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Ramsey’s theorem

[X]" is the set of unordered n-tuples of elements of X
A k-coloring of [X]"isamap f: [X]" — k

A set H C X is homogeneous for f if [f([H]")| = 1.

RTn Every k-coloring of [N]” admits
K an infinite homogeneous set.
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Encodability vs Domination

Encodability

A set S is P-encodable if there
is an instance of P such that
every solution computes S

Domination

A function f is P-dominated if
there is an instance of P such
that every solution computes
a function dominating f.
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What sets are
RTZ—encodabIe?



Every function is RT3-dominated.

Given g : w — w, an interval [x,y] is g-large if y > g(x).

Otherwise it is g-small.

1 if [x,y] is g-large
0 otherwise

fix,y) = {
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Sets computable
through sparsity

2
o

Sets with mo"

Every Al set is RT3-encodable
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Every RTy-encodable set is computably encodable.

For every coloring f : [N]” — k and every infinite X C N there is
an infinite f-homogeneous set Y C X.
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Sets computable
through sparsity

N
Sets with mod”

Whenevern > 2 and k > 2,

RT;-encodable = Al
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The encodability power
of RT}; comes from the

sparsity

of its homogeneous sets.
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The RT}-encodable sets are the computable sets.

0O 1 2 3 4

5 6 7 8 9 , o
Sparsity of red implies

10 11 12 13 14 non-sparsity of blue

15 16 17 18 19 and conversely.

20 21 22 23 24
25 26 27 28 ...
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Cone avoidance 101



Strategy




Forcing in Computability Theory

Partial order
<)

Condition
pelP
approximation

Denotation
o] C 2
class of candidates

Compatibility
If g < pthen[q] C [p]
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Forcing in Computability Theory

Filter F C P

Voe FVq>pqeF
Vp,ge F,Ire Fr<p,q

Dense setD C P

VoePdg<pgeD

Denotation

] = Nperlpl

Forcing p I ¢(G)
VG € [p] ¢(G)
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Cohen forcing
(2,3

2<% is the set of all finite binary strings
o = 7 means ¢ is a prefix of 7

[l ={X€2¥:0 <X}
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Thm (Folklore)

Let C £ (. For every sufficiently Cohen generic G, C £7 G.

Lem

For every non-computable set C and Turing functional ®., the
following set is dense in (2<¥, ).

D={oce2<: gl d¢ +C}
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Given o € 2<%, define the X! set

W={(x,v):3r = o ®(x) |=v}
» Case 1: (x,1 —C(x)) € W for some x
Then 7 is an extension forcing (I)g #C

» Case 2: (x,C(x)) & W for some x
Then o forces ®¢ # C

» Case 3: WisaXx{ graphof C
Impossible, since C £ ()
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Weak Koénig’s lemma

2<% is the set of all finite binary strings
A binary tree is a set T C 2<% closed under prefixes

A path through T is an infinite sequence P such that every
initial segmentisin T

VVK |_ Every infinite binary tree admits
an infinite path.
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Jockusch-Soare forcing
(T, <)

T is the collection of infinite computable binary trees

[M={Xe€2¥: Vo <XoeT}
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Let C «£1 (). For every infinite computable binary tree T C 2<%,
there is a path P € [T] such that C £7 P.

For every non-computable set C and Turing functional ®., the
following set is dense in (7, ).

D={TeT:THa¢+C}
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Given T € T, define the X! set

W= {(x,v): 3 e NVo e 2!NT I(x) |=v}
» Case 1: (x,1 — C(x)) € W for some x
Then T forces ®¢ # C

» Case 2: (x,C(x)) & W for some x
Then {o € T: =(®Z(x) |=v)} forces ®¢ + C

» Case 3: WisaXx{ graphof C
Impossible, since C £7 ()
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Forcing question

oivI(C)

where p € P and ¢(G) is 39

Let p € P and »(G) be a X formula.
(@ Ifp?-p(G), then q I- (G) for some g < p;
(b) If p72¥ ©(G), then g IF —p(G) for some g < p.
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Jockusch-Soare Cohen
forcing question forcing question

Forcing X9 Forcing 11}
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Suppose p 7+ ¢(G) is uniformly ¢ whenever »(G) is X9

For every non-computable set C and Turing functional ®., the
following set is dense in (P, <).

D={peP:pl ®¢ +C}
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Given p € P, define the X9 set

W={xv):p?a(x) |=v}
» Case 1: (x,1 — C(x)) € W for some x
Then there is an extension forcing (I)S #C

» Case 2: (x,C(x)) & W for some x
Then there is an extension forcing ®¢ # C

» Case 3: WisaXx{ graphof C
Impossible, since C £ ()
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Pigeonhole principle

RTI Every k-partition of N admits
k an infinite subset of a part.

01 2 3 4 2

5 6 7 8 9 5 6 9
10 11 12 13 14 —> 12

15 16 17 18 19 15 17 18

20 21 22 23 24 24

25 26 27 28 ... 26 27
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Thm (Dzhafarov and Jockusch)

A set is RT1-encodable iff it is computable.
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A set is RT1-encodable iff it is computable.

Input : aset C £ () and a 2-partition Ag LUIA; = N

Output : an infinite set G C A; such that C £+ G
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FO!FhX

/ \

Initial segment Reservoir
» F;is finite, X is infinite, max F; < min X (Mathias condition)
» C L1 X (Weakness property)

» Fi CA (Combinatorics)
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Extension Denotation

(Eo,E1,Y) < (Fo,F1,X) (Go,G1) € [Fo,F1,X]
» FiCE; » Fi CGj
» YCX » Gi\F CX
» Ei\FiCX

[Eo,E1,Y] C [Fo,F1,X]
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(FO!Fl,X) In SD(GO! Gl)
/ ™

Condition Formula

»(Go, G1) holds for every (Gy, G) € [Fo, F1,X]



Input : aset C £t () and a 2-partition Ag LIA; = N

Output : an infinite set G C A; such that C £+ G
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Input : aset C £t () and a 2-partition Ag LIA; = N

Output : an infinite set G C A; such that C £+ G

S0 L CV PG+ C
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Input : aset C £t () and a 2-partition Ag LIA; = N

Output : an infinite set G C A; such that C £+ G
Gy G,
Qg #CV O #C

Theset {p e P:pI- 85" £ C Vv &S + C} is dense
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Disjunctive forcing question

P 7t o(Go) V p1(G1)

where p € P and ¢o(Go), »1(G1) are 3¢

Let p € P and ¢o(Go), ¢1(G1) be X formulas.
@ 1 p?wo(Go)Ve1(Gr), thenq Ik o(Go)V 1 (G1) for some g < p;

(0) If p 2% ©o(Go) V 1(G1), then q Ik —po(Go) V —1(G1) for some
g <p.
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Suppose the following relation is uniformly %9(X) whenever
¢0(Go), ¥1(G1) are X

(Fo, F1,X) 7= 0(Go) V ¢1(G1)

For every non-computable set C and Turing functionals
e, , Pe,, the following set is dense in (P, <).

D={pecP:pl- o £Cval +£C}

Consider the X9(X) set

W= {(x,v) : p? 35 (x) |= vV dZ"(x) |= v}

€o

33/47



Problem: complexity of the instance

“Can we find an extension for this instance of RT;?”

(Fos F1,X) 7= 00(Go) V ¢1(G1)

(E|I < 2)(E|E, - XﬂA,’)QO,‘(F,‘ U E,)

The formulais 2(X @ A))
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Idea: make an overapproximation

“Can we find an extension for every instance of RT}?”

(Fos F1,X) 7= 00(Go) V ¢1(G1)

(VBO UB; = N)(HI < 2)(E|E, C XN B,‘)(,O,‘(F,‘ U E,)

The formula is X9(X)
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Case 1: p 7 o(Go) V 1(G1)

Letting B; = A, there is an extension g < p forcing

©0(Go) V ¢1(G1)

Case 2: p %% po(Go) V ¢1(G1)
(3Bo U By = N)(Vi < 2)(VE; € XN B;)~i(Fi UE;)
The condition (Fy, F1,X N B;) < p forces

—p0(Go) V —¢1(Gr)
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Ramsey’s theorem

Over n-tuples

/
RT
\

Using k colors
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Ramsey’s theorem

Over n-tuples

/
RT
Allows r colors
,I’ —
A\
Using k colors
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RT% ,~encodable sets

RTy, )
> 1

RT:: I X
1 =2

«rl, . >
1-3 4 =25

RTe. )

1-7 8§—13 > 14

B 2 arith comp.
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Every function is RT}, ,-dominated for ¢ < 27~
f(X1,X2, ..., Xn) = ([x1,%2] g-large?, ..., [xn—1,Xn] g-large?)

» Case 1: the color (no, ...,no) is avoided
» Case 2: the color (q1,...,Qgx, yes,no,...,no) is avoided

7

IH Lo Impossible

~
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Catalan numbers

Cy, is the number of trails of length 2n.

n
C() =1 and Cn+1 = ZC,‘C,,_,'
i=0

1,1,2,5,14, 42,132, 429, 1430, 4862, 16796, 58786,...

40/47



A largeness graph is a pair ({0, ...,n — 1}, E) such that

(@ If {i,i+ 1} € E, then foreveryj >i+1,{i,j} ¢ E

b) Ifi<j<n,{i,i+1} ¢Eand{j,j+1} €E then {i,j+1} € E

() fi+1<j<n—1and{ij} €E then{i,j+ 1} € E

d) fi+1<j<k<nand {i,j} Ebut {i,k} €E, then {j — 1,k} € E

ofof0R6

(
(
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Largeness graphs of size 4
ORORORO ONNORONORO.

FoToD V00 TTOW
000 OTOD J T oL



Counting largeness graphs

@@@@@

A largeness graph G = ({0,...,n — 1}, E) is packed
if foreveryi<n—2,{i,i+1} ¢ E.

» L, = number of largeness graphs of size n
» P, = number of packed largeness graphs of size n

n
Lo=1 and Ly = ZP,-HLH_,-
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Counting packed largeness graphs

A largeness graph G = ({0,...,n — 1},E) of sizen > 2is
normal if {n —2,n—1} € E.

@ T ow = U oTw

The following are in one-to-one correspondance:
(@) packed largeness graphs of size n
(b) normal largeness graphs of size n
(c) largeness graphs of sizen — 1
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Every left-c.e. function is RT} ,-dominated for ¢ < Cj,.

f(x1,X2,...,Xn) = the largeness graph of g

» Case 1: a packed graph is avoided
» Case 2: a graph of the following form is avoided
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Conclusion

RT} for n > 2 has instances having only sparse solutions,
hence encodes all the Al sets

RT, cannot force having sparse solutions, so encodes
only the computable sets

A trichotomy appears when we allow more colors in the
solutions
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