Ramsey-like theorems

Classifications of Ramsey-like theorems

Ludovic PATEY

Consider mathematical problems

Intermediate value theorem

For every continuous function *f* over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.

König's lemma

Every infinite, finitely branching tree admits an infinite path.

What functions can problems dominate?

Fix a problem P.

A function $f : \omega \to \omega$ is P-dominated if there is an instance of P such that every solution computes a function dominating *f*

A function *f* is hyperimmune if it is not dominated by any computable function.

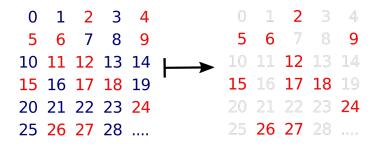
Ramsey's theorem

- $[X]^n$ is the set of unordered *n*-tuples of elements of X
- A *k*-coloring of $[X]^n$ is a map $f : [X]^n \to k$
- A set $H \subseteq X$ is homogeneous for f if $|f([H]^n)| = 1$.

 $\begin{array}{ll} \mathsf{RT}^{\boldsymbol{n}}_{\boldsymbol{k}} & \text{Every } {\boldsymbol{k}}\text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

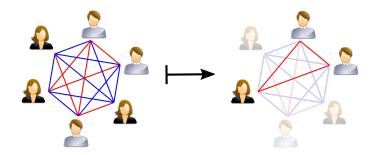
Pigeonhole principle

RT^1_{k} Every *k*-partition of \mathbb{N} admits an infinite part.



Ramsey's theorem for pairs

 $\mathsf{RT}^2_{\mathbf{k}}$ Every *k*-coloring of the infinite clique admits an infinite monochromatic subclique.



Thm (Jockusch)

Every function is RT_2^2 -dominated.

Given $g : \omega \to \omega$, an interval [x, y] is *g*-large if $y \ge g(x)$. Otherwise it is *g*-small.

$$f(x, y) = \begin{cases} 1 & \text{if } [x, y] \text{ is g-large} \\ 0 & \text{otherwise} \end{cases}$$

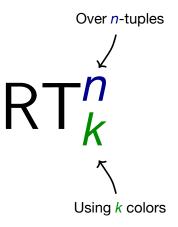
Thm (Dzhafarov and Jockusch)

No hyperimmune function is RT_2^1 -dominated.

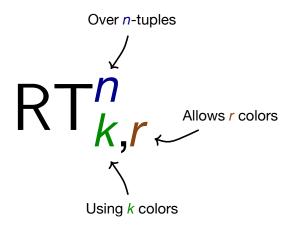
- 0 1 2 3 4
- 5 6 7 8 9
- 10 11 12 13 14
- 15 16 17 18 19
- 20 21 22 23 24
- 25 26 27 28

Sparsity of red implies non-sparsity of blue and conversely.

Ramsey's theorem



Ramsey's theorem



Thm (Wang)

No hyperimmune function is $RT_{k,\ell}^n$ -dominated for large ℓ

(whenever ℓ is at least the *n*th Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

Every function is $RT_{k,\ell}^n$ -dominated for small ℓ (whenever $\ell < 2^{n-1}$)

Erdős-Moser theorem

Fix
$$f: [\omega]^2 \to 2$$
.

A set *H* is transitive if for every $a < b < c \in H$, such that f(a, b) = f(b, c) then f(a, b) = f(a, c).

$\begin{array}{c} \mathsf{EM} \quad & \mathsf{Every} \ 2\text{-coloring of } [\mathbb{N}]^2 \ \mathsf{admits} \\ & \mathsf{an infinite transitive set.} \end{array}$

Thm (Jockusch)

Every function is RT_2^2 -dominated.

Thm (P.)

No hyperimmune function is EM-dominated.

Is there a maximal weakening P of RT_k^n such that no hyperimmune function is P-dominated?

Ramsey-like theorems

with

Ramsey-like problems

Fix a formal coloring $f : [\omega]^n \to k$ and variables $x_0 < x_1 < \dots$

An RT_k^n -pattern P is a finite conjunction of formulas

$$f(\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_n}) = \mathbf{v}_1 \wedge \dots \wedge f(\mathbf{x}_{j_1}, \dots, \mathbf{x}_{j_n}) = \mathbf{v}_s$$
$$\mathbf{v}_1, \dots, \mathbf{v}_s < \mathbf{k}$$

Given a coloring $f : [\omega]^n \to k$, a set $H \subseteq \omega$ *f*-avoids an RT_k^n -pattern *P* if $(F, f) \not\models P$ for every finite set $F \subseteq H$.

Example 1

Given a coloring $f : [\omega]^2 \to 2$, a set $H \subseteq \omega$ *f*-avoids simultaneously all these patterns iff *H* is *f*-homogeneous.

Example 2

Given a coloring $f : [\omega]^2 \to 2$, a set $H \subseteq \omega$ *f*-avoids simultaneously all these patterns iff *H* is *f*-transitive.

Ramsey-like problems

Defi

Given a set *V* of RT_k^n -patterns, $RT_k^n(V)$ is the problem whose instances are colorings $f : [\omega]^n \to k$ and solutions are sets *f*-avoiding every pattern in *V*.

In particular, RT_k^n , $RT_{k,\ell}^n$ and EM are Ramsey-like problems.

True Ramsey-like problems

Given problems P and Q, let $P \leq_{id} Q$ if dom $P \subseteq \text{dom } Q$, and for every $X \in \text{dom}(P)$, $Q(X) \subseteq P(X)$.

A Ramsey-like problem $RT_k^n(W)$ is true if every instance has a solution.

Lem

A Ramsey-like problem $\operatorname{RT}_{k}^{n}(W)$ is true iff $\operatorname{RT}_{k}^{n}(W) \leq_{id} \operatorname{RT}_{k}^{n}$.

Dominating functions

Thm (P.)

There is a Ramsey-like problem $\operatorname{RT}_{k}^{n}(U)$ such that for every Ramsey-like problem $\operatorname{RT}_{k}^{n}(W)$, no hyperimmune function is $\operatorname{RT}_{k}^{n}(W)$ -dominated iff $\operatorname{RT}_{k}^{n}(W) \leq_{id} \operatorname{RT}_{k}^{n}(U)$.

To decide whether no hyperimmune function is $RT_k^n(W)$ -dominated, simply check that

$$\bigvee W \to \bigvee U$$

is a tautology.

Example: LARGE²_k

Defi (LARGE²)

For every coloring $f : [\omega]^2 \to k$, there are two colors $s, \ell < k$ and an infinite set $H \subseteq \omega$ such that

►
$$f[H]^2 \subseteq \{s, \ell\}$$

►
$$f(x, y) = f(y, z) = s$$
 iff $f(x, z) = s$ for every $x < y < z \in H$

It looks like over *H*, there is some function $g: \omega \rightarrow \omega$ such that

$$f(x,y) = \begin{cases} \ell & \text{if } [x,y] \text{ is g-large} \\ s & \text{otherwise} \end{cases}$$

This analysis generalizes the following theorems:

- RT₂² admits avoidance of 1 cone (Seetapun)
 RT₂¹ admits strong avoidance of 1 cone (Dzhafarov and Jockusch)
 EM admits strong avoidance of 1 cone (P.)
 RTⁿ_{k,Cn} admits strong avoidance of 1 cone (Cholak and P.)
 FSⁿ admits strong avoidance of 1 cone (Wang)
- ADS does not admit strong avoidance of 1 cone

Further directions

Main goal

Finding an algorithm which, given two sets for RT_k^n patterns U, V, decides whether

- ▶ $\mathsf{RT}_k^n(U) \leq_{sc} \mathsf{RT}_k^n(V)$
- $\blacktriangleright \ \mathsf{RT}_k^n(U) \leq_{\mathsf{c}} \mathsf{RT}_k^n(V)$
- $\blacktriangleright \ \mathsf{RT}_k^n(U) \leq_\omega \mathsf{RT}_k^n(V)$

Questions

Is there a \leq_{id} -maximal Ramsey-like problem P such that

$$\mathsf{RT}_2^2 \not\leq_{\mathsf{c}} \mathsf{P}$$

Is EM this maximal Ramsey-like problem?

References

Peter A. Cholak and Ludovic Patey. Thin set theorems and cone avoidance.

To appear, 2019.

Ludovic Patey.

Ramsey-like theorems and moduli of computation.

arXiv preprint arXiv:1901.04388, 2019.

To appear.

Matthew Harrison-Trainor Ludovic Patey Rod Downey, Noam Greenberg and Dan Turetsky.

Relationships between computability-theoretic properties of problems.

To appear, 2019.