
Part II : Ramsey’s theorem
computes through sparsity

Ludovic LEVY PATEY

November 27, 2019

1 / 47



Ramsey’s theorem

[X]n is the set of unordered n-tuples of elements of X

A k-coloring of [X]n is a map f : [X]n → k

A set H ⊆ X is homogeneous for f if |f([H]n)| = 1.

RTnk
Every k-coloring of [N]n admits
an infinite homogeneous set.
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Encodability vs Domination

Encodability
A set S is P-encodable if there
is an instance of P such that
every solution computes S

Domination
A function f is P-dominated if
there is an instance of P such
that every solution computes
a function dominating f.
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What sets are
RTnk-encodable?
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Thm (Jockusch)

Every function is RT2
2-dominated.

Given g : ω → ω, an interval [x, y] is g-large if y ≥ g(x).
Otherwise it is g-small.

f(x, y) =
{

1 if [x, y] is g-large
0 otherwise
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Thm (Folklore)

Every RTn
k-encodable set is computably encodable.

For every coloring f : [N]n → k and every infinite X ⊆ N there is
an infinite f-homogeneous set Y ⊆ X.
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Whenever n ≥ 2 and k ≥ 2,
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1
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The encodability power
of RTn

k comes from the

sparsity
of its homogeneous sets.
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Thm (Dzhafarov and Jockusch)

The RT1
2-encodable sets are the computable sets.

Sparsity of red implies
non-sparsity of blue
and conversely.
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Cone avoidance 101
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Strategy
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Forcing in Computability Theory

Partial order
(P,≤)

Condition
p ∈ P
approximation

Denotation
[p] ⊆ 2ω

class of candidates

Compatibility
If q ≤ p then [q] ⊆ [p]
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Forcing in Computability Theory

Filter F ⊆ P

∀p ∈ F ∀q ≥ p q ∈ F
∀p,q ∈ F , ∃r ∈ F r ≤ p,q

Dense set D ⊆ P

∀p ∈ P∃q ≤ p q ∈ D

Denotation
[F ] =

∩
p∈F [p]

Forcing p ⊩ φ(G)
∀G ∈ [p] φ(G)
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Cohen forcing
(2<ω,⪯)

2<ω is the set of all finite binary strings

σ ⪯ τ means σ is a prefix of τ

[σ] = {X ∈ 2ω : σ ≺ X}
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Thm (Folklore)

Let C ̸≤T ∅. For every sufficiently Cohen generic G, C ̸≤T G.

Lem

For every non-computable set C and Turing functional Φe, the
following set is dense in (2<ω,⪯).

D = {σ ∈ 2<ω : σ ⊩ ΦG
e ̸= C}
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Given σ ∈ 2<ω, define the Σ0
1 set

W = {(x, v) : ∃τ ⪰ σ Φτ
e(x) ↓= v}

� Case 1: (x, 1− C(x)) ∈ W for some x
Then τ is an extension forcing ΦG

e ̸= C

� Case 2: (x,C(x)) ̸∈ W for some x
Then σ forces ΦG

e ̸= C

� Case 3: W is a Σ0
1 graph of C

Impossible, since C ̸≤T ∅
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Weak König’s lemma

2<ω is the set of all finite binary strings

A binary tree is a set T ⊆ 2<ω closed under prefixes

A path through T is an infinite sequence P such that every
initial segment is in T

WKL Every infinite binary tree admits
an infinite path.
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Jockusch-Soare forcing
(T ,⊆)

T is the collection of infinite computable binary trees

[T] = {X ∈ 2ω : ∀σ ≺ X σ ∈ T}
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Thm (Jockusch-Soare)

Let C ̸≤T ∅. For every infinite computable binary tree T ⊆ 2<ω,
there is a path P ∈ [T] such that C ̸≤T P.

Lem

For every non-computable set C and Turing functional Φe, the
following set is dense in (T ,⊆).

D = {T ∈ T : T ⊩ ΦG
e ̸= C}
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Given T ∈ T , define the Σ0
1 set

W = {(x, v) : ∃ℓ ∈ N∀σ ∈ 2ℓ ∩ T Φσ
e (x) ↓= v}

� Case 1: (x, 1− C(x)) ∈ W for some x
Then T forces ΦG

e ̸= C

� Case 2: (x,C(x)) ̸∈ W for some x
Then {σ ∈ T : ¬(Φσ

e (x) ↓= v)} forces ΦG
e ̸= C

� Case 3: W is a Σ0
1 graph of C

Impossible, since C ̸≤T ∅
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Forcing question

p ?⊢φ(G)
where p ∈ P and φ(G) is Σ0

1

Lem

Let p ∈ P and φ(G) be a Σ0
1 formula.

(a) If p ?⊢φ(G), then q ⊩ φ(G) for some q ≤ p;
(b) If p ?⊬φ(G), then q ⊩ ¬φ(G) for some q ≤ p.
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Forcing Π0
1Forcing Σ0

1

Jockusch-Soare
forcing question

Cohen
forcing question
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Suppose p ?⊢φ(G) is uniformly Σ0
1 whenever φ(G) is Σ0

1

Lem

For every non-computable set C and Turing functional Φe, the
following set is dense in (P,≤).

D = {p ∈ P : p ⊩ ΦG
e ̸= C}
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Given p ∈ P, define the Σ0
1 set

W = {(x, v) : p ?⊢ΦG
e (x) ↓= v}

� Case 1: (x, 1− C(x)) ∈ W for some x
Then there is an extension forcing ΦG

e ̸= C

� Case 2: (x,C(x)) ̸∈ W for some x
Then there is an extension forcing ΦG

e ̸= C

� Case 3: W is a Σ0
1 graph of C

Impossible, since C ̸≤T ∅
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Pigeonhole principle

RT1
k

Every k-partition of N admits
an infinite subset of a part.
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Thm (Dzhafarov and Jockusch)

A set is RT1
2-encodable iff it is computable.

Input : a set C ̸≤T ∅ and a 2-partition A0 ⊔ A1 = N

Output : an infinite set G ⊆ Ai such that C ̸≤T G
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(F0,F1,X)
Initial segment Reservoir

� Fi is finite, X is infinite, maxFi < minX (Mathias condition)

� C ̸≤T X (Weakness property)

� Fi ⊆ Ai (Combinatorics)
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Extension

(E0,E1,Y) ≤ (F0,F1,X)

� Fi ⊆ Ei

� Y ⊆ X

� Ei \ Fi ⊆ X

Denotation

⟨G0,G1⟩ ∈ [F0,F1,X]

� Fi ⊆ Gi

� Gi \ Fi ⊆ X

[E0,E1,Y] ⊆ [F0,F1,X]
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(F0,F1,X) ⊩ φ(G0,G1)

Condition Formula

φ(G0,G1) holds for every ⟨G0,G1⟩ ∈ [F0,F1,X]
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Input : a set C ̸≤T ∅ and a 2-partition A0 ⊔ A1 = N

Output : an infinite set G ⊆ Ai such that C ̸≤T G

ΦG0
e0 ̸= C ∨ ΦG1

e1 ̸= C

The set {p ∈ P : p ⊩ ΦG0
e0 ̸= C ∨ ΦG1

e1 ̸= C} is dense
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Disjunctive forcing question

p ?⊢φ0(G0) ∨ φ1(G1)
where p ∈ P and φ0(G0),φ1(G1) are Σ0

1

Lem
Let p ∈ P and φ0(G0),φ1(G1) be Σ0

1 formulas.
(a) If p ?⊢φ0(G0)∨φ1(G1), then q ⊩ φ0(G0)∨φ1(G1) for some q ≤ p;

(b) If p ?⊬φ0(G0) ∨ φ1(G1), then q ⊩ ¬φ0(G0) ∨ ¬φ1(G1) for some
q ≤ p.
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Suppose the following relation is uniformly Σ0
1(X) whenever

φ0(G0),φ1(G1) are Σ0
1

(F0,F1,X) ?⊢φ0(G0) ∨ φ1(G1)

Lem

For every non-computable set C and Turing functionals
Φe0 ,Φe1 , the following set is dense in (P,≤).

D = {p ∈ P : p ⊩ ΦG0
e0 ̸= C ∨ ΦG1

e1 ̸= C}

Consider the Σ0
1(X) set

W = {(x, v) : p ?⊢ΦG0
e0 (x) ↓= v ∨ ΦG0

e0 (x) ↓= v}
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Problem: complexity of the instance

“Can we find an extension for this instance of RT1
2?”

Defi

(F0,F1,X) ?⊢φ0(G0) ∨ φ1(G1)

≡

(∃i < 2)(∃Ei ⊆ X ∩ Ai)φi(Fi ∪ Ei)

The formula is Σ0
1(X⊕ Ai)
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Idea: make an overapproximation

“Can we find an extension for every instance of RT1
2?”

Defi

(F0,F1,X) ?⊢φ0(G0) ∨ φ1(G1)

≡

(∀B0 ⊔ B1 = N)(∃i < 2)(∃Ei ⊆ X ∩ Bi)φi(Fi ∪ Ei)

The formula is Σ0
1(X)
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Case 1: p ?⊢φ0(G0) ∨ φ1(G1)

Letting Bi = Ai, there is an extension q ≤ p forcing

φ0(G0) ∨ φ1(G1)

Case 2: p ?⊬φ0(G0) ∨ φ1(G1)

(∃B0 ⊔ B1 = N)(∀i < 2)(∀Ei ⊆ X ∩ Bi)¬φi(Fi ∪ Ei)

The condition (F0,F1,X ∩ Bi) ≤ p forces

¬φ0(G0) ∨ ¬φ1(G1)
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Ramsey’s theorem

RTn
k

,r

Over n-tuples

Using k colors

Allows r colors
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RTn
k,ℓ-encodable sets

RT1
k,ℓ ℓ

≥ 1

RT2
k,ℓ ℓ

1 ≥ 2

RT3
k,ℓ ℓ

1− 3 4 ≥ 5

RT4
k,ℓ ℓ

1− 7 8− 13 ≥ 14

∆1
1 arith. comp.
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Thm (Cholak, P.)

Every function is RTn
k,ℓ-dominated for ℓ < 2n−1.

f(x1, x2, . . . , xn) = ⟨[x1, x2] g-large?, . . . , [xn−1, xn] g-large?⟩

� Case 1: the color ⟨no, . . . , no⟩ is avoided
� Case 2: the color ⟨q1, . . . ,qk, yes, no, . . . , no⟩ is avoided

IH Impossible

q1 · · · qk yes no · · · no
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Catalan numbers

Cn is the number of trails of length 2n.

C0 = 1 and Cn+1 =

n∑
i=0

CiCn−i

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786,…
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Defi
A largeness graph is a pair ({0, . . . , n− 1},E) such that
(a) If {i, i+ 1} ∈ E, then for every j > i+ 1, {i, j} ̸∈ E

(b) If i < j < n, {i, i+ 1} ̸∈ E and {j, j+ 1} ∈ E, then {i, j+ 1} ∈ E

(c) If i+ 1 < j < n− 1 and {i, j} ∈ E, then {i, j+ 1} ∈ E

(d) If i+ 1 < j < k < n and {i, j} ̸∈ E but {i, k} ∈ E, then {j− 1, k} ∈ E

0 1 2 3 0 1 2 3
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Largeness graphs of size 4

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3
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Counting largeness graphs

0 1 2 3 4 5 6

A largeness graph G = ({0, . . . , n− 1},E) is packed
if for every i < n− 2, {i, i+ 1} ̸∈ E.

� Ln = number of largeness graphs of size n
� Pn = number of packed largeness graphs of size n

L0 = 1 and Ln+1 =

n∑
i=0

Pi+1Ln−i
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Counting packed largeness graphs

A largeness graph G = ({0, . . . , n− 1},E) of size n ≥ 2 is
normal if {n− 2, n− 1} ∈ E.

0 1 2 3 ≡ 0 1 2 3

Thm (Cholak, P.)

The following are in one-to-one correspondance:
(a) packed largeness graphs of size n
(b) normal largeness graphs of size n
(c) largeness graphs of size n− 1
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Thm (Cholak, P.)

Every left-c.e. function is RTn
k,ℓ-dominated for ℓ < Cn.

f(x1, x2, . . . , xn) = the largeness graph of g

� Case 1: a packed graph is avoided
� Case 2: a graph of the following form is avoided

0 1 2 3 4 5 6
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Conclusion

RTn
k for n ≥ 2 has instances having only sparse solutions,

hence encodes all the ∆1
1 sets

RT1
k cannot force having sparse solutions, so encodes

only the computable sets

A trichotomy appears when we allow more colors in the
solutions
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