The strength of the thin set theorems in reverse mathematics

Ludovic PATEY

UC Berkeley

March 4, 2017

RAMSEY'S THEOREM

$\begin{array}{ll} \mathsf{RT}_k^n & \text{Every } k\text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

REVERSE MATHEMATICS

Q is at least as hard as P if $\mathsf{RCA}_0 \vdash \mathsf{Q} \to \mathsf{P}$

in a very weak theory RCA₀ capturing computable mathematics

(Harvey Friedman, 1974)

Turing ideal \mathcal{M} ► $(\forall X \in \mathcal{M})(\forall Y \leq_T X)[Y \in \mathcal{M}]$ ► $(\forall X, Y \in \mathcal{M})[X \oplus Y \in \mathcal{M}]$

Examples

- $\blacktriangleright \{X : X \text{ is computable } \}$
- $\{X : X \leq_T A \land X \leq_T B\}$ for some sets *A* and *B*

Let \mathcal{M} be a Turing ideal and P,Q be problems.

Satisfaction $\mathcal{M} \models \mathsf{P}$

if every P-instance in \mathcal{M} has a solution in \mathcal{M} .

Computable entailment

 $\mathsf{P}\models_{c}\mathsf{Q}$

if every Turing ideal satisfying P satisfies Q.

Fix two problems P and Q.

How to prove that $\mathsf{P} \not\models_c \mathsf{Q}$?

Build a Turing ideal \mathcal{M} such that

$$\blacktriangleright \mathcal{M} \models \mathsf{P}$$

►
$$\mathcal{M} \not\models \mathsf{Q}$$

A weakness property is a collection of sets closed downwards under the Turing reducibility.

Examples

- $\blacktriangleright \{X : X \text{ is low}\}$
- $\{X : A \not\leq_T X\}$ for some set A
- $\{X : X \text{ is hyperimmune-free}\}$

Fix a weakness property \mathcal{W} .

A problem P preserves W if for every $Z \in W$, every *Z*-computable P-instance *X* has a solution *Y* such that $Y \oplus Z \in W$

Lemma *If* P *preserves* W *but* Q *does not, then* $P \not\models_c Q$

RAMSEY'S THEOREM

ACA: $(\forall X)(\exists Y)Y = X'$

$\mathsf{ACA} \models_c \mathsf{RT}_k^n$

whenever $n \ge 1$.

(Jockusch, 1972)

$\mathsf{RT}^n_k \models_c \mathsf{ACA}$

whenever $n \ge 3$. (Jockusch, 1972)

$\mathsf{RT}_k^2 \not\models_c \mathsf{ACA}$

whenever $n, k \ge 1$.

(Seetapun, 1995)

A problem P avoids cones if it preserves $W = \{X : A \not\leq_T X\}$ for every set *A*.

- ► RT_k^2 avoids cones
- ► ACA does not avoid cones

WKL: Every infinite binary tree has an infinite path.

WKL $\not\models_c \mathsf{RT}_k^2$

whenever $k \ge 2$. (Jockusch, 1972)

 $\mathsf{RT}_k^2 \not\models_c \mathsf{WKL}$

whenever $k \ge 1$. (Liu, 2012)

$\mathsf{RT}_{k}^{2} \not\models_{\mathcal{C}} \mathsf{WKL}$ whenever $k \ge 1$. (Liu, 2012)

A problem **P** avoids **P**A if it preserves $W = \{X : X \text{ is not PA} \}$.

- ► RT_k^2 avoids PA
- ► WKL does not avoid PA

Over computable entailment

RAMSEY'S THEOREM

Over *n*-tuples \mathbf{RT}_k^n Using *k* colors

RAMSEY'S THEOREM

THIN SET THEOREM

$\mathsf{TS}_k^n \not\models_c \mathsf{ACA}$

for *k* is large enough.

(Wang, 2014)

A problem P avoids cones if it preserves $W = \{X : A \not\leq_T X\}$ for every set *A*.

- TS_k^n avoids cones when k is sufficiently large
- ► ACA does not avoid cones

$\mathsf{TS}_{k^s}^{ns+1}\models_c \mathsf{TS}_k^{n+1}$

$\mathsf{TS}_{2^n}^{n+2}\models_c\mathsf{ACA}$

(Wang, Dorais, Dzhafarov, Hirst, Mileti, Shafer, 2015)

Tuples	Cone avoidance	Computes Ø'
TS_k^2	$k \ge 2$	never
TS_k^3	$k \ge 3$	<i>k</i> = 2
TS_k^4	$k \ge 6$	$k \leq 4$

(Jockusch, Wang, Dorais, Dzhafarov, Hirst, Mileti, Shafer, Cholak, P.)

Does TS_5^4 admit cone avoidance?

 $\mathsf{TS}_{k+1}^2 \not\models_c \mathsf{TS}_k^2$

whenever $k \ge 2$.

(P, 2016)

A problem P preserves *k* hyperimmunities if it preserves $W = \{X : \forall i < k, A_i \text{ is } X\text{-hyperimmune }\}$ for every *k*-tuple of sets A_0, \ldots, A_{k-1} .

- TS_{k+1}^2 preserves k hyperimmunities
- TS_k^2 does not preserve *k* hyperimmunities

$$\mathsf{TS}^n_\ell \not\models_c \mathsf{TS}^2_k$$

whenever $\ell \gg k, n$.

(P., 2016)

A problem P preserves *k* hyperimmunities if it preserves $W = \{X : \forall i < k, A_i \text{ is } X\text{-hyperimmune }\}$ for every *k*-tuple of sets A_0, \ldots, A_{k-1} .

When $\ell \gg k, n$, TS^n_{ℓ} preserves *k* hyperimmunities

$\mathsf{TS}_k^n \not\models_{\mathcal{C}} \mathsf{WKL}$ for *k* is large enough. (P., 2016)

A problem P avoids PA if it preserves $W = \{X : X \text{ is not PA} \}$.

- ▶ TS_k^n avoids PA when *k* is sufficiently large
- ► WKL does not avoid PA

Over computable entailment

TS^{*n*} For every coloring $f : [\mathbb{N}]^n \to \mathbb{N}$, there is an infinite set *H* such that $f[H]^n \neq \mathbb{N}$.

FS^n

For every coloring $f : [\mathbb{N}]^n \to \mathbb{N}$, there is an infinite set H such that $\forall c \in H, c \notin f[H \setminus \{c\}]^n$.

$\mathsf{TS}_k^n \models_c \mathsf{TS}^n$

$\mathsf{FS}^n \models_c \mathsf{TS}^n$

Is FS^{*n*} strictly stronger than TS^{*n*}?

 $\mathsf{TS}_3^2 \not\models_c \mathsf{FS}^2$ (P., 2017)

A formula $\varphi(\vec{U})$ is essential if for every $x \in \omega$, there are some sets $\vec{V} > x$ such that $\varphi(\vec{V})$ holds.

A function $f : \omega \to \omega$ is freely X-hyperimmune if for every $n \in \omega$, every essential $\Sigma_1^{0,X}$ formula $\varphi(\vec{U})$ and every function $g : \mathcal{P}_+(|\vec{U}|) \to \omega, \varphi(\vec{V})$ holds for some sets \vec{V} such that

$$(\forall y \in \bigcup_i V_i) f(y) = g(\{i : y \in V_i\})$$

REFERENCES

François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer.

On uniform relationships between combinatorial problems. Trans. Amer. Math. Soc., 368(2):1321–1359, 2016.

Carl G. Jockusch. Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–280, 1972.

Ludovic Patey. The weakness of being cohesive, thin or free in reverse mathematics. Israel J. Math., 216(2):905–955, 2016.

David Seetapun and Theodore A. Slaman. On the strength of Ramsey's theorem. Notre Dame Journal of Formal Logic, 36(4):570–582, 1995.

Wei Wang. Some logically weak Ramseyan theorems. Advances in Mathematics, 261:1–25, 2014.