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2 OPEN QUESTIONS

PIGEON-OWL PRINCIPLE

If you put infinitely many pigeons into finitely many owls,
one owl must contain infinitely many pigeons.
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RAMSEY’S THEOREM

[X ]n is the set of unordered n-tuples of elements of X

A k -coloring of [X ]n is a map f : [X ]n → k

A set H ⊆ X is homogeneous for f if |f ([H]n)| = 1.

RTn
k

Every k -coloring of [N]n admits
an infinite homogeneous set.
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PIGEONHOLE PRINCIPLE

RT1
k

Every k -partition of N admits
an infinite part.
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RAMSEY’S THEOREM FOR PAIRS

RT2
k

Every k -coloring of the infinite clique admits
an infinite monochromatic subclique.
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Motivations
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REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.

RCA0 ` A↔ T
in a very weak theory RCA0

capturing computable mathematics
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RCA0

Robinson arithmetics

m + 1 6= 0 m + 0 = m
m + 1 = n + 1→ m = n m + (n + 1) = (m + n) + 1
¬(m < 0) m × 0 = 0
m < n + 1↔ (m < n ∨m = n) m × (n + 1) = (m × n) + m

Σ0
1 induction scheme

ϕ(0) ∧ ∀n(ϕ(n)⇒ ϕ(n + 1))
⇒ ∀nϕ(n)

where ϕ(n) is Σ0
1

∆0
1 comprehension scheme

∀n(ϕ(n)⇔ ψ(n))
⇒ ∃X∀n(n ∈ X ⇔ ϕ(n))

where ϕ(n) is Σ0
1 with free X , and ψ

is Π0
1.
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REVERSE MATHEMATICS

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

RCA0

WKL

ACA

ATR

Π1
1CA
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2 and RT2

2

12 / 50



MOTIVATIONS RT2
2 RTn

2 OPEN QUESTIONS

The combinatorial features of
RT1

k reveal the computational
features of RT2

k
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An infinite set C is ~R-cohesive for some sets R0,R1, . . .
if for every i , either C ⊆∗ Ri or C ⊆∗ R i .

COH : Every collection of sets has a cohesive set.

COH is the bridge
between RT1

2 and RT2
2
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PROOF OF RT2
2

� Let f : [ω]2 → 2 be a coloring

� Define 〈Rx : x ∈ N〉 by Rx = {y : f (x , y) = 1}

� By COH, there is an ~R-cohesive set C = {x0 < x1 < . . . }

� Let A = {n : limt∈C f (xn, xt )}

� By RT1
2, there an infinite set H ⊆ A or H ⊆ A

� Compute a homogeneous set using C and H
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To analyse computable instances of RT2
2,

we use computable instances of COH
and non-computable instances of RT1

2

... and COH is computationally very weak
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AVOIDANCE

Let C ⊆ ωω be a closed set in the Baire space

Definition

A problem P avoids C if whenever C has no Z -computable
member, for every Z -computable instance X of P, there is a
solution Y such that C has no Z ⊕ Y -computable member.

A problem P strongly avoids C if it avoids C for arbitrary
instances of P.
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EXAMPLES

� Avoiding a cone: CX = {X}

Thm (Seetapun)

RT2
2 avoids cones

� Avoiding dominating functions: Given f : ω → ω,
Cf = {g : g ≥ f}

Thm (P.)

RT2
2 avoids dominating one function
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MORE EXAMPLES

� RT2
2 avoids cones (Seetapun, 1995)

� RT1
2 strongly avoids cones (Dzhafarov and J., 2009)

� WKL avoids dominating functions (J. and Soare, 1972)
� WKL avoids cones (J. and Soare, 1972)
� WKL does not avoid PA degrees (Solovay)
� WWKL avoids PA degrees (Kučera, 1985)
� RT2

2 avoids PA degrees (Liu, 2012)
� RT1

2 strongly avoids PA degrees (Liu, 2012)
� . . .
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If P avoids C but Q does not then

RCA0 6` P→ Q
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The combinatorial features of RT1
k

reveal the computational features of RT2
k

Thm (P.)

COH avoids every closed set

Thm (P.)

RT2
k avoids a closed set iff RT1

k strongly avoids it
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RT1
2 and RTn

2
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The computational analysis of RTn
2

with more colors ressembles the
analysis of RT1

2
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Fix a problem P.

A set S is P-encodable if there is an instance of
P such that every solution computes S.

What sets can encode an
instance of RTn

k?
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A function f is a modulus of a set S if every function
dominating f computes S.

A set S is computably encodable if for every infinite set X ,
there is an infinite subset Y ⊆ X computing S.

Thm (Solovay, Groszek and Slaman)

Given a set S, TFAE
� S is computably encodable
� S admits a modulus
� S is hyperarithmetic
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Thm (Jockusch)

A set is RTn
k -encodable for some n ≥ 2 iff it is hyperarithmetic.

Proof (⇒).

Let g : [ω]n → k be a coloring whose homogeneous sets
compute S.

Since every infinite set has a homogeneous subset,
S is computably encodable.

Thus S is hyperarithmetic.

26 / 50
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Thm (Jockusch)

A set is RTn
k -encodable for some n ≥ 2 iff it is hyperarithmetic.

Proof (⇐).

Let S be hyperarithmetic with modulus µS.

Define g : [ω]2 → 2 by g(x , y) = 1 iff y > µS(x).

Let H = {x0 < x1 < . . . } be an infinite g-homogeneous set.

The function pH(n) = xn dominates µS, hence computes S.
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The encodability power
of RTn

k comes from the

sparsity
of its homogeneous sets.
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What about RT1
k?

Sparsity of red implies
non-sparsity of blue
and conversely.

28 / 50



MOTIVATIONS RT2
2 RTn

2 OPEN QUESTIONS

Thm (Dzhafarov and Jockusch)

A set is RT1
2-encodable iff it is computable.

Input : a set S 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that S 6≤T G
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(F0,F1,X )
Initial segment Reservoir

� Fi is finite, X is infinite, max Fi < min X (Mathias condition)

� S 6≤T X (Weakness property)

� Fi ⊆ Ai (Combinatorics)
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Extension

(E0,E1,Y ) ≤ (F0,F1,X )

� Fi ⊆ Ei

� Y ⊆ X

� Ei \ Fi ⊆ X

Satisfaction

〈G0,G1〉 ∈ [F0,F1,X ]

� Fi ⊆ Gi

� Gi \ Fi ⊆ X

[E0,E1,Y ] ⊆ [F0,F1,X ]

31 / 50
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(F0,F1,X ) 
 ϕ(G0,G1)

Condition Formula

ϕ(G0,G1) holds for every 〈G0,G1〉 ∈ [F0,F1,X ]

32 / 50
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Input : a set S 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that S 6≤T G

ΦG0
e0 6= S ∨ ΦG1

e1 6= S

The set

c : c 
 (∃x) ΦG0
e0

(x) ↓6= S(x) ∨ ΦG0
e0

(x) ↑

∨ ΦG1
e1

(x) ↓6= S(x) ∨ ΦG1
e1

(x) ↑

 is dense
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IDEA: MAKE AN OVERAPPROXIMATION

“Can we find an extension for every instance of RT1
2?”

Given a condition c = (F0,F1,X ), let ψ(x ,n) be the formula

(∀B0tB1 = N)(∃i < 2)(∃Ei ⊆ X∩Bi)ΦFi∪Ei
ei

(x) ↓= n

ψ(x ,n) is Σ0,X
1
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Case 1: ψ(x ,n) holds

Letting Bi = Ai , there is an extension d ≤ c forcing

ΦG0
e0

(x) ↓= n ∨ ΦG1
e1

(x) ↓= n

Case 2: ψ(x ,n) does not hold

(∃B0 t B1 = N)(∀i < 2)(∀Ei ⊆ X ∩ Bi)ΦFi∪Ei
ei

(x) 6= n

The condition (F0,F1,X ∩ Bi) ≤ c forces

ΦG0
e0

(x) 6= n ∨ ΦG1
e1

(x) 6= n
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D = {(x ,n) : ψ(x ,n)}

Σ1 case

(∃x)(x ,1− S(x)) ∈ D

Then ∃d ≤ c ∃i < 2

d 
 ΦGi
ei

(x) ↓= 1− S(x)

Π1 case

(∃x)(x ,S(x)) 6∈ D

Then ∃d ≤ c ∃i < 2

d 
 ΦGi
ei

(x) 6= S(x)

Impossible case

(∀x)(x ,1− S(x)) 6∈ D

(∀x)(x ,S(x)) ∈ D

Then since D is X -c.e

S ≤T X �
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RAMSEY’S THEOREM

RTn
k

,r

Over n-tuples

Using k colors

Allows r colors
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Thm (Wang)

A set is RTn
k ,`-encodable iff it is computable for large `

(whenever ` is at least the nth Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is RTn
k ,`-encodable iff it is hyperarithmetic for small `

(whenever ` < 2n−1)

Thm (Cholak, P.)

A set is RTn
k ,`-encodable iff it is arithmetic for medium `
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RTn
k ,`-ENCODABLE SETS

RT1
k ,` `

≥ 1

RT2
k ,` `

1 ≥ 2

RT3
k ,` `

1− 3 4 ≥ 5

RT4
k ,` `

1− 7 8− 12 ? ≥ 14

hyp. arith. comp.
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Open questions
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An infinite set C is ~R-cohesive for some sets R0,R1, . . .
if for every i , either C ⊆∗ Ri or C ⊆∗ R i .

COH : Every collection of sets has a cohesive set.

A coloring f : [ω]2 → 2 is stable if limy f (x , y) exists for every x .

SRT2
2 : Every stable coloring of pairs admits an infinite

homogeneous set.
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RCA0 ` RT2
2 ↔ COH∧SRT2

2
(Cholak, Jockusch and Slaman)

� Given f : [N]2 → 2, define 〈Rx : x ∈ N〉 by Rx = {y : f (x , y) = 1}

� By COH, there is an ~R-cohesive set C = {x0 < x1 < . . . }
� f : [C]2 → 2 is stable

42 / 50
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RCA0 ` RT2
2 ↔ COH∧SRT2

2
(Cholak, Jockusch and Slaman)

Thm (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman)

RCA0 0 COH→ SRT2
2

Thm (Chong, Slaman and Yang)

RCA0 0 SRT2
2 → COH

Using a non-standard model containing only low sets.
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Does SRT2
2 imply COH

over standard models?

� Our analysis of SRT2
2 is based on Mathias forcing

� Mathias forcing produces cohesive sets

Does COH ≤c SRT2
2?

44 / 50
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COH admits a universal instance:

the primitive recursive sets

A set is p-cohesive if it is cohesive for the p.r. sets

Thm (Jockusch and Stephan)

A set is p-cohesive iff its jump is PA over ∅′

Thm (Jockusch and Stephan)

For every computable sequence of sets ~R and every
p-cohesive set C, C computes an ~R-cohesive set.

45 / 50
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SRT2
2 can be seen as a ∆0

2 instance of

the pigeonhole principle

� Given a stable computable coloring f : [ω]2 → 2

� Let A = {x : limy f (x , y) = 1}
� Every infinite set H ⊆ A or H ⊆ A computes an infinite

f -homogeneous set.

46 / 50
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Is there a set X such that
every infinite set H ⊆ X or H ⊆ X
has a jump of PA degree over ∅′?

Thm (Monin, P.)

Fix a non-∆0
2 set B. For every set X , there is an infinite set

H ⊆ X or H ⊆ X such that B is not ∆0,H
2 .

47 / 50
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CONCLUSION

Understanding Ramsey’s theorem requires understanding the
pigeonhole principle.

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are
often immediate consequences of their combinatorics.

We understand what the Ramsey-type problems compute, but
ignore what the jump of their solutions compute.
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Subsystems of second-order
arithmetic

Slicing the truth

49 / 50



MOTIVATIONS RT2
2 RTn

2 OPEN QUESTIONS

REFERENCES

Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman.
On the strength of Ramsey’s theorem for pairs.
Journal of Symbolic Logic, 66(01):1–55, 2001.

Carl G. Jockusch.
Ramsey’s theorem and recursion theory.
Journal of Symbolic Logic, 37(2):268–280, 1972.

Ludovic Patey.
The reverse mathematics of Ramsey-type theorems.
PhD thesis, Université Paris Diderot, 2016.
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