over RCA0 +BΣ0
2 +WF(ϵ0).
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∀Π0
3 conservation
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A finite set X ⊆ N is

� ω0-large if X ̸= ∅.

� ω(n+1)-large if X \minX is (ωn ·minX)-large

� ωn · k-large if there are k ωn-large subsets of X

X0 < X1 < · · · < Xk−1

3

135 ... ...

ω1-large

ω2-large

ω1-large ω1-large

� A < B means that for all a ∈ A and b ∈ B, a < b.
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Lemma
RCA0 ⊢ ∀a[WF(ωa) ↔ Every infinite set contains an ωa-large subset]

Let M = (M,S) be a countable model of RCA0.

WF(ωM) = {a ∈ M : M |= WF(ωa)}

� WF(ωM) is an additive cut

� There is a model M and some non-standard a such that

WF(ωM) = sup{a · n : n ∈ ω}
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α-largeness approximates infinity

Theorem (Generalized Parsons theorem)

Let ψ(F) be a ∆0 formula with only free variable F. Suppose that

WKL0 ⊢ ∀X [X is infinite → (∃F ⊆fin X)ψ(F)]

Then there exists some n ∈ ω such that

Q + IΣ0
1 ⊢ ∀Z [Z is ωn-large → (∃F ⊆ Z)ψ(F)]
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Forcing with ωa-large sets

Fix a countable non-standard model
M |= Q + IΣ0

1.

(P,≤)
ωa-large sets for a ∈ M \ ω

ordered by inclusion.

Every filter F ⊆ P induces a cut

IF = sup{minZ : Z ∈ F}

Zi

Zi+1

Zi+2

IF
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Forcing with ωa-large sets

Fix a countable non-standard model
M |= Q + IΣ0

1.

� If Z ∈ F , then Z ∩ IF is unbounded in IF .

� Z ⊩ (∀x ∈ I)θ(x) if (∀x < maxZ)θ(x).

� Z ⊩ (∃x ∈ I)θ(x) if (∃x < minZ)θ(x).

� Z ⊩ (∀x ∈ I)(∃y ∈ I)θ(x, y) if

(∀a,b ∈ Z)[a < b → (∀x < a)(∃y < b)θ(x, y)]

Zi

Zi+1

Zi+2

IF
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A cut is semi-regular if for every M-coded set F ⊆ M
such that |F| ∈ I, F ∩ I is bounded in I.

If M |= PRA and I semi-regular, then (I, Cod(M/I)) |= WKL0.

Lemma (Kirby and Paris)

If M |= Q + IΣ0
1 and F is sufficiently generic, then IF is semi-regular.

� Let Z ∈ P be ωa-large and F ⊆ M be M-coded with |F| < minZ ;
� Let Z0 < · · · < Z|F| be ωa−1-large subsets of Z ;
� Zi ∩ F = ∅ for some i ≤ |F|.
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Theorem (Hirst)

RCA0 ⊢ BΣ0
2 ↔ ∀aRT1

a.

X is exp-sparse if minX ≥ 3 and (∀x, y ∈ X)(x < y → 4x < y)

Lemma (Kołodziejczyk and Yokoyama)

Q + IΣ0
1 proves that if X is ωa+1-large and exp-sparse, then for every

f : X → minX, there is an ωa-large f-homogeneous subset Y ⊆ X.

Thus if F is sufficiently generic (IF , Cod(M/IF )) |= ∀aRT1
a.
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Theorem (Parsons, Paris and Friedman)

WKL0 + BΣ0
2 is ∀Π0

3-conservative over RCA0.

� Suppose RCA0 ⊬ ∀A∃x∀yψ(A, x, y) ;
� Let M = (M,S) |= RCA0 + ∃A∀x∃y¬ψ(A, x, y) be non-standard ;
� Let A ∈ S and X = {b0 < b1 < . . . } ∈ S be such that

(∀x < bs)(∃y < bs+1)¬ψ(A, x, y) ;
� Let a ∈ WF(ωM) \ ω and let Z ⊆ X be ωa-large ;
� Let F be sufficiently generic filter containing Z ;
� (IF , Cod(M/IF )) |= WKL0 + BΣ0

2 + ∃A∀x∃y¬ψ(A, x, y).
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Lemma (Kołodziejczyk and Yokoyama)

Q + IΣ0
1 proves that if X is ω300a-large and minX ≥ 3, then for every

f : [X]2 → 2, there is an ωa-large f-homogeneous set H ⊆ X.

Thus if F is sufficiently generic (IF , Cod(M/IF )) |= RT2
2.

Theorem (Patey and Yokoyama)

WKL0 + RT2
2 is ∀Π0

3-conservative over RCA0.
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Conclusion

Theorem (Le Houérou, Levy Patey and Yokoyama)

WKL0 + RT2
2 + WF(ϵ0) is Π1

1-conservative
over RCA0 + BΣ0

2 + WF(ϵ0).

Theorem (Le Houérou, Levy Patey and Yokoyama)

WKL0 + RT2
2 is ∀Π0

4-conservative over RCA0 + BΣ0
2.
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Open questions

Is WKL0 + RT2
2 Π

1
1-conservative over RCA0 + BΣ0

2?

Is WKL0 + RT2
2 ∀Π0

5-conservative over RCA0 + BΣ0
2?

Does WKL0 + RT2
2 admit exponential proof-speedup

over RCA0 + BΣ0
2?
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