Part II: Ramsey's theorem computes through sparsity

Ludovic LEVY PATEY

Ramsey's theorem

 $[X]^n$ is the set of unordered *n*-tuples of elements of X

A *k*-coloring of $[X]^n$ is a map $f:[X]^n \to k$

A set $H \subseteq X$ is homogeneous for f if $|f([H]^n)| = 1$.

Every k-coloring of $[\mathbb{N}]^n$ admits an infinite homogeneous set.

Encodability vs Domination

Encodability

A set S is P-encodable if there is an instance of P such that every solution computes S

Domination

A function *f* is P-dominated if there is an instance of P such that every solution computes a function dominating *f*.

What sets are RT_k^n -encodable?

Thm (Jockusch)

Every function is RT_2^2 -dominated.

Given $g : \omega \to \omega$, an interval [x,y] is g-large if $y \ge g(x)$. Otherwise it is g-small.

$$f(x,y) = \begin{cases} 1 & \text{if } [x,y] \text{ is g-large} \\ 0 & \text{otherwise} \end{cases}$$

Every Δ_1^1 set is RT_2^2 -encodable

Thm (Folklore)

Every RT_k^n -encodable set is computably encodable.

For every coloring $f: [\mathbb{N}]^n \to k$ and every infinite $X \subseteq \mathbb{N}$ there is an infinite f-homogeneous set $Y \subseteq X$.

Whenever $n \ge 2$ and $k \ge 2$,

 RT_k^n -encodable $\equiv \Delta_1^1$

The encodability power of RT_k^n comes from the

sparsity

of its homogeneous sets.

Thm (Dzhafarov and Jockusch)

The RT₂-encodable sets are the computable sets.

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ....
```

Sparsity of red implies non-sparsity of blue and conversely.

Cone avoidance 101

Strategy

Examples

Cohen forcing
Jockusch-Soare forcing

Pattern

Forcing question

Application

Pigeonhole forcing

Forcing in Computability Theory

Partial order

 (\mathbb{P}, \leq)

Condition

 $p \in \mathbb{P}$ approximation

Denotation

 $[p] \subseteq 2^{\omega}$ class of candidates

Compatibility

If $q \le p$ then $[q] \subseteq [p]$

Forcing in Computability Theory

Filter
$$\mathcal{F} \subseteq \mathbb{P}$$

$$\forall p \in \mathcal{F} \ \forall q \geq p \ q \in \mathcal{F}$$

 $\forall p, q \in \mathcal{F}, \exists r \in \mathcal{F} \ r \leq p, q$

Dense set
$$D\subseteq \mathbb{P}$$

$$\forall p \in \mathbb{P} \exists q \leq p \ q \in D$$

Denotation

$$[\mathcal{F}] = \bigcap_{\boldsymbol{\rho} \in \mathcal{F}} [\boldsymbol{\rho}]$$

Forcing
$$p \Vdash \varphi(G)$$

$$\forall \mathbf{G} \in [\mathbf{p}] \ \varphi(\mathbf{G})$$

Cohen forcing

$$(2^{<\omega}, \preceq)$$

 $2^{<\omega}$ is the set of all finite binary strings

 $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^\omega : \sigma \prec \mathbf{X} \}$$

Thm (Folklore)

Let $C \not\leq_{\mathcal{T}} \emptyset$. For every sufficiently Cohen generic $G, C \not\leq_{\mathcal{T}} G$.

Lem

For every non-computable set C and Turing functional Φ_e , the following set is dense in $(2^{<\omega}, \preceq)$.

$$\mathbf{D} = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \Phi_{\mathbf{e}}^{\mathbf{G}} \neq \mathbf{C} \}$$

Given $\sigma \in 2^{<\omega}$, define the Σ_1^0 set

$$W = \{(x, v) : \exists \tau \succeq \sigma \ \Phi_{\mathbf{e}}^{\tau}(x) \downarrow = v\}$$

- ► Case 1: $(x, 1 C(x)) \in W$ for some xThen τ is an extension forcing $\Phi_e^G \neq C$
- ► Case 2: $(x, C(x)) \notin W$ for some xThen σ forces $\Phi_e^G \neq C$
- Case 3: W is a Σ₁⁰ graph of C Impossible, since C ∠_T ∅

Weak König's lemma

 $2^{<\omega}$ is the set of all finite binary strings

A binary tree is a set $T \subseteq 2^{<\omega}$ closed under prefixes

A path through *T* is an infinite sequence *P* such that every initial segment is in *T*

WKL

Every infinite binary tree admits an infinite path.

Jockusch-Soare forcing

$$(\mathcal{T},\subseteq)$$

 \mathcal{T} is the collection of infinite computable binary trees

$$[T] = \{ X \in 2^{\omega} : \forall \sigma \prec X \ \sigma \in T \}$$

Thm (Jockusch-Soare)

Let $C \not\leq_T \emptyset$. For every infinite computable binary tree $T \subseteq 2^{<\omega}$, there is a path $P \in [T]$ such that $C \not\leq_T P$.

Lem

For every non-computable set C and Turing functional Φ_e , the following set is dense in (\mathcal{T}, \subseteq) .

$$D = \{ T \in \mathcal{T} : T \Vdash \Phi_{e}^{G} \neq C \}$$

Given $T \in \mathcal{T}$, define the Σ_1^0 set

$$W = \{(x, v) : \exists \ell \in \mathbb{N} \forall \sigma \in 2^{\ell} \cap T \Phi_{\mathsf{e}}^{\sigma}(x) \downarrow = v\}$$

- ► Case 1: $(x, 1 C(x)) \in W$ for some xThen T forces $\Phi_e^G \neq C$
- ► Case 2: $(x, C(x)) \not\in W$ for some xThen $\{\sigma \in T : \neg(\Phi_e^{\sigma}(x) \downarrow = v)\}$ forces $\Phi_e^G \neq C$
- Case 3: W is a Σ⁰₁ graph of C Impossible, since C ≰_T ∅

Forcing question

$$p ? \vdash \varphi(G)$$

where $p \in \mathbb{P}$ and $\varphi(G)$ is Σ_1^0

Lem

Let $p \in \mathbb{P}$ and $\varphi(G)$ be a Σ^0_1 formula.

- (a) If $p ? \vdash \varphi(G)$, then $q \Vdash \varphi(G)$ for some $q \leq p$;
- (b) If $p \not \cong \varphi(G)$, then $q \Vdash \neg \varphi(G)$ for some $q \leq p$.

Suppose $p ? \vdash \varphi(G)$ is uniformly Σ^0_1 whenever $\varphi(G)$ is Σ^0_1

Lem

For every non-computable set C and Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$\textit{D} = \{\textit{p} \in \mathbb{P} : \textit{p} \Vdash \Phi_{\textit{e}}^{\textit{G}} \neq \textit{C}\}$$

Given $p \in \mathbb{P}$, define the Σ_1^0 set

$$W = \{(x, v) : p ? \vdash \Phi_{e}^{G}(x) \downarrow = v\}$$

- ► Case 1: $(x, 1 C(x)) \in W$ for some xThen there is an extension forcing $\Phi_e^G \neq C$
- ► Case 2: $(x, C(x)) \notin W$ for some xThen there is an extension forcing $\Phi_e^G \neq C$
- Case 3: W is a Σ₁⁰ graph of C Impossible, since C ≤_T ∅

Pigeonhole principle

$$\mathsf{RT}^1_{\pmb{k}}$$
 Every k -partition of $\mathbb N$ admits an infinite subset of a part.

```
0 1 2 3 4 0 1 2 3 4 5 6 7 8 9 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 26 27 28 .... 25 26 27 28 ....
```

Thm (Dzhafarov and Jockusch

A set is RT^1_2 -encodable iff it is computable.

Thm (Dzhafarov and Jockusch)

A set is RT_2^1 -encodable iff it is computable.

Input: a set $C \not\leq_{\mathcal{T}} \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output: an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

$$(F_0,F_1,X)$$
Initial segment Reservoir

- ▶ F_i is finite, X is infinite, $\max F_i < \min X$
- $ightharpoonup C \not\leq_T X$
- $ightharpoonup F_i \subseteq A_i$

(Mathias condition)

(Weakness property)

(Combinatorics)

Extension

$$(E_0, E_1, Y) \leq (F_0, F_1, X)$$

- ▶ $F_i \subseteq E_i$
- $ightharpoonup Y \subseteq X$
- $ightharpoonup E_i \setminus F_i \subseteq X$

Denotation

$$\langle \mathbf{G}_0, \mathbf{G}_1 \rangle \in [\mathbf{F}_0, \mathbf{F}_1, \mathbf{X}]$$

- $ightharpoonup F_i \subseteq G_i$
- $ightharpoonup G_i \setminus F_i \subseteq X$

$$[\textbf{\textit{E}}_0,\textbf{\textit{E}}_1,\textbf{\textit{Y}}]\subseteq[\textbf{\textit{F}}_0,\textbf{\textit{F}}_1,\textbf{\textit{X}}]$$

$$(F_0,F_1,X) \Vdash \varphi(G_0,G_1)$$
Condition Formula

$$\varphi(G_0, G_1)$$
 holds for every $\langle G_0, G_1 \rangle \in [F_0, F_1, X]$

Input: a set $C \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

Input: a set $C \not\leq_{\mathcal{T}} \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output: an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

$$\Phi_{\mathbf{e}_0}^{\mathbf{G}_0} \neq \mathbf{C} \vee \Phi_{\mathbf{e}_1}^{\mathbf{G}_1} \neq \mathbf{C}$$

Input: a set $C \not\leq_{\mathcal{T}} \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output: an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

$$\Phi_{\mathbf{e}_0}^{\mathbf{G}_0} \neq \mathbf{C} \vee \Phi_{\mathbf{e}_1}^{\mathbf{G}_1} \neq \mathbf{C}$$

The set $\{p \in \mathbb{P} : p \Vdash \Phi_{e_0}^{G_0} \neq C \lor \Phi_{e_1}^{G_1} \neq C\}$ is dense

Disjunctive forcing question

$$p ?\vdash \varphi_0(\mathbf{G}_0) \lor \varphi_1(\mathbf{G}_1)$$

where $oldsymbol{
ho} \in \mathbb{P}$ and $arphi_0(oldsymbol{\mathsf{G}}_0), arphi_1(oldsymbol{\mathsf{G}}_1)$ are Σ^0_1

Lem

Let $p \in \mathbb{P}$ and $\varphi_0(G_0)$, $\varphi_1(G_1)$ be Σ_1^0 formulas.

- (a) If $p ? \vdash \varphi_0(G_0) \lor \varphi_1(G_1)$, then $q \Vdash \varphi_0(G_0) \lor \varphi_1(G_1)$ for some $q \le p$;
- (b) If $p \not \cong \varphi_0(G_0) \vee \varphi_1(G_1)$, then $q \Vdash \neg \varphi_0(G_0) \vee \neg \varphi_1(G_1)$ for some $q \leq p$.

Suppose the following relation is uniformly $\Sigma^0_1(X)$ whenever $\varphi_0(G_0), \varphi_1(G_1)$ are Σ^0_1

$$(F_0,F_1,X)$$
? $\vdash \varphi_0(G_0) \lor \varphi_1(G_1)$

Lem

For every non-computable set C and Turing functionals Φ_{e_0} , Φ_{e_1} , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \Phi_{e_0}^{\mathsf{G}_0}
eq C \lor \Phi_{e_1}^{\mathsf{G}_1}
eq C \}$$

Consider the $\Sigma_1^0(X)$ set

$$W = \{(x, v) : \rho ? \vdash \Phi_{e_0}^{G_0}(x) \downarrow = v \lor \Phi_{e_0}^{G_0}(x) \downarrow = v\}$$

Problem: complexity of the instance

"Can we find an extension for this instance of RT_2^1 ?"

Defi
$$(F_0, F_1, X) ? \vdash \varphi_0(G_0) \lor \varphi_1(G_1)$$
 \equiv
 $(\exists i < 2) (\exists E_i \subseteq X \cap A_i) \varphi_i(F_i \cup E_i)$

The formula is
$$\Sigma_1^0(X \oplus A_i)$$

Idea: make an overapproximation

"Can we find an extension for every instance of RT₂?"

Defi
$$(F_0, F_1, X) ? \vdash \varphi_0(G_0) \lor \varphi_1(G_1)$$

$$\equiv$$

$$(\forall B_0 \sqcup B_1 = \mathbb{N}) (\exists i < 2) (\exists E_i \subseteq X \cap B_i) \varphi_i(F_i \cup E_i)$$

The formula is $\Sigma_1^0(X)$

Case 1:
$$p ? \vdash \varphi_0(G_0) \lor \varphi_1(G_1)$$

Letting $B_i = A_i$, there is an extension $q \le p$ forcing

$$\varphi_0(\mathbf{G}_0) \vee \varphi_1(\mathbf{G}_1)$$

Case 2:
$$p ? \not\vdash \varphi_0(\mathbf{G}_0) \lor \varphi_1(\mathbf{G}_1)$$

$$(\exists B_0 \sqcup B_1 = \mathbb{N})(\forall i < 2)(\forall E_i \subseteq X \cap B_i) \neg \varphi_i(F_i \cup E_i)$$

The condition $(F_0, F_1, X \cap B_i) \leq p$ forces

$$\neg \varphi_0(\mathbf{G}_0) \vee \neg \varphi_1(\mathbf{G}_1)$$

Ramsey's theorem

Ramsey's theorem

$RT_{k,\ell}^n$ -encodable sets

Thm (Cholak, P.)

Every function is $RT_{k,\ell}^n$ -dominated for $\ell < 2^{n-1}$.

$$f(x_1, x_2, \dots, x_n) = \langle [x_1, x_2] \text{ g-large?}, \dots, [x_{n-1}, x_n] \text{ g-large?} \rangle$$

- ▶ Case 1: the color $\langle no, ..., no \rangle$ is avoided
- ► Case 2: the color $\langle q_1, \ldots, q_k, yes, no, \ldots, no \rangle$ is avoided

Catalan numbers

 C_n is the number of trails of length 2n.

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786,...

Defi

A largeness graph is a pair $(\{0,\ldots,n-1\},E)$ such that

- (a) If $\{i, i+1\} \in E$, then for every j > i+1, $\{i, j\} \notin E$
- (b) If i < j < n, $\{i, i + 1\} \notin E$ and $\{j, j + 1\} \in E$, then $\{i, j + 1\} \in E$
- (c) If i + 1 < j < n 1 and $\{i, j\} \in E$, then $\{i, j + 1\} \in E$
- (d) If i + 1 < j < k < n and $\{i, j\} \notin E$ but $\{i, k\} \in E$, then $\{j 1, k\} \in E$

Largeness graphs of size 4

Counting largeness graphs

A largeness graph $\mathcal{G} = (\{0, \dots, n-1\}, E)$ is packed if for every i < n-2, $\{i, i+1\} \notin E$.

- ► L_n = number of largeness graphs of size n
- $ightharpoonup P_n$ = number of packed largeness graphs of size n

$$L_0 = 1$$
 and $L_{n+1} = \sum_{i=0}^{n} P_{i+1} L_{n-i}$

Counting packed largeness graphs

A largeness graph $\mathcal{G} = (\{0, \dots, n-1\}, E)$ of size $n \geq 2$ is normal if $\{n-2, n-1\} \in E$.

Thm (Cholak, P.)

The following are in one-to-one correspondance:

- (a) packed largeness graphs of size n
- (b) normal largeness graphs of size n
- (c) largeness graphs of size n-1

Thm (Cholak, P.)

Every left-c.e. function is $RT_{k,\ell}^n$ -dominated for $\ell < C_n$.

$$f(x_1, x_2, \dots, x_n)$$
 = the largeness graph of g

- ► Case 1: a packed graph is avoided
- ► Case 2: a graph of the following form is avoided

Conclusion

 RT_k^n for $n \geq 2$ has instances having only sparse solutions, hence encodes all the Δ_1^1 sets

 RT_k^1 cannot force having sparse solutions, so encodes only the computable sets

A trichotomy appears when we allow more colors in the solutions

References

Damir D. Dzhafarov and Carl G. Jockusch, Jr. Ramsey's theorem and cone avoidance.

J. Symbolic Logic, 74(2):557–578, 2009.