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MOTIVATIONS RT2 RTS OPEN QUESTIONS

PIGEON-OWL PRINCIPLE

If you put infinitely many pigeons into finitely many owls,
one owl must contain infinitely many pigeons.
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MOTIVATIONS RT2 RTS OPEN QUESTIONS
! !

RAMSEY’S THEOREM

[X]" is the set of unordered n-tuples of elements of X
A k-coloring of [X]|"isamap f: [X]" — k

A set H C X is homogeneous for fif [f([H]")| = 1.

RTn Every k-coloring of [N]" admits
an infinite homogeneous set.
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MOTIVATIONS RT2 RTS OPEN QUESTIONS
! !

PIGEONHOLE PRINCIPLE

RT1 Every k-partition of N admits
K an infinite part.

01 2 3 4 2

5 6 7 8 9 5 6 9
10 11 12 13 14 —> 12

15 16 17 18 19 15 17 18
20 21 22 23 24 24

25 26 27 28 ... 26 27
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MOTIVATIONS RT2 RTS OPEN QUESTIONS

RAMSEY’S THEOREM FOR PAIRS

RT2 Every k-coloring of the infinite clique admits
an infinite monochromatic subclique.
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Motivations




MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.
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REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.

RCAFA« T

in a very weak theory RCA(
capturing computable mathematics
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RCA

Robinson arithmetics

m+1#0
m+1=n+1-—=m=n
-(m<0)
m<n+1(m<nvm=n)

¥¢ induction scheme

p(0) AVN(p(n) = w(n+1))
= Yny(n)

is 30
where ¢(n) is X3

m+0=m
m+(n+1)=(m+n)+1
mx0=0
mx(n+1)=(mxn)+m

A9 comprehension scheme

vn(p(n) < 4(n))
= 3XVn(n e X < ¢(n))

where ¢(n) is =0 with free X, and v
is 9.
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RTS

OPEN QUESTIONS

REVERSE MATHEMATICS

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

niCA
ATR
ACA
WKL

RCAy
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MOTIVATIONS RT3 RTS OPEN QUESTIONS

REVERSE MATHEMATICS

Mathematics are MnicA
computationally \3
ATR
very structured .
ACA
Almost every theorem is x/ 4
empirically equivalent to one RT3 WKL
among five big subsystems. \ 1
RCA,

Except for Ramsey’s theory...
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OOOOOOOOOO RT3 RTS OPEN QUESTIONS

The combinatorial features of
RT, reveal the computational
features of RT%
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

An infinite set C is R-cohesive for some sets Ro, Ry, . ..
if for every i, either C C* R or C C* R;.

COH : Every collection of sets has a cohesive set.

COH is the bridge
between RT} and RT3
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PROOF OF RT3

» Letf: [w]?> — 2 be a coloring
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

PROOF OF RT3

» Letf: [w]?> — 2 be a coloring

» Define (Rx: x e N)by Ry ={y : f(x,y) =1}

» By COH, there is an R-cohesive set C = {xp < x; < ...}
» Let A= {n:limycc f(Xn, Xt)}

» By RT;, there an infinite set HC Aor HC A

» Compute a homogeneous set using C and H
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

To analyse computable instances of RT3,
we use computable instances of COH
and non-computable instances of RT}

... and COH is computationally very weak
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
:

AVOIDANCE

Let C C w* be a closed set in the Baire space

A problem P avoids C if whenever C has no Z-computable
member, for every Z-computable instance X of P, there is a
solution Y such that C has no Z & Y-computable member.

A problem P strongly avoids C if it avoids C for arbitrary
instances of P.
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MOTIVATIONS RT2 RT3 OPEN QUESTIONS
: :

EXAMPLES

» Avoiding a cone: Cx = {X}

Thm (Seetapun)

RT3 avoids cones

» Avoiding dominating functions: Given f : w — w,
Cr={9:9=1}

RT3 avoids dominating one function
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MOTIVATIONS RTg RTg OPEN QUESTIONS
! !

MORE EXAMPLES

> RT% avoids cones (Seetapun, 1995)
» RT) strongly avoids cones (Dzhafarov and J., 2009)
» WKL avoids dominating functions (J. and Soare, 1972)
» WKL avoids cones (J. and Soare, 1972)
» WKL does not avoid PA degrees (Solovay)
» WWKL avoids PA degrees (KuCera, 1985)
» RT3 avoids PA degrees (Liu, 2012)
> RT; strongly avoids PA degrees (Liu, 2012)
> .
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OOOOOOOOOO RT3 RTS OPEN QUESTIONS

If P avoids C but Q does not then
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MOTIVATIONS RT2 RT3 OPEN QUESTIONS
: :

The combinatorial features of RT},
reveal the computational features of RT2

COH avoids every closed set

RT2 avoids a closed set iff RT} strongly avoids it
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MOTIVATIONS RT3 RTS OPEN QUESTIONS

The computational analysis of RTS
with more colors ressembles the
analysis of RT,
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MOTIVATIONS RT3 RTS OPEN QUESTIONS

Fix a problem P.

A set Sis P-encodable if there is an instance of
P such that every solution computes S.

What sets can encode an
instance of RT,?
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

A function f is a modulus of a set S if every function
dominating f computes S.

A set Sis computably encodable if for every infinite set X,
there is an infinite subset Y C X computing S.

Given a set S, TFAE
» S is computably encodable
» S admits a modulus
» S is hyperarithmetic

25/50



MOTIVATIONS RT3 RT3 OPEN QUESTIONS

Thm (Jockusch)

A set is RTg-encodable for some n > 2 iff it is hyperarithmetic.
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MOTIVATIONS RT3 RTJ OPEN QUESTIONS
! !

A set is RTg-encodable for some n > 2 iff it is hyperarithmetic.

Proof (=).

Let g : [w]” — k be a coloring whose homogeneous sets
compute S.

Since every infinite set has a homogeneous subset,
S is computably encodable.

Thus S is hyperarithmetic. O
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MOTIVATIONS RT3 RTJ OPEN QUESTIONS
! !

A set is RT;-encodable for some n > 2 iff it is hyperarithmetic.

Proof (<).

Let S be hyperarithmetic with modulus ps.
Define g : [w]? — 2 by g(x,y) = 1iff y > pg(x).
Let H= {xo < x4 < ...} be an infinite g-homogeneous set.

The function py(n) = x, dominates g, hence computes S. [
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2
RT3 RTS

EEEEEEEEEEEE

The encodability power
of RT}; comes from the

sparsity

of its homogeneous sets.
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MOTIVATIONS RT3 RTS OPEN QUESTIONS

What about RT,?

0O 1 2 3 4

5 6 7 8 9 . .
Sparsity of red implies

10 11 12 13 14 non-sparsity of blue

15 16 17 18 19 and conversely.

20 21 22 23 24
25 26 27 28 ...
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Thm (Dzhafarov and Jockusch)

A set is RT3-encodable iff it is computable.
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

A set is RT}-encodable iff it is computable.

Input : aset S £7 (0 and a 2-partition Ay LI Ay = N

Output : an infinite set G C A; suchthat S £ G
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

Fo, F1, X

/7 \

Initial segment Reservoir

» F;is finite, X is infinite, max F; < min X (Mathias condition)
» SLr X (Weakness property)
» F; CA (Combinatorics)
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

Extension Satisfaction
(Eo, E1,Y) < (Fo, F1,X) (Go, Gy) € [Fo, F1,X]
> Fi CE » FiC G
» YCX » G\FCX
» E\NFCX

[E07E17Y] - [F07F17X]
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

(Fo, F1, X) IF ¢(Go, Gi1)
4 \

Condition Formula

¢(Go, G1) holds for every (Go, G1) € [Fo, Fi, X]
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: :

Input : aset S £7 (0 and a 2-partition Ay LI Ay =N
Output : aninfinite set G C A; suchthat S £+ G
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

Input : aset S £7 (0 and a 2-partition Ay LI Ay =N
Output : aninfinite set G C A; suchthat S £+ G

O £ SV O £ S

{c ek (3x) O(x) L# S(x) VP (x) 1 }
The set is dense

VoG (x) 1 S(x) v &g (x) 1
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

IDEA: MAKE AN OVERAPPROXIMATION

“Can we find an extension for every instance of RT,?”

Given a condition ¢ = (Fg, F1, X), let ¢)(x, n) be the formula

(VBoUB;y = N)(3i < 2)(3E; € XnB))®L 5(x) |=n

. <0.X
P(x,n)is X
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MOTIVATIONS RT3 RTS OPEN QUESTIONS
: :

Case 1: ¥(x, n) holds

Letting B; = A;, there is an extension d < ¢ forcing

d>eGo°(x) l=nv d>g11 (x)l=n

Case 2: ¥(x, n) does not hold
(3Bo Ui By = N)(Vi < 2)(VE; € X N B))®55 (x) # n
The condition (Fy, F1, X N B;) < c forces

O3 (x) #nV OS (x) # n
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D = {(x,n) : (x. n)}

Y| case
(IX)(x,1-=8(x)) eD

Then3dd <c3di<?2
d - g (x) |=1 - S(x)

My case
(3x)(x, 8(x)) ¢ D

Then3dd <cdi<?2
d - &Z(x) # S(x)

Impossible case
(vx)(x,1 = S(x)) ¢ D
(Vx)(x, S(x)) € D

Then since D is X-c.e

S<r X%
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RAMSEY’S THEOREM

Over n-tuples
Using k colors
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: :

RAMSEY’S THEOREM

Over n-tuples

I = I k AIIowsrcoIors

Usmg k colors
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MOTIVATIONS RT3 RT3 OPEN QUESTIONS

Thm (Wang)

A set is RT ,-encodable iff it is computable for large ¢
(whenever ¢ is at least the nth Schréder Number)
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MOTIVATIONS RT3 RT3 OPEN QUESTIONS

Thm (Wang)

A setis RTZ,g-encodabIe iff it is computable for large ¢
(whenever ¢ is at least the nth Schréder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is RT ,-encodable iff it is hyperarithmetic for small £
(whenever £ < 27— 1)

Thm (Cholak, P.)

A set is RT} ,-encodable iff it is arithmetic for medium ¢
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MOTIVATIONS RT3 RTJ OPEN QUESTIONS
! !

RTy ,~ENCODABLE SETS

RTh, y 0
> 1

RT2: B y s
1 >2

T, 1,
1-3 4 >5

RTy. [ i,

1-7 8-12 72 >14

B hyo. arith. comp.
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MOTIVATIONS RT2 RTS OPEN QUESTIONS
! !

An infinite set C is R-cohesive for some sets Ro, Ry, . ..
if for every i, either C C* R; or C C* R,.

COH : Every collection of sets has a cohesive set.

A coloring f : [w]? — 2 is stable if lim, f(x, y) exists for every x.

SRT§ : Every stable coloring of pairs admits an infinite
homogeneous set.
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MOTIVATIONS RT2 RTS OPEN QUESTIONS
! !

RCA, - RT3 <> COH A SRT3

(Cholak, Jockusch and Slaman)

» Given f: [N]? — 2, define (Rx : x e N) by Ry = {y : f(x,y) = 1}
» By COH, there is an R-cohesive set C = {xo < X; < ...}
» f:[C]? — 2is stable
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MOTIVATIONS RT3 RT3 OPEN QUESTIONS

RCA, - RT3 <> COH A SRT3

(Cholak, Jockusch and Slaman)

Thm (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman)
RCA, ¥ COH — SRT3

Thm (Chong, Slaman and Yang)
RCA, ¥ SRT5 — COH

Using a non-standard model containing only low sets.
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MOTIVATIONS RT2 RTS OPEN QUESTIONS

Does SRT5 imply COH
over standard models?

» Our analysis of SRT3 is based on Mathias forcing
» Mathias forcing produces cohesive sets

Does COH <. SRT3?
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MOTIVATIONS RT3 RT] OPEN QUESTIONS
! !

COH admits a universal instance:
the primitive recursive sets

A set is p-cohesive if it is cohesive for the p.r. sets

A set is p-cohesive iff its jump is PA over ('

For every computable sequence of sets R and every
p-cohesive set C, C computes an R-cohesive set.
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MOTIVATIONS RT2 RTS OPEN QUESTIONS

SRTS3 can be seen as a AJ instance of
the pigeonhole principle

» Given a stable computable coloring f : [w]? — 2
» Let A= {x:lim, f(x,y) =1}

» Every infinite set H C Aor H C A computes an infinite
f-homogeneous set.
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MOTIVATIONS RT3 RT] OPEN QUESTIONS
! !

Is there a set X such that o
every infinteset HC XorHC X
has a jump of PA degree over ('?

Fix a non-AJ set B. For every set X, there is an infinite set
H C X or H C X such that Bis not A>".
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MOTIVATIONS RT2 RTS OPEN QUESTIONS
!

CONCLUSION

Understanding Ramsey’s theorem requires understanding the
pigeonhole principle.

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are
often immediate consequences of their combinatorics.

We understand what the Ramsey-type problems compute, but
ignore what the jump of their solutions compute.
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PERSPECTIVES IN LoGic

Stephen G. Simpson

SUBSYSTEMS OF SECOND
ORDER ARITHMETIC

SECOND EDITION

Subsystems of second-order
arithmetic

[ rp—

Lctur Notes Seres, Instiue for Mathematical Scences,
National Universty of Singapors

Denis R Hirschfeldt

SLIEINE THE TRUTH

On the Computable and neverse
b ics of Combi ial Pri

o et Cheag « 0 Fany e A Shiman » WBigh Waain < oe Yong
[——

Slicing the truth
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