Never underestimate pigeons

 RT_2^n

 RT_2^2

Ludovic PATEY

June 12, 2017

PIGEON-OWL PRINCIPLE

If you put infinitely many pigeons into finitely many owls, one owl must contain infinitely many pigeons.

RAMSEY'S THEOREM

- $[X]^n$ is the set of unordered *n*-tuples of elements of X
- A *k*-coloring of $[X]^n$ is a map $f : [X]^n \to k$
- A set $H \subseteq X$ is homogeneous for f if $|f([H]^n)| = 1$.

 $\begin{array}{ll} \mathsf{RT}^n_k & \text{Every } k \text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

PIGEONHOLE PRINCIPLE

RT^1_k Every *k*-partition of \mathbb{N} admits an infinite part.

RAMSEY'S THEOREM FOR PAIRS

 RT_2^2

RT_k^2 Every *k*-coloring of the infinite clique admits an infinite monochromatic subclique.

Motivations

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

RTⁿ

REVERSE MATHEMATICS

 RT_2^2

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

$\mathsf{RCA}_0 \vdash \textit{\textbf{A}} \leftrightarrow \textit{\textbf{T}}$

in a very weak theory RCA₀ capturing computable mathematics

RCA₀

Robinson arithmetics

$$m + 1 \neq 0$$

 $m + 1 = n + 1 \rightarrow m = n$
 $\neg (m < 0)$
 $m < n + 1 \leftrightarrow (m < n \lor m = n)$

 RT_2^2

$$m + 0 = m$$

 $m + (n + 1) = (m + n) + 1$
 $m \times 0 = 0$
 $m \times (n + 1) = (m \times n) + m$

Σ_1^0 induction scheme

 $\begin{array}{l} \varphi(\mathbf{0}) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \\ \Rightarrow \forall n\varphi(n) \end{array}$

where $\varphi(n)$ is Σ_1^0

Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \Rightarrow \exists X \forall n(n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is Σ_1^0 with free *X*, and ψ is Π_1^0 .

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems. П¦СА ATR ACA WKL **RCA**₀

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems. П¹CA ATR ACA WKL RCA₀

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...

RT_2^1 and RT_2^2

The combinatorial features of RT_k^1 reveal the computational features of RT_k^2

RTⁿ

An infinite set *C* is \vec{R} -cohesive for some sets R_0, R_1, \ldots if for every *i*, either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R}_i$.

RTⁿ

COH : Every collection of sets has a cohesive set.

 RT_2^2

COH is the bridge between RT_2^1 and RT_2^2

▶ Let $f : [\omega]^2 \rightarrow 2$ be a coloring

- Define $\langle R_x : x \in \mathbb{N} \rangle$ by $R_x = \{y : f(x, y) = 1\}$
- ▶ By COH, there is an \vec{R} -cohesive set $C = \{x_0 < x_1 < ...\}$

$$\blacktriangleright \text{ Let } A = \{n : \lim_{t \in C} f(x_n, x_t)\}$$

- ▶ By RT_2^1 , there an infinite set $H \subseteq A$ or $H \subseteq \overline{A}$
- ▶ Compute a homogeneous set using *C* and *H*

- ▶ Let $f : [\omega]^2 \rightarrow 2$ be a coloring
- Define $\langle R_x : x \in \mathbb{N} \rangle$ by $R_x = \{y : f(x, y) = 1\}$
- ▶ By COH, there is an \vec{R} -cohesive set $C = \{x_0 < x_1 < ...\}$

• Let
$$A = \{n : \lim_{t \in C} f(x_n, x_t)\}$$

- ▶ By RT_2^1 , there an infinite set $H \subseteq A$ or $H \subseteq \overline{A}$
- ▶ Compute a homogeneous set using *C* and *H*

- ▶ Let $f : [\omega]^2 \rightarrow 2$ be a coloring
- Define $\langle R_x : x \in \mathbb{N} \rangle$ by $R_x = \{y : f(x, y) = 1\}$
- ▶ By COH, there is an \vec{R} -cohesive set $C = \{x_0 < x_1 < ...\}$
- Let $A = \{n : \lim_{t \in C} f(x_n, x_t)\}$
- ▶ By RT_2^1 , there an infinite set $H \subseteq A$ or $H \subseteq \overline{A}$
- ▶ Compute a homogeneous set using *C* and *H*

- Let $f: [\omega]^2 \to 2$ be a coloring
- Define $\langle R_x : x \in \mathbb{N} \rangle$ by $R_x = \{y : f(x, y) = 1\}$
- ▶ By COH, there is an \vec{R} -cohesive set $C = \{x_0 < x_1 < ...\}$

• Let
$$A = \{n : \lim_{t \in C} f(x_n, x_t)\}$$

- ▶ By RT_2^1 , there an infinite set $H \subseteq A$ or $H \subseteq \overline{A}$
- ▶ Compute a homogeneous set using *C* and *H*

- Let $f: [\omega]^2 \to 2$ be a coloring
- Define $\langle R_x : x \in \mathbb{N} \rangle$ by $R_x = \{y : f(x, y) = 1\}$
- ▶ By COH, there is an \vec{R} -cohesive set $C = \{x_0 < x_1 < ...\}$

• Let
$$A = \{n : \lim_{t \in C} f(x_n, x_t)\}$$

- ▶ By RT_2^1 , there an infinite set $H \subseteq A$ or $H \subseteq \overline{A}$
- ▶ Compute a homogeneous set using *C* and *H*

- Let $f: [\omega]^2 \to 2$ be a coloring
- Define $\langle R_x : x \in \mathbb{N} \rangle$ by $R_x = \{y : f(x, y) = 1\}$
- ▶ By COH, there is an \vec{R} -cohesive set $C = \{x_0 < x_1 < ...\}$

• Let
$$A = \{n : \lim_{t \in C} f(x_n, x_t)\}$$

- ▶ By RT_2^1 , there an infinite set $H \subseteq A$ or $H \subseteq \overline{A}$
- ► Compute a homogeneous set using C and H

To analyse computable instances of RT_2^2 , we use computable instances of COH and non-computable instances of RT_2^1

RTⁿ

 RT_2^2

... and COH is computationally very weak

Let $\mathcal{C} \subseteq \omega^{\omega}$ be a closed set in the Baire space

Definition

A problem P avoids C if whenever C has no Z-computable member, for every Z-computable instance X of P, there is a solution Y such that C has no $Z \oplus Y$ -computable member.

A problem P strongly avoids C if it avoids C for arbitrary instances of P.

EXAMPLES

• Avoiding a cone:
$$C_X = \{X\}$$

 RT_2^2

RTⁿ

• Avoiding dominating functions: Given $f : \omega \to \omega$, $C_f = \{g : g \ge f\}$

Thm (P.)

 RT_2^2 avoids dominating one function

MORE EXAMPLES

- ► RT²₂ avoids cones
- RT¹₂ strongly avoids cones
- WKL avoids dominating functions

- WKL avoids cones
- WKL does not avoid PA degrees
- WWKL avoids PA degrees
- ► RT²₂ avoids PA degrees
- RT¹₂ strongly avoids PA degrees

- (Seetapun, 1995)
- (Dzhafarov and J., 2009)
 - (J. and Soare, 1972)
 - (J. and Soare, 1972)
 - (Solovay)
 - (Kučera, 1985)
 - (Liu, 2012)
 - (Liu, 2012)

If P avoids C but Q does not then $RCA_0 \not\vdash P \to Q$

 RT_2^n

The combinatorial features of RT_k^1 reveal the computational features of RT_k^2

RTⁿ

Thm (P.)

COH avoids every closed set

Thm (P.)

 RT_k^2 avoids a closed set iff RT_k^1 strongly avoids it

RT_2^1 and RT_2^n

The computational analysis of RT_2^n with more colors ressembles the analysis of RT_2^1

 RT_2^n

MOTIVATIONS	RT_2^2	RT ⁿ ₂	OPEN QUESTIONS

Fix a problem P.

A set *S* is P-encodable if there is an instance of P such that every solution computes *S*.

What sets can encode an instance of RT_k^n ?

A function f is a modulus of a set S if every function dominating f computes S.

RT₂²

A set *S* is computably encodable if for every infinite set *X*, there is an infinite subset $Y \subseteq X$ computing *S*.

RTⁿ

Thm (Solovay, Groszek and Slaman)

Given a set S, TFAE

- ► S is computably encodable
- ► S admits a modulus
- ► *S* is hyperarithmetic

Motivations	RT_2^2	RT ₂ ⁿ	OPEN QUESTIONS

Thm (Jockusch)

A set is RT_k^n -encodable for some $n \ge 2$ iff it is hyperarithmetic.

Motivations	RT ₂ ²	RT ₂ ⁿ	OPEN QUESTIONS

Thm (Jockusch)

A set is RT_k^n -encodable for some $n \ge 2$ iff it is hyperarithmetic.

Proof (\Rightarrow).

Let $g : [\omega]^n \to k$ be a coloring whose homogeneous sets compute *S*.

Since every infinite set has a homogeneous subset, *S* is computably encodable.

Thus S is hyperarithmetic.

Motivations	RT ₂ ²	RT ⁿ ₂	OPEN QUESTIONS

Thm (Jockusch)

A set is RT_k^n -encodable for some $n \ge 2$ iff it is hyperarithmetic.

Proof (⇐).

Let *S* be hyperarithmetic with modulus μ_S .

Define $g : [\omega]^2 \to 2$ by g(x, y) = 1 iff $y > \mu_S(x)$.

Let $H = \{x_0 < x_1 < ...\}$ be an infinite *g*-homogeneous set.

The function $p_H(n) = x_n$ dominates μ_S , hence computes *S*.

The encodability power of RT_k^n comes from the **sparsity**

 RT_2^n

 RT_2^2

of its homogeneous sets.

What about RT_k^1 ?

 RT_2^n

0 1 2 3 4

 RT_2^2

- 5 6 7 8 9 10 11 12 13 14
- 10 11 12 15 14
- 15 16 17 18 19
- 20 21 22 23 **24**
- 25 26 27 28

Sparsity of red implies non-sparsity of blue and conversely.

Motivations	RT_2^2	RT ⁿ ₂	OPEN QUESTIONS

Thm (Dzhafarov and Jockusch)

A set is RT_2^1 -encodable iff it is computable.

Motivations	RT_2^2	RT ₂ ⁿ	OPEN QUESTIONS

Thm (Dzhafarov and Jockusch)

A set is RT_2^1 -encodable iff it is computable.

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$ Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

 (F_0, F_1, X)

 RT_2^n

Initial segment

 RT_2^2

Reservoir

- F_i is finite, X is infinite, max $F_i < \min X$
- ► $S \not\leq_T X$
- ► $F_i \subseteq A_i$

(Mathias condition) (Weakness property) (Combinatorics)

Motivations	RT_2^2	RT ⁿ ₂	OPEN QUESTIC

Extension

- $(\boldsymbol{E}_0, \boldsymbol{E}_1, \boldsymbol{Y}) \leq (\boldsymbol{F}_0, \boldsymbol{F}_1, \boldsymbol{X})$
 - ► $F_i \subseteq E_i$
 - ► $Y \subseteq X$
 - ► $E_i \setminus F_i \subseteq X$

Satisfaction

- $\langle \textbf{G}_0, \textbf{G}_1 \rangle \in [\textbf{F}_0, \textbf{F}_1, X]$
- ► $F_i \subseteq G_i$
- ► $G_i \setminus F_i \subseteq X$

$[\textbf{\textit{E}}_0, \textbf{\textit{E}}_1, \textbf{\textit{Y}}] \subseteq [\textbf{\textit{F}}_0, \textbf{\textit{F}}_1, \textbf{\textit{X}}]$

Motivations	RT_2^2	RT ⁿ ₂	OPEN QUESTIONS

 $\varphi(G_0, G_1)$ holds for every $\langle G_0, G_1 \rangle \in [F_0, F_1, X]$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

 RT_2^n

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

 RT_2^n

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

$$\Phi_{e_0}^{\mathsf{G}_0}
eq S \lor \Phi_{e_1}^{\mathsf{G}_1}
eq S$$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

 RT_2^n

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

$$\Phi_{e_0}^{\mathsf{G}_0}
eq S \lor \Phi_{e_1}^{\mathsf{G}_1}
eq S$$

The set
$$\begin{cases} c: c \Vdash (\exists x) \quad \Phi_{e_0}^{G_0}(x) \downarrow \neq S(x) \lor \Phi_{e_0}^{G_0}(x) \uparrow \\ \lor \quad \Phi_{e_1}^{G_1}(x) \downarrow \neq S(x) \lor \Phi_{e_1}^{G_1}(x) \uparrow \end{cases} \text{ is dense}$$

IDEA: MAKE AN OVERAPPROXIMATION

"Can we find an extension for every instance of RT₂?"

Given a condition $c = (F_0, F_1, X)$, let $\psi(x, n)$ be the formula

 $(\forall B_0 \sqcup B_1 = \mathbb{N})(\exists i < 2)(\exists E_i \subseteq X \cap B_i) \Phi_{e_i}^{F_i \cup E_i}(x) \downarrow = n$

$$\psi(\boldsymbol{x},\boldsymbol{n})$$
 is $\Sigma_1^{0,X}$

MOTIVATIONS RT2 RT2 OPEN QUESTIONS

Case 1: $\psi(x, n)$ holds

Letting $B_i = A_i$, there is an extension $d \le c$ forcing

$$\Phi_{e_0}^{\mathbf{G}_0}(x) \downarrow = n \lor \Phi_{e_1}^{\mathbf{G}_1}(x) \downarrow = n$$

Case 2: $\psi(x, n)$ does not hold $(\exists B_0 \sqcup B_1 = \mathbb{N})(\forall i < 2)(\forall E_i \subseteq X \cap B_i)\Phi_{e_i}^{F_i \cup E_i}(x) \neq n$ The condition $(F_0, F_1, X \cap B_i) \leq c$ forces $\Phi_{e_0}^{G_0}(x) \neq n \lor \Phi_{e_i}^{G_1}(x) \neq n$

$$\mathcal{D} = \{(\mathbf{x}, \mathbf{n}) : \psi(\mathbf{x}, \mathbf{n})\}$$

Σ_1 case	Π_1 case	Impossible case
$(\exists x)(x,1-\mathcal{S}(x))\in\mathcal{D}$	$(\exists x)(x, S(x)) ot\in \mathcal{D}$	$(orall x)(x,1-\mathcal{S}(x)) ot\in\mathcal{D}$ $(orall x)(x,\mathcal{S}(x))\in\mathcal{D}$
Then $\exists d \leq c \exists i < 2$	Then $\exists d \leq c \; \exists i < 2$	Then since \mathcal{D} is X-c.e
$U \Vdash \Psi_{e_i}(x) \downarrow = 1 - S(x)$	$u \Vdash \Psi_{e_i}(x) \neq S(x)$	$\mathbf{S} \geq 7 \mathbf{X} 7$

RAMSEY'S THEOREM

RAMSEY'S THEOREM

Motivations	RT_2^2	RT ₂ ⁿ	OPEN QUESTIONS

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

 RT_2^n

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

 RT_2^2

A set is $RT^n_{k,\ell}$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

RTⁿ

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

RT₂²

A set is $RT^n_{k,\ell}$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Cholak, P.)

A set is $RT_{k,\ell}^n$ -encodable iff it is arithmetic for medium ℓ

$RT^n_{k,\ell}$ -ENCODABLE SETS

Open questions

An infinite set *C* is \vec{R} -cohesive for some sets R_0, R_1, \ldots if for every *i*, either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R}_i$.

RTⁿ

COH : Every collection of sets has a cohesive set.

RT₂²

A coloring $f : [\omega]^2 \to 2$ is stable if $\lim_{y} f(x, y)$ exists for every *x*.

 SRT_2^2 : Every stable coloring of pairs admits an infinite homogeneous set.

$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{COH} \wedge \mathsf{SRT}_2^2$

RTⁿ

 RT_2^2

(Cholak, Jockusch and Slaman)

- Given $f : [\mathbb{N}]^2 \to 2$, define $\langle R_x : x \in \mathbb{N} \rangle$ by $R_x = \{y : f(x, y) = 1\}$
- ▶ By COH, there is an \vec{R} -cohesive set $C = \{x_0 < x_1 < ...\}$
- ▶ $f : [C]^2 \rightarrow 2$ is stable

$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{COH} \wedge \mathsf{SRT}_2^2$

RTⁿ

(Cholak, Jockusch and Slaman)

Thm (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman)

 RT_2^2

 $\mathsf{RCA}_0 \nvdash \mathsf{COH} \to \mathsf{SRT}^2_2$

Thm (Chong, Slaman and Yang)

 $\mathsf{RCA}_0 \nvDash \mathsf{SRT}_2^2 \to \mathsf{COH}$

Using a non-standard model containing only low sets.

Does SRT²₂ imply COH over standard models?

RTⁿ

- ► Our analysis of SRT²₂ is based on Mathias forcing
- ► Mathias forcing produces cohesive sets

 RT_2^2

Does COH \leq_c SRT₂²?

COH admits a universal instance: the primitive recursive sets

RTⁿ

A set is p-cohesive if it is cohesive for the p.r. sets

Thm (Jockusch and Stephan)

A set is p-cohesive iff its jump is PA over \emptyset'

RT₂²

Thm (Jockusch and Stephan)

For every computable sequence of sets \vec{R} and every p-cohesive set *C*, *C* computes an \vec{R} -cohesive set.

SRT_2^2 can be seen as a Δ_2^0 instance of the pigeonhole principle

RTⁿ

• Given a stable computable coloring $f : [\omega]^2 \to 2$

• Let
$$A = \{x : \lim_{y \to y} f(x, y) = 1\}$$

 RT_2^2

► Every infinite set H ⊆ A or H ⊆ A computes an infinite f-homogeneous set.

Is there a set X such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ has a jump of PA degree over \emptyset' ?

RTⁿ

RT₂²

Thm (Monin, P.)

Fix a non- Δ_2^0 set *B*. For every set *X*, there is an infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ such that *B* is not $\Delta_2^{0,H}$.

CONCLUSION

Understanding Ramsey's theorem requires understanding the pigeonhole principle.

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are often immediate consequences of their combinatorics.

We understand what the Ramsey-type problems compute, but ignore what the jump of their solutions compute.

 RT_2^n

SLICING THE TRUTH

On the Computable and Reverse Mathematics of Combinatorial Principles

látur: Chitet Chong • Qi Feng • Theodore & Slamon • W Hugh Weadin • Yae Yang Copyrighted Material

Subsystems of second-order arithmetic

Slicing the truth

REFERENCES

Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. <u>Journal of Symbolic Logic</u>, 66(01):1–55, 2001.

RTⁿ

Carl G. Jockusch.

Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–280, 1972.

 RT_2^2

Ludovic Patey.

The reverse mathematics of Ramsey-type theorems. PhD thesis, Université Paris Diderot, 2016.

Wei Wang.

Some logically weak Ramseyan theorems. Advances in Mathematics, 261:1–25, 2014.