Partial conservation of Ramsey's theorem for pairs

Ludovic LEVY PATEY

Joint work with Quentin Le Houérou and Keita Yokoyama

Introduction

Ramsey's theorem

 $[X]^n$ is the set of unordered *n*-tuples of elements of X

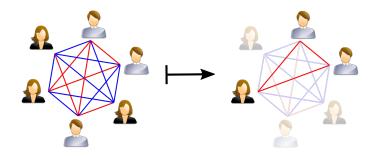
A *k*-coloring of $[X]^n$ is a map $f : [X]^n \to k$

A set $H \subseteq X$ is homogeneous for f if $|f([H]^n)| = 1$.

 $\begin{array}{ll} \mathsf{RT}^{\boldsymbol{n}}_{\boldsymbol{k}} & \text{Every } {\boldsymbol{k}}\text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

Ramsey's theorem for pairs

$\mathsf{RT}^2_{\mathbf{k}}$ Every *k*-coloring of the infinite clique admits an infinite monochromatic subclique.



 RCA_0

Robinson arithmetics (Q)

$$m + 1 \neq 0$$

$$m + 1 = n + 1 \rightarrow m = n$$

$$\neg (m < 0)$$

$$m < n + 1 \leftrightarrow (m < n \lor m = n)$$

$$m + 0 = m$$

 $m + (n + 1) = (m + n) + 1$
 $m \times 0 = 0$
 $m \times (n + 1) = (m \times n) + m$

Σ_1^0 induction scheme

 $\begin{array}{l} \varphi(0) \land \forall \pmb{n}(\varphi(\pmb{n}) \Rightarrow \varphi(\pmb{n}+1)) \\ \rightarrow \forall \pmb{n}\varphi(\pmb{n}) \end{array}$

where $\varphi(n)$ is a Σ_1^0 formula

Δ_1^0 comprehension scheme

$$\begin{array}{l} \forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \rightarrow \exists X \forall n (n \in X \Leftrightarrow \varphi(n)) \end{array}$$

where $\varphi(n)$ is a Σ_1^0 formula where *X* appears freely, and ψ is a Π_1^0 formula.

Reverse mathematics

Mathematics are computationally very structured

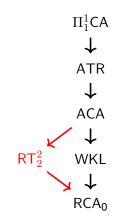
Almost every theorem is empirically equivalent to one among five big subsystems. $\Pi^1_1 CA$ ATR ACA \mathbf{J} WKI **RCA**

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...



The first order-part of a theory T is the set of its theorems in the language of first-order arithmetic.

What is the first-order part of Ramsey's theorem for pairs?

Weak arithmetic 101

Induction scheme

$$\varphi(0) \land \forall \mathbf{x}(\varphi(\mathbf{x}) \to \varphi(\mathbf{x}+1)) \to \forall \mathbf{y}\varphi(\mathbf{y})$$

for every formula $\varphi(\mathbf{x})$

Collection scheme

 $(\forall x < a)(\exists y)\varphi(x, y) \rightarrow (\exists b)(\forall x < a)(\exists y < b)\varphi(x, y)$

for every $a \in \mathbb{N}$ and every formula $\varphi(x, y)$

$\mathsf{Over} \ \mathsf{Q} + \mathsf{I} \Delta_0^0 + \mathsf{exp}$

Induction	Collection	Least principle	Regularity
÷	:		:
$I\Sigma_2^0 \equiv I\Pi_2^0$		$L\Pi^0_2 \equiv L\Sigma^0_2$	Σ_2^0 -regularity
$I\Delta_2^0$	$B\Sigma_2^0 \equiv B\Pi_1^0$	$L\Delta^0_2$	Δ_2^0 -regularity
$I\Sigma_1^0 \equiv I\Pi_1^0$		$L\Pi^0_1 \equiv L\Sigma^0_1$	Σ_1^0 -regularity
$I\Delta_1^0$	$B\Sigma^0_1 \equiv B\Pi^0_0$	$L\Delta^0_1$	Δ_1^0 -regularity

- exp: totality of the exponential
- ► A set X is M-regular if every initial segment of X is M-coded
- ► Least principle: every non-empty set admits a minimum element

 $\mathsf{Over} \ \mathsf{Q} + \mathsf{I} \Delta_0^0 + \mathsf{exp}$

Induction	Collection	Least principle	Regularity
÷	:		:
$I\Sigma_2^0 \equiv I\Pi_2^0$		$L\Pi^0_2 \equiv L\Sigma^0_2$	Σ_2^0 -regularity
$I\Delta_2^0$	$B\Sigma_2^0 \equiv B\Pi_1^0$	$L\Delta^0_2$	Δ_2^0 -regularity
$I\Sigma_1^0 \equiv I\Pi_1^0$		$L\Pi^0_1 \equiv L\Sigma^0_1$	Σ_1^0 -regularity
$I\Delta_1^0$	$B\Sigma^0_1 \equiv B\Pi^0_0$	$L\Delta^0_1$	Δ_1^0 -regularity

 $\mathsf{RCA}_0 \equiv \mathsf{Q} + \Delta_1^0$ -comprehension + $\mathsf{I}\Sigma_1^0$

 $\mathsf{Over} \ \mathsf{Q} + \mathsf{I} \Delta_0^0 + \mathsf{exp}$

Induction	Collection	Least principle	Regularity
÷			•
$I\Sigma_2^0 \equiv I\Pi_2^0$		$L\Pi^0_2 \equiv L\Sigma^0_2$	Σ_2^0 -regularity
$I\Delta_2^0$	$B\Sigma_2^0 \equiv B\Pi_1^0$	$L\Delta^0_2$	Δ_2^0 -regularity
$I\Sigma_1^0 \equiv I\Pi_1^0$		$L\Pi^0_1 \equiv L\Sigma^0_1$	Σ_1^0 -regularity
$I\Delta^0_1$	$B\Sigma^0_1 \equiv B\Pi^0_0$	$L\Delta_1^0$	Δ_1^0 -regularity

 $\mathsf{RCA}_0^* \equiv \mathsf{Q} + \Delta_1^0$ -comprehension + $\mathsf{I}\Delta_0^0$ + exp

First-order parts

Induction	System	First-order part	
÷	:	:	
$I\Sigma_2^0 \equiv I\Pi_2^0$	$RCA_0 + I\Sigma_2^0$	$Q + I\Sigma_2$	
$I\Delta_2^0$	$RCA_0 + B\Sigma_2^0$	$Q + I\Delta_2$	
$I\Sigma_1^0 \equiv I\Pi_1^0$	RCA_0	$Q+I\Sigma_1$	
$I\Delta_1^0 + \exp i $	RCA^*_0	$Q+I\Delta_1+exp$	

Failure of induction \equiv Existence of proper cuts

- A non-empty set *I* ⊆ *M* is a cut if it is an initial segment of *M* closed under successor
- ► A cut is exponential if it is closed under exponential
- ► A cut is semi-regular if for every *M*-coded set $F \subseteq M$ such that $|F| \in I$, $F \cap I$ is bounded in *I*.

Given a first-order structure M and a proper cut I, let

 $\operatorname{Cod}(M/I) = \{F \cap I : F \text{ is } M\text{-coded}\}$

If $M \models \mathsf{PRA}$ and I semi-regular, then $(I, \mathsf{Cod}(M/I)) \models \mathsf{WKL}_0$

WKL₀ is Π_2 -conservative over PRA.

The RCA₀-provably total functions are the primitive recursive functions.

If $M \models \text{EFA}$ and I exponential, then $(I, \text{Cod}(M/I)) \models \text{WKL}_0^*$

 WKL_0^* is Π_2 -conservative over EFA.

The RCA₀^{*}-provably total functions are the elementary functions.

- WKL: Every infinite binary tree admits an infinite path
- $WKL_0 \equiv RCA_0 + WKL \text{ and } WKL_0^* \equiv RCA_0^* + WKL$

Conservation theorems

Fix a family of formulas Γ .

A theory T_1 is Γ -conservative over T_0 if every Γ -sentence provable over T_1 is provable over T_0 .

If T_1 is a Π_1^1 -conservative extension of T_0 , then they have the same first-order part.

A second-order structure $\mathcal{N} = (N, T)$ is an ω -extension of $\mathcal{M} = (M, S)$ if $N = M, T \supseteq S, +^{\mathcal{N}} = +^{\mathcal{M}}$ and $<^{\mathcal{N}} = <^{\mathcal{M}}$.

Theorem

If every countable model of $\mathcal{M} \models T_0$ admits an ω -extension $\mathcal{N} \models T_1$, then T_1 is Π_1^1 -conservative over T_0 .

- Suppose $T_0 \nvDash \forall X \phi(X)$. Let $\mathcal{M} \models T_0 \land \exists X \neg \phi(X)$.
- Let $\mathcal{N} \models T_1$ be an ω -extension of \mathcal{M} .
- ▶ Then $\mathcal{N} \models T_1 \land \exists X \neg \phi(X)$. So $T_1 \nvDash \forall X \phi(X)$.

Let $\mathcal{M} = (M, S)$ be a second-order structure, and $G \subseteq M$. $\mathcal{M}[G]$ is the smallest ω -extension containing the $\Delta_1^0(\mathcal{M} \cup \{G\})$ sets.

Theorem

Let P be a Π_2^1 -problem and *T* be a theory. If for every countable model $\mathcal{M} \models T$ and every $X \in \mathcal{M}$ such that $\mathcal{M} \models (X \in \text{dom P})$, there is a set $Y \subseteq M$ such that $\mathcal{M}[Y] \models T + (Y \in P(X))$, then T + P is Π_1^1 -conservative over *T*.

$$\mathcal{M} \subseteq \mathcal{M}[\mathbf{Y}_0] \subseteq \mathcal{M}[\mathbf{Y}_0][\mathbf{Y}_1] \subseteq \dots$$

Preliminary results

Theorem (Hirst)

 $\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \to \mathsf{B}\Sigma_2^0.$

Theorem (Cholak, Jockusch and Slaman)

For every countable model $\mathcal{M} = (M, S) \models \mathsf{RCA}_0 + \mathsf{I}\Sigma_2^0$ and every coloring $f : [M]^2 \to 2$ in \mathcal{M} , there is an infinite *f*-homogeneous set $G \subseteq M$ such that $\mathcal{M}[G] \models \mathsf{RCA}_0 + \mathsf{I}\Sigma_2^0$.

Thus $\mathsf{RCA}_0 + \mathsf{I}\Sigma_2^0 + \mathsf{RT}_2^2$ is Π_1^1 -conservative over $\mathsf{RCA}_0 + \mathsf{I}\Sigma_2^0$.

Theorem (Chong, Slaman and Yang)

 $\mathsf{RCA}_0 + \mathsf{RT}_2^2 \nvDash \mathsf{I}\Sigma_2^0.$

Is $RCA_0 + RT_2^2 \Pi_1^1$ -conservative over $RCA_0 + B\Sigma_2^0$?

Question

Given a countable model $\mathcal{M} = (M, S) \models \mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \neg \mathsf{I}\Sigma_2^0$ and a coloring $f : [M]^2 \to 2$ in \mathcal{M} , is there an infinite *f*-homogeneous set $G \subseteq M$ such that $\mathcal{M}[G] \models \mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \neg \mathsf{I}\Sigma_2^0$?

An infinite set *C* is \vec{R} -cohesive for some sets R_0, R_1, \ldots if for every *i*, either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R}_i$.

COH : Every collection of sets has a cohesive set.

Theorem (Mileti ; Jockusch and Lempp)

 $\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \to \mathsf{COH}.$

The following are equivalent over RCA₀:

- ► $COH + B\Sigma_2^0$
- "Every Δ_2^0 infinite binary tree admits an infinite Δ_2^0 path"

The jump of a structure $\mathcal{M} = (\mathcal{M}, \mathcal{S})$ is the smallest ω -extension containing the $\Delta_2^0(\mathcal{M})$ sets.

Lemma (Belanger)

Let $\mathcal{M} \models \mathsf{RCA}_0$ and \mathcal{N} be its jump. Then

- $\blacktriangleright \mathcal{M} \models \mathsf{B}\Sigma_2^0 + \neg \mathsf{I}\Sigma_2^0 \text{ iff } \mathcal{N} \models \mathsf{RCA}_0^* + \neg \mathsf{I}\Sigma_1^0.$
- $\blacktriangleright \ \mathcal{M} \models \mathsf{B}\Sigma_2^0 + \mathsf{COH} + \neg \mathsf{I}\Sigma_2^0 \text{ iff } \mathcal{N} \models \mathsf{WKL}_0^* + \neg \mathsf{I}\Sigma_1^0.$

In the jump realm

Theorem (Simpson and Smith)

For every countable model $\mathcal{M} = (M, S) \models \mathsf{RCA}_0^*$ and every infinite tree $T \subseteq 2^{<M}$, there is an infinite path $P \in [T]$ such that $\mathcal{M}[P] \models \mathsf{RCA}_0^*$.

Thus WKL₀^{*} is Π_1^1 -conservative over RCA₀^{*}.

Theorem (Fiori-Carones, Kołodziejczyk, Wong and Yokoyama)

Les $\mathcal{M}_0 = (\mathcal{M}, \mathcal{S}_0)$ and $\mathcal{M}_1 = (\mathcal{M}, \mathcal{S}_1)$ be countable models of WKL_0^* such that $(\mathcal{M}, \mathcal{S}_0 \cap \mathcal{S}_1) \models \neg \mathsf{I}\Sigma_1^0$. Then $\mathcal{M}_0 \cong \mathcal{M}_1$.

A Π_2^1 problem P is Π_1^1 -conservative over $\mathsf{RCA}_0^* + \neg \mathsf{I}\Sigma_1^0$ iff $\mathsf{WKL}_0^* + \neg \mathsf{I}\Sigma_1^0 \vdash \mathsf{P}.$

In the ground realm

Theorem (Fiori-Carones, Kołodziejczyk, Wong and Yokoyama)

Let $\mathcal{M}_0 = (\mathcal{M}, \mathcal{S}_0)$ and $\mathcal{M}_1 = (\mathcal{M}, \mathcal{S}_1)$ be countable models of $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \mathsf{COH}$ such that $(\mathcal{M}, \mathcal{S}_0 \cap \mathcal{S}_1) \models \neg \mathsf{I}\Sigma_2^0$. Then their jump models are isomorphic.

Conservation over $RCA_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$ can be done without loss of generality by first-jump control.

Theorem (Fiori-Carones, Kołodziejczyk, Wong and Yokoyama)

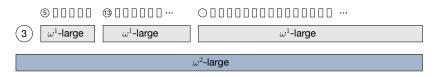
Let P be a $\forall \exists \Pi_k^0$ -sentence, where $k \geq 3$. Then P is Π_1^1 -conservative over $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \neg \mathsf{I}\Sigma_2^0$ iff it is $\forall \Pi_{k+2}^0$ -conservative over $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \neg \mathsf{I}\Sigma_2^0$.

$\forall \Pi_3^0$ conservation

A finite set $X \subseteq \mathbb{N}$ is

- ω^0 -large if $X \neq \emptyset$.
- $\omega^{(n+1)}$ -large if $X \setminus \min X$ is $(\omega^n \cdot \min X)$ -large
- $\omega^n \cdot k$ -large if there are $k \omega^n$ -large subsets of X

$$X_0 < X_1 < \cdots < X_{k-1}$$



• A < B means that for all $a \in A$ and $b \in B$, a < b.

Lemma

 $\mathsf{RCA}_0 \vdash \forall a[\mathsf{WF}(\omega^a) \leftrightarrow \mathsf{Every infinite set contains an } \omega^a \text{-large subset}]$

Let $\mathcal{M} = (M, S)$ be a countable model of RCA₀.

$$\mathsf{WF}(\omega^{\mathcal{M}}) = \{ \boldsymbol{a} \in \boldsymbol{M} : \mathcal{M} \models \mathsf{WF}(\omega^{\boldsymbol{a}}) \}$$

- ▶ $WF(\omega^M)$ is an additive cut
- \blacktriangleright There is a model $\mathcal M$ and some non-standard a such that

$$\mathsf{WF}(\omega^{\mathcal{M}}) = \sup\{a \cdot n : n \in \omega\}$$

α -largeness approximates infinity

Theorem (Generalized Parsons theorem)

Let $\psi(F)$ be a Δ_0 formula with only free variable *F*. Suppose that

 $\mathsf{WKL}_0 \vdash \forall X [X \text{ is infinite } \rightarrow (\exists F \subseteq_{\texttt{fin}} X) \psi(F)]$

Then there exists some $n \in \omega$ such that

 $\mathsf{Q} + \mathsf{I}\Sigma_1^0 \vdash \forall Z \ [Z \text{ is } \omega^n \text{-large} \to (\exists F \subseteq Z)\psi(F)]$

Forcing with ω^a -large sets

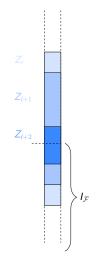
Fix a countable non-standard model $M \models Q + I\Sigma_1^0$.

 (\mathbb{P},\leq)

 ω^{a} -large sets for $a \in M \setminus \omega$ ordered by inclusion.

Every filter $\mathcal{F}\subseteq\mathbb{P}$ induces a cut

 $I_{\mathcal{F}} = \sup\{\min Z : Z \in \mathcal{F}\}$

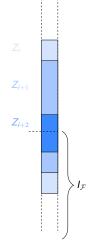


Forcing with ω^a -large sets

Fix a countable non-standard model $M \models Q + I\Sigma_1^0$.

- If $Z \in \mathcal{F}$, then $Z \cap I_{\mathcal{F}}$ is unbounded in $I_{\mathcal{F}}$.
- ► $Z \Vdash (\forall x \in I)\theta(x)$ if $(\forall x < \max Z)\theta(x)$.
- ► $Z \Vdash (\exists x \in I)\theta(x)$ if $(\exists x < \min Z)\theta(x)$.
- ► $Z \Vdash (\forall x \in I) (\exists y \in I) \theta(x, y)$ if

 $(\forall a, b \in Z)[a < b \rightarrow (\forall x < a)(\exists y < b)\theta(x, y)]$



A cut is semi-regular if for every *M*-coded set $F \subseteq M$ such that $|F| \in I$, $F \cap I$ is bounded in *I*.

If $M \models \text{PRA}$ and I semi-regular, then $(I, \text{Cod}(M/I)) \models \text{WKL}_0$.

Lemma (Kirby and Paris)

If $M \models Q + I\Sigma_1^0$ and \mathcal{F} is sufficiently generic, then $I_{\mathcal{F}}$ is semi-regular.

- ▶ Let $Z \in \mathbb{P}$ be ω^a -large and $F \subseteq M$ be *M*-coded with $|F| < \min Z$;
- Let Z₀ < · · · < Z_{|F|} be ω^{a−1}-large subsets of Z ;
- ▶ $Z_i \cap F = \emptyset$ for some $i \le |F|$.

Theorem (Hirst)

 $\mathsf{RCA}_0 \vdash \mathsf{B}\Sigma_2^0 \leftrightarrow \forall \boldsymbol{a} \mathsf{RT}_{\boldsymbol{a}}^1.$

X is exp-sparse if min $X \ge 3$ and $(\forall x, y \in X)(x < y \rightarrow 4^x < y)$

Lemma (Kołodziejczyk and Yokoyama)

 $Q + I\Sigma_1^0$ proves that if *X* is ω^{a+1} -large and exp-sparse, then for every $f : X \to \min X$, there is an ω^a -large *f*-homogeneous subset $Y \subseteq X$.

Thus if \mathcal{F} is sufficiently generic $(I_{\mathcal{F}}, \operatorname{Cod}(M/I_{\mathcal{F}})) \models \forall a \operatorname{RT}_{a}^{1}$.

Theorem (Parsons, Paris and Friedman)

 $\mathsf{WKL}_0 + \mathsf{B}\Sigma_2^0$ is $\forall \Pi_3^0$ -conservative over RCA_0 .

- Suppose $\mathsf{RCA}_0 \nvDash \forall A \exists x \forall y \psi(A, x, y)$;
- ► Let $\mathcal{M} = (M, S) \models \mathsf{RCA}_0 + \exists A \forall x \exists y \neg \psi(A, x, y)$ be non-standard ;
- ► Let $A \in S$ and $X = \{b_0 < b_1 < ...\} \in S$ be such that $(\forall x < b_s)(\exists y < b_{s+1}) \neg \psi(A, x, y);$
- Let $a \in WF(\omega^{\mathcal{M}}) \setminus \omega$ and let $Z \subseteq X$ be ω^a -large ;
- Let \mathcal{F} be sufficiently generic filter containing Z;
- $\blacktriangleright (I_{\mathcal{F}}, \operatorname{Cod}(M/I_{\mathcal{F}})) \models \mathsf{WKL}_0 + \mathsf{B}\Sigma_2^0 + \exists A \forall x \exists y \neg \psi(A, x, y).$

Lemma (Kołodziejczyk and Yokoyama)

 $Q + I\Sigma_1^0$ proves that if *X* is ω^{300a} -large and min $X \ge 3$, then for every $f : [X]^2 \to 2$, there is an ω^a -large *f*-homogeneous set $H \subseteq X$.

Thus if \mathcal{F} is sufficiently generic $(I_{\mathcal{F}}, \operatorname{Cod}(M/I_{\mathcal{F}})) \models \operatorname{RT}_2^2$.

Theorem (Patey and Yokoyama)

WKL₀ + RT₂² is $\forall \Pi_3^0$ -conservative over RCA₀.

$\forall \Pi_4^0$ conservation

Theorem (Parsons, Paris and Friedman)

 $\mathsf{WKL}_0 + \mathsf{B}\Sigma_2^0$ is $\forall \Pi_3^0$ -conservative over RCA_0 .

- Suppose $\mathsf{RCA}_0 \nvDash \forall A \exists x \forall y \psi(A, x, y)$;
- ► Let $\mathcal{M} = (M, S) \models \mathsf{RCA}_0 + \exists A \forall x \exists y \neg \psi(A, x, y)$ be non-standard ;
- ► Let $A \in S$ and $X = \{b_0 < b_1 < ...\} \in S$ be such that $(\forall x < b_s)(\exists y < b_{s+1}) \neg \psi(A, x, y)$;
- Let $a \in WF(\omega^{\mathcal{M}}) \setminus \omega$ and let $Z \subseteq X$ be ω^a -large ;
- Let \mathcal{F} be sufficiently generic filter containing Z;
- $\blacktriangleright (I_{\mathcal{F}}, \operatorname{Cod}(M/I_{\mathcal{F}})) \models \mathsf{WKL}_0 + \mathsf{B}\Sigma_2^0 + \exists A \forall x \exists y \neg \psi(A, x, y).$

Theorem (Erroneous Logician)

$\mathsf{WKL}_0 + \mathsf{B}\Sigma_2^0$ is $\forall \Pi_4^0$ -conservative over RCA_0 .

- Suppose $\mathsf{RCA}_0 \nvDash \forall A \exists x \forall y \exists z \psi (A, x, y, z)$;
- ► Let $\mathcal{M} = (M, S) \models \mathsf{RCA}_0 + \exists A \forall x \exists y \forall z \neg \psi(A, x, y, z)$ be non-standard ;
- ► Let $A \in S$ and $X = \{b_0 < b_1 < ...\} \in S$ be such that $(\forall x < b_s)(\exists y < b_{s+1})\forall z \neg \psi(A, x, y, z);$
- Let $a \in WF(\omega^{\mathcal{M}}) \setminus \omega$ and let $Z \subseteq X$ be ω^a -large ;
- ► Let *F* be sufficiently generic filter containing *Z* ;
- $\blacktriangleright (I_{\mathcal{F}}, \operatorname{Cod}(M/I_{\mathcal{F}})) \models \mathsf{WKL}_0 + \mathsf{B}\Sigma_2^0 + \exists A \forall x \exists y \forall z \neg \psi(A, x, y, z).$

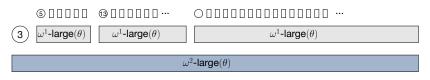
 $B\Sigma_2$ is a Π_4 -sentence which is not provable over RCA₀.

Let $\theta(\mathbf{x}, \mathbf{y}, \mathbf{z}) \equiv \neg \psi(\mathbf{A}, \mathbf{x}, \mathbf{y}, \mathbf{z}).$

A finite set $X \subseteq \mathbb{N}$ is

- ► ω^0 -large(θ) if $X \neq \emptyset$.
- $\omega^{(n+1)}$ -large(θ) if $X \setminus \min X$ is $(\omega^n \cdot \min X)$ -large(θ)
- $\omega^n \cdot k$ -large(θ) if there are $k \theta$ -apart ω^n -large subsets of X

$$X_0 < X_1 < \cdots < X_{k-1}$$



► A < B are θ -apart if $(\forall x < \max A)(\exists y < \min B)(\forall z < \max B)\theta(x, y, z)$.

Definition

 $WF_{\theta}(\omega^{a})$: Every infinite set contains an ω^{a} -large(θ) subset.

Let
$$\mathcal{M} = (\mathcal{M}, \mathcal{S}) \models \mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \forall x \exists y \forall z \theta(x, y, z).$$

$$\mathsf{WF}_{\theta}(\omega^{\mathcal{M}}) = \{ \mathbf{a} \in \mathcal{M} : \mathcal{M} \models \mathsf{WF}_{\theta}(\omega^{\mathbf{a}}) \}$$

- $WF_{\theta}(\omega^{\mathcal{M}})$ is an additive cut
- \blacktriangleright There is a model $\mathcal M$ and some non-standard a such that

$$\mathsf{WF}_{\theta}(\omega^{\mathcal{M}}) = \sup\{a \cdot n : n \in \omega\}$$

α -largeness(θ) approximates infinity

Theorem (Generalized Parsons theorem)

Let $\psi(F)$ be a Δ_0 formula with only free variable *F*. Suppose that WKL₀ + B Σ_2^0 + $\forall x \exists y \forall z \theta(x, y, z) \vdash \forall X [X \text{ is infinite } \rightarrow (\exists F \subseteq_{fin} X) \psi(F)]$ Then there exists some $n \in \omega$ such that

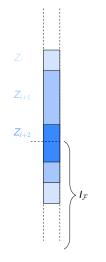
 $\mathsf{Q} + \mathsf{I}\Delta_2^0 \vdash \forall Z \ [Z \text{ is } \omega^n \text{-large}(\theta) \to (\exists F \subseteq Z)\psi(F)]$

Forcing with ω^{a} -large(θ) sets

Fix a countable non-standard model $M \models Q + I\Delta_2^0 + \forall x \exists y \forall z \theta(x, y, z).$ (\mathbb{P}, \leq) ω^a -large(θ) sets for $a \in M \setminus \omega$ ordered by inclusion.

Every filter $\mathcal{F} \subseteq \mathbb{P}$ induces a cut

 $I_{\mathcal{F}} = \sup\{\min Z : Z \in \mathcal{F}\}$



Suppose $M \models Q + I\Sigma_1^0 + \forall x \exists y \forall z \theta(x, y, z)$.

Lemma

If \mathcal{F} is sufficiently generic, then $I_{\mathcal{F}}$ is semi-regular.

- ▶ Let $Z \in \mathbb{P}$ be ω^a -large(θ) and $F \subseteq M$ be *M*-coded with $|F| < \min Z$;
- Let Z₀ < · · · < Z_{|F|} be ω^{a−1}-large(θ) subsets of Z ;
- ▶ $Z_i \cap F = \emptyset$ for some $i \le |F|$.

Lemma

If \mathcal{F} is sufficiently generic, then $I_{\mathcal{F}} \models \forall x \exists y \forall z \theta(x, y, z)$.

- ▶ Let $Z \in \mathbb{P}$ be ω^a -large(θ) and $x < \min Z$;
- Let $Z_0 < Z_1$ be θ -apart ω^{a-1} -large (θ) subsets of Z;
- ► Z_1 forces $\exists y \forall z \theta(x, y, z)$.

Theorem (Hirst)

 $\mathsf{RCA}_0 \vdash \mathsf{B}\Sigma_2^0 \leftrightarrow \forall \boldsymbol{a} \mathsf{RT}_{\boldsymbol{a}}^1.$

X is exp-sparse if min $X \ge 3$ and $(\forall x, y \in X)(x < y \rightarrow 4^x < y)$

Lemma (Le Houérou, Levy Patey and Yokoyama)

 $Q + I\Sigma_1^0$ proves that if X is ω^{2a} -large(θ) and exp-sparse, then for every $f: X \to \min X$, there is an ω^a -large(θ) *f*-homogeneous subset $Y \subseteq X$.

Thus if \mathcal{F} is sufficiently generic $(I_{\mathcal{F}}, \operatorname{Cod}(M/I_{\mathcal{F}})) \models \forall a \operatorname{RT}_{a}^{1}$.

Theorem

WKL₀ + B Σ_2^0 is $\forall \Pi_4^0$ -conservative over RCA₀ + B Σ_2^0 .

- Suppose $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 \nvDash \forall A \exists x \forall y \exists z \psi(A, x, y, z)$;
- ► Let $\mathcal{M} = (M, S) \models \mathsf{RCA}_0 + \exists A \forall x \exists y \forall z \neg \psi(A, x, y, z)$ be non-standard;
- ▶ Let $A \in S$ be a witness and $\theta(x, y, z) \equiv \neg \psi(A, x, y, z)$;
- ▶ Let $a \in WF(\omega^M) \setminus \omega$ and let $Z \subseteq M$ be ω^a -large(θ);
- Let \mathcal{F} be sufficiently generic filter containing Z;
- $\blacktriangleright (I_{\mathcal{F}}, \operatorname{Cod}(M/I_{\mathcal{F}})) \models \mathsf{WKL}_0 + \mathsf{B}\Sigma_2^0 + \exists A \forall x \exists y \forall z \neg \psi(A, x, y, z).$

Lemma (Le Houérou, Levy Patey and Yokoyama)

 $Q + I\Sigma_1^0$ proves that if X is $\omega^{(16^6+1)^a}$ -large(θ) and min $X \ge 3$, then for every $f : [X]^2 \to 2$, there is an ω^a -large(θ) *f*-homogeneous set $H \subseteq X$.

Thus if \mathcal{F} is sufficiently generic $(I_{\mathcal{F}}, \operatorname{Cod}(M/I_{\mathcal{F}})) \models \operatorname{RT}_2^2$.

Theorem (Le Houérou, Levy Patey and Yokoyama)

 $\mathsf{WKL}_0 + \mathsf{RT}_2^2$ is $\forall \Pi_4^0$ -conservative over $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0$.

Open questions

Is WKL₀ + RT₂² Π_1^1 -conservative over RCA₀ + B Σ_2^0 ?

Is WKL₀ + RT₂² $\forall \Pi_5^0$ -conservative over RCA₀ + B Σ_2^0 ?

Does WKL₀ + RT₂² admit exponential proof-speedup over RCA₀ + B Σ_2^0 ?

References

Marta Fiori-Carones, Leszek Aleksander Kołodziejczyk, Tin Lok Wong, and Keita Yokoyama.

An isomorphism theorem for models of weak $k \$ onig's lemma without primitive recursion.

arXiv preprint arXiv:2112.10876, 2021.

Petr Hájek and Pavel Pudlák.

Metamathematics of first-order arithmetic.

Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1998. Second printing.

Quentin Le Houérou, Ludovic Levy Patey, and Keita Yokoyama.

 Π_4^0 conservation of Ramsey's theorem for pairs. arXiv preprint arXiv:2404.18974, 2024.

Ludovic Patey and Keita Yokoyama. The proof-theoretic strength of Ramsey's theorem for pairs and two colors. Adv. Math., 330:1034–1070, 2018.