
Motivations Framework Applications Questions

Canonical notions of forcing
in reverse mathematics

Ludovic PATEY
Joint work with Denis Hirschfeldt

November 27, 2019
1 / 50

Motivations Framework Applications Questions

Computability 101

2 / 50

Motivations Framework Applications Questions

A set A ⊆ ω is computable if there is a computer program
which, on input n, decides whether n ∈ A or not.

A set A ⊆ ω is computable in B if there is a computer program
in an language augmented with the characteristic function of B
which, on input n, decides whether n ∈ A or not.

A ≤T B
A is computable in B

3 / 50

Motivations Framework Applications Questions

≤T is a preorder

Turing equivalence
A ≡T B if A ≤T B and B ≤T A

Turing degree
degT(A) = {B : B ≡T A}

Turing degrees
(D,≤) is a partial order

The Turing degrees are
� countable
� robust

They represent
computational powers

4 / 50

Motivations Framework Applications Questions

Φe(x) ↓
The e-th program halts on input x.

Φe(x)[t] ↓
The e-th program halts on input x

in less than t steps.

5 / 50

Motivations Framework Applications Questions

ΦAe (x) ↓
The e-th program with oracle A halts on input x.

ΦAe (x)[t] ↓
The e-th program with oracle A halts on input x

in less than t steps.

5 / 50

Motivations Framework Applications Questions

Halting set
∅′ = {e : Φe(e) ↓}

Thm (Turing)

The halting set is not computable.

6 / 50

Motivations Framework Applications Questions

Turing jump
A′ = {e : ΦA

e (e) ↓}

Thm

� A <T A′

� A ≡T B → A′ ≡T B′

7 / 50

Motivations Framework Applications Questions

Arithmetic hierarchy

Σ0
n ∃x1∀x2 . . .Qxn R(x1, . . . , xn)

Π0
n ∀x1∃x2 . . .Qxn R(x1, . . . , xn)

where R has only bounded quantifiers.

� A set is Σ0
n (Π0

n) if it is definable by a Σ0
n (Π0

n) formula

� A set is ∆0
n if it is both Σ0

n and Π0
n.

8 / 50

Motivations Framework Applications Questions

Computability ≡ Definability

Thm (Post)

A set is c.e. iff it is Σ0
1 and computable iff it is ∆0

1.

Thm (Post)

A set is ∅(n)-c.e. iff it is Σ0
n+1 and ∅(n)-computable iff it is ∆0

n+1.

9 / 50

Motivations Framework Applications Questions

Have we found the
right techniques?

� Would martians come up with the same proof?

� Do we loose in generality with our constructions?

10 / 50

Motivations Framework Applications Questions

Example : weak 1-genericity

� A set D ⊆ 2<ω is dense if for every
σ ∈ 2<ω there is a τ ⪰ σ in D.

� A real R meets D if σ ∈ D for some
σ ≺ R.

� A real R is weakly 1-generic if it meets
every dense Σ0

1 set.

11 / 50

Motivations Framework Applications Questions

Example : weak 1-genericity

List all the Σ0
1 sets W0,W1,W2, · · · ⊆ 2<ω

Build a real with the finite extension method σ0 ≺ σ1 ≺ σ2 ≺ . . .

Let f : ω → ω be an increasing time function.
� Search for an extension σs+1 of σs in some unsatisfied We

such that σs has no extension in Wi[f(|σs+1|)] for any
unsatisfied Wi with i < e

Thm (Kurtz)

Every weakly 1-generic real computes a function f which
makes this construction produce a weakly 1-generic real.

12 / 50

Motivations Framework Applications Questions

The construction is
without loss of generality

� The construction is natural

� The resulting object carries its own construction

13 / 50

Motivations Framework Applications Questions

Consider mathematical problems

Intermediate value theorem
For every continuous function f over an
interval [a,b] such that f(a) · f(b) < 0, there
is a real x ∈ [a,b] such that f(x) = 0.

König’s lemma
Every infinite, finitely branching tree admits
an infinite path.

a
b

14 / 50

Motivations Framework Applications Questions

Computable reduction

Q solver
Computable

transformation

Computable

transformation

P solver

P ≤c Q
Every P-instance I computes a Q-instance J such that for every
solution X to J, X⊕ I computes a solution to I.

15 / 50

Motivations Framework Applications Questions

Observations

When proving that P ̸≤c Q, we usually

� construct a computable instance of P with complex
solutions

� construct for every computable instance of Q a simple
solution

� use a notion of forcing to build solutions to Q-instances

16 / 50

Motivations Framework Applications Questions

Observations

The notion of forcing for Q
does not depend on P

� Q seems to have a canonical notion of forcing

� Separation proofs can be obtained without loss of
generality using this notion of forcing

17 / 50

Motivations Framework Applications Questions

Examples

For WKL, forcing with Π0
1 classes :

� ACA ̸≤c WKL (cone avoidance)
� RT2

2 ̸≤c WKL (ω hyperimmunities)
� . . .

For ADS, forcing with split pairs :
� ACA ̸≤c ADS (cone avoidance)
� CAC ̸≤c ADS (Towsner)
� RT2

2 ̸≤c ADS (dep. hyperimmunity)
� DNC ̸≤c ADS (non-DNC degree)

For DNC, forcing with bushy trees

18 / 50

Motivations Framework Applications Questions

Towards a framework

19 / 50

Motivations Framework Applications Questions

Weakness property

� A weakness property is a class W ⊆ 2ω which is closed
downward under Turing reducibility.

� A problem P computably satisfies a weakness property W
if every computable instance of P has a solution in W.

Example : Given a set A, let WA = {X : X ̸≥T A}.
Then WKL computably satisfies WA for every A ̸≤T ∅.

20 / 50

Motivations Framework Applications Questions

Weakness property

If Q computably satisfies W but P does not, then

P ̸≤c Q

21 / 50

Motivations Framework Applications Questions

P-forcing

Fix a problem P.
� A P-forcing is a forcing family P = (PI : I ∈ domP) such

that for every P-instance I, every sufficiently generic filter
yields a solution to I.

� A P-forcing P computably satisfies a weakness property
W if every computable I ∈ dom(P), every sufficiently
generic filter yields an element in W.

Example : Given a set A, let WA = {X : X ̸≥T A}.
Forcing with Π0

1 classes computably satisfies WA for every
A ̸≤T ∅.

22 / 50

Motivations Framework Applications Questions

Fix a class W of weakness properties.

Defi

A P-forcing P is canonical for W if for every W ∈ W such that P
computably satisfies W, then so does P.

What class W to consider?

23 / 50

Motivations Framework Applications Questions

Weakness properties

Effectiveness properties:

Lowness (W = {X : X′ ≤T ∅′})

Arithmetical hierarchy
(W = {X : X is arithmetical })

Genericity properties:

Cone avoidance
(WA = {X : X ̸≥T A} for A ̸≤T ∅)

Preservation of hyperimmunity
(Wf = {X : f is X-hyperimmune})

Preservation of non-Σ0
1 definitions

(WA = {X : A ̸∈ Σ0,X
1 } for A ̸∈ Σ0

1)

24 / 50

Motivations Framework Applications Questions

Closed set avoidance

A closed set avoidance property is a property of the form

WC = {X : C has no X-computable member}
for some closed set C ⊆ ωω in the Baire space.

� Cone avoidance: CA = {A}
� Preservation of hyperimmunity: Cf = {g ∈ ωω : g ≥ f}
� Non-DNC degree C = {g ∈ ωω : ∃n(g(n) = Φn(n))}

25 / 50

Motivations Framework Applications Questions

First jump part

� First order part of P: first-order consequences of P in
Reverse Mathematics

{T ∈ LPA : RCA0 + P ⊢ T}

� First order part of P: first-order problems reducible to it in
Weihrauch degrees

{Q ⊆ ωω ⇒ ω : Q ≤W P}

� First jump part of P : closed sets computably avoided by
the problem

{ closed C ⊆ ωω : P computably satisfies WC}

26 / 50

Motivations Framework Applications Questions

What problems admit a
canonical forcing?

27 / 50

Motivations Framework Applications Questions

Trivial examples

28 / 50

Motivations Framework Applications Questions

Cohen genericity

Lem (Folklore)

If C ⊆ ωω is a closed set with no computable member, then C
has no G-computable member for every sufficiently Cohen
generic.

Proof: Given a Cohen condition σ ∈ 2<ω forcing totality of a
functional Φe, there is a τ ⪰ σ such that [Φτ

e] ∩ C = ∅.

The Atomic Model Theorem (AMT) admits a canonical notion of
forcing for closed set avoidance properties.

29 / 50

Motivations Framework Applications Questions

Highness

Lem (Folklore)

If C ⊆ ωω is a closed set with no computable member and
A ∈ 2ω, then C has no G-computable member for some G such
that G′ ≥T A.

Proof: Use forcing conditions (h, n), where h ⊆ ω2 → 2 is a finite ∆0
2

approximation, and n fixes the first n columns to A.

Cohesiveness (COH) and highness admit a canonical notion of
forcing for closed set avoidance properties.

30 / 50

Motivations Framework Applications Questions

A non-trivial example

31 / 50

Motivations Framework Applications Questions

Weak König’s lemma

WKL: Every infinite binary tree has an infinite path

Let C be the closed set of all completions of PA.
Then WKL does not computably preserve WC .

Thm

The WKL-forcing with non-empty Π0
1 classes is canonical for

closed set avoidance properties.

32 / 50

Motivations Framework Applications Questions

Weak König’s lemma

Thm

The WKL-forcing with non-empty Π0
1 classes is canonical for

closed set avoidance properties.

� Fix a closed set C ⊆ ωω and a functional Φe.

� Try to prove that the set of Π0
1 classes forcing ΦG

e ̸∈ C is dense.

� If it fails, show that WKL does not computably preserve WC .

33 / 50

Motivations Framework Applications Questions

Weak König’s lemma

Fix a closed set C ⊆ ωω, a non-empty Π0
1 class D and Φe.

Success if
� there is a σ ∈ 2<ω such that [σ] ∩ D ̸= ∅ and [Φσ

e] ∩ C = ∅.

� or {X ∈ D : ΦX
e(n) ↑} ̸= ∅ for some n.

Otherwise {ΦX
e : X ∈ D} is an effectively compact subset of C.

Every PA degree computes a member of C.

34 / 50

Motivations Framework Applications Questions

Weak König’s lemma

Thm

WKL computably preserves WC iff C has no non-empty
effectively compact subset.

� Cone avoidance : C = {A} if A ̸≤T ∅

� Preservation of hyperimmunity: Cf = {g ∈ ωω : g ≥ f}

� DNC : The Π0
1 class of {0, 1}-valued DNC is a non-empty

effectively compact subset

35 / 50

Motivations Framework Applications Questions

Consequences

The proofs of canonicity yield forcing-free criteria of
preservations.

The existence of a canonical notion of forcing yields
uniform procedures.

36 / 50

Motivations Framework Applications Questions

Ascending Descending Sequence

SADS: Every linear order of type ω + ω∗ has an infinite
ascending or descending sequence.

Let L = (ω,<L) be an instance of SADS
with ω-part U and ω∗-part V.

Forcing conditions : (σ0,σ1) such that
� σ0,σ1 ∈ ω<ω are <N-ascending

� σ0 ⊆ U is <L-ascending

� σ1 ⊆ V is <L-descending

37 / 50

Motivations Framework Applications Questions

Ascending Descending Sequence

Thm

The SADS-forcing is canonical for closed set avoidance
properties.

� Fix a closed set C ⊆ ωω and two functionals Φe0 , Φe1 .

� Try to prove that the set of conditions (σ0,σ1) forcing
ΦG0
e0 ̸∈ C ∨ ΦG1

e1 ̸∈ C is dense.

� If it fails, show that SADS does not computably preserve WC .

38 / 50

Motivations Framework Applications Questions

Ascending Descending Sequence

Thm

The SADS-forcing is canonical for closed set avoidance
properties.

A split pair is a pair (τ0, τ1) such that
� τ0, τ1 ∈ ω<ω are <N-ascending

� τ0 is <L-ascending, τ1 is <L-descending

� maxL τ0 <L minL τ1

39 / 50

Motivations Framework Applications Questions

Ascending Descending Sequence
Fix a closed set C ⊆ ωω, a condition (σ0,σ1) and Φe0 , Φe1 .

Success if
� there is a τ0 ⪰ σ0 such that (τ0,σ1) is a condition, and

[Φτ0
e0] ∩ C = ∅.

� there is a τ1 ⪰ σ1 such that (σ0, τ1) is a condition, and
[Φτ1

e1] ∩ C = ∅.

� or there is no split pair (τ0, τ1) with τ0 ⪰ σ0, τ1 ⪰ σ1 and such
that {0, . . . , n} ⊆ domΦτ0

e0 ∩ domΦτ1
e1 for some n.

Otherwise, we can computably enumerate split pairs (τ s0 , τ s1)
such that Φτ s0

e0 and Φ
τ s1
e1 are defined on {0, . . . , s}.

{max τ s0 : s ∈ ω} is a computable instance of SADS such that
every solution computes member of C.

40 / 50

Motivations Framework Applications Questions

Second-jump parts

41 / 50

Motivations Framework Applications Questions

Closed set jump avoidance

A closed set jump avoidance property is a property of the form

JC = {X : C has no X′-computable member}
for some closed set C ⊆ ωω in the Baire space.

Let C be the closed set of all completions of PA relative to 0’.
Then COH does not computably preserve JC .

42 / 50

Motivations Framework Applications Questions

Cohesiveness

Let R0,R1,R2, . . . be an instance of COH

Let Rσ =
∩

σ(i)=1 Ri
∩

σ(i)=0 Ri

Forcing conditions: (F,σ,D) such that
� F is a finite set, σ ∈ 2<ω

� D is a non-empty Π0,∅′

1 subclass of [σ]

(E, τ , E) ≤ (F,σ,D) if
� (E,Rτ) Mathias extends (F,Rσ).

� σ ≺ τ and E ⊆ D.

43 / 50

Motivations Framework Applications Questions

Cohesiveness

Thm

The COH-forcing is canonical for closed set jump avoidance
properties.

Thm

COH computably preserves JC iff C has no non-empty
∅′-effectively compact subset.

� If A is not ∆0
2, every computable instance of COH admits a

solution G such that A is not ∆0
2(G).

44 / 50

Motivations Framework Applications Questions

Open questions

45 / 50

Motivations Framework Applications Questions

DNC functions

A function f is DNC if for every e, f(e) ̸= Φe(e).

A tree T ⊆ ω<ω is k-bushy above σ ∈ ω<ω if every element of T
is comparable with T, and for every τ ∈ T which extends σ and
is not a leaf, τ has at least k immediate extensions in T.

A set B ⊆ ω<ω is k-small above σ if there is no finite tree
k-bushy above σ whose leaves belong to B.

46 / 50

Motivations Framework Applications Questions

DNC functions

Bushy tree forcing : (σ,B) where
� σ ∈ ω<ω

� B is k-small above σ for some k.

Question
Is bushy tree DNC-forcing canonical for closed set avoidance
properties?

47 / 50

Motivations Framework Applications Questions

Intuition

Lem
Let X be a set. TFAE
� X computes a DNC function

� X computes a function g such that if |We| ≤ n, then g(e, n) ̸∈ We.

Lem

Suppose B is a k-small c.e. set above σ. Then the set

{n : B is not k-small above σn}

is c.e. of size at most k− 1.

48 / 50

Motivations Framework Applications Questions

Conclusion

Natural combinatorial problems seem to have canonical
notions of forcing.

The proofs of canonicity yield forcing-free criteria of
preservations.

The right notion of forcing for DNC functions is not fully
understood.

49 / 50

Motivations Framework Applications Questions

References

Mushfeq Khan and Joseph S Miller.
Forcing with bushy trees.
Bulletin of Symbolic Logic, 23(2):160–180, 2017.
Publisher: Cambridge University Press.

Ludovic Patey.
Controlling iterated jumps of solutions to combinatorial
problems.
Computability, 6(1):47–78, 2017.

50 / 50

	Motivations
	Framework
	Applications
	Questions

