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What is Ramsey’s theorem?
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RAMSEY’S THEOREM

[X]" is the set of unordered n-tuples of elements of X
A k-coloring of [X]|"isamap f: [X]" — k

A set H C X is homogeneous for fif [f([X]")| = 1.

RTn Every k-coloring of [N]" admits
an infinite homogeneous set.
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PIGEONHOLE PRINCIPLE

RT1 Every k-partition of N admits
K an infinite part.

01 2 3 4 2

5 6 7 8 9 5 6 9
10 11 12 13 14 —> 12

15 16 17 18 19 15 17 18
20 21 22 23 24 24

25 26 27 28 ... 26 27
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RAMSEY’S THEOREM FOR PAIRS

RT2 Every k-coloring of the infinite clique admits
an infinite monochromatic subclique.
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Why do we care about
Ramsey’s theorem?

6/57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS
! !

REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.
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REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.

RCAFA« T

in a very weak theory RCA(
capturing computable mathematics
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RCA

Robinson arithmetics

m+1#0
m+1=n+1-—=m=n
-(m<0)
m<n+1(m<nvm=n)

¥¢ induction scheme

p(0) AVN(p(n) = w(n+1))
= Yny(n)

is 30
where ¢(n) is X3

m+0=m
m+(n+1)=(m+n)+1
mx0=0
mx(n+1)=(mxn)+m

A9 comprehension scheme

vn(p(n) < 4(n))
= 3XVn(n e X < ¢(n))

where ¢(n) is =0 with free X, and v
is 9.
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REVERSE MATHEMATICS
Mathematics are MnicA
computationally \3
ATR
very structured .
ACA
Almost every theorem is 4
empirically equivalent to one WKL
among five big subsystems. 1

RCAy
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!

REVERSE MATHEMATICS

Mathematics are MnicA
computationally \3
very structured AIR
ACA
Almost every theorem is x/ 4
empirically equivalent to one RT3 WKL
among five big subsystems. \ 1
RCA,

Except for Ramsey’s theory...
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Many theorems can be seen as problems.

Intermediate value theorem

For every continuous function f over an
interval [a, b] such that f(a) - f(b) < 0, there
is areal x € [a, b] such that f(x) = 0.

Koénig’s lemma
Every infinite, finitely branching tree admits
an infinite path.
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A problem P has a collection of instances Z(P).
Every instance / has set of solutions S(/).

Z(RTR) = {f: [N]" — k}

S(f) = { infinite f-homogeneous set }
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[X]“ denotes the set of infinite subsets of X

A problem P is of Ramsey-type if for every instance /, the set
of solutions is dense and closed downward in ([N]¥, C):

VX € [N]°, [X]* N S() £ 0
vX € S(I), [X]* € S(I)
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We can solve Ramsey-type problems
simultaneously.

Given two Ramsey-type problems P and Q, define the problem

{ Z(PNQ) = Z(P) x Z(Q)
PNQ=
S(1,J) =8(HnS)
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What sets can encode
Ramsey’s theorem?



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS

Fix a problem P.

A set Sis P-encodable if there is an instance of
P such that every solution computes S.

What sets can encode an
instance of RT,?

16/57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS
! !

A function f is a modulus of a set S if every function
dominating f computes S.

A set Sis computably encodable if for every infinite set X,
there is an infinite subset Y C X computing S.

Given a set S, TFAE
» S is computably encodable
» S admits a modulus
» S is hyperarithmetic
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Thm (Jockusch)

A set is RTg-encodable for some n > 2 iff it is hyperarithmetic.
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! !

A set is RTg-encodable for some n > 2 iff it is hyperarithmetic.

Proof (=).
Let g : [w]” — k be a coloring whose homogeneous sets
compute S.

Since every infinite set has a homogeneous subset,
S is computably encodable.

Thus S is hyperarithmetic. O
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A set is RT;-encodable for some n > 2 iff it is hyperarithmetic.

Proof (<).

Let S be hyperarithmetic with modulus ps.
Define g : [w]? — 2 by g(x,y) = 1iff y > pg(x).
Let H= {xo < x4 < ...} be an infinite g-homogeneous set.

The function py(n) = x, dominates g, hence computes S. [

18/57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS

The encodability power
of RT}; comes from the

sparsity

of its homogeneous sets.
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What about RT,?

0O 1 2 3 4

5 6 7 8 9 . .
Sparsity of red implies

10 11 12 13 14 non-sparsity of blue

15 16 17 18 19 and conversely.

20 21 22 23 24
25 26 27 28 ...
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Thm (Dzhafarov and Jockusch)

A set is RT3-encodable iff it is computable.
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A set is RT3-encodable iff it is computable.

Input : aset S £7 (0 and a 2-partition Ay LI Ay = N

Output : an infinite set G C A; suchthat S £ G

21/57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS

Fo, F1, X

/7 \

Initial segment Reservoir

» F;is finite, X is infinite, max F; < min X (Mathias condition)
» SLr X (Weakness property)
» F; CA (Combinatorics)
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Extension Satisfaction
(Eo, E1,Y) < (Fo, F1,X) (Go, Gy) € [Fo, F1,X]
> Fi CE » FiC G
» YCX » G\FCX
» E\NFCX

[E07E17Y] - [F07F17X]
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(Fo, F1, X) IF ¢(Go, Gi1)
4 \

Condition Formula

©(Go, Gy) holds for every (Gy, G1) € [Fo, Fi, X]
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Input : aset S £7 (0 and a 2-partition Ay LI Ay =N
Output : aninfinite set G C A; suchthat S £+ G
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Input : aset S £7 (0 and a 2-partition Ay LI Ay =N
Output : aninfinite set G C A; suchthat S £+ G

O £ SV O £ S
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Input : aset S £7 (0 and a 2-partition Ay LI Ay =N
Output : aninfinite set G C A; suchthat S £+ G

O £ SV O £ S

{c ek (3x) O(x) L# S(x) VP (x) 1 }
The set is dense

VoG (x) 1 S(x) v &g (x) 1
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FIRST ATTEMPT

Given a condition ¢ = (Fg, F1, X), suppose the formula
p(x,n) = (3d < ¢)d IF ®S°(x) |=n
is 9% (it is not). Then the set

¢ = {(x,n) : o(x,n)}

is X-c.e.
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FIRST ATTEMPT

C= {(X7 n) : QO(X7 n)}

Y case
(3Fx)(x,1 = S(x)) eC

Then 3d < ¢ such that
d - 0% (x) |=1 - S(x)

My case
(@) (x,8(x)) ¢ C

Then
clF oS (x) # S(x)

Impossible case
(Vx)(x,1 = S(x)) ¢C
(Vx)(x,S(x)) eC

Then since C is X-c.e
S<r X4
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THE FIRST ATTEMPT FAILS

Given a condition ¢ = (Fy, F1, X), the formula
p(x,n) = (3d < ¢)d IF ¢ (x) |=n
is too complex because it can be translated in
FoUEo .
(3Ey € X N Ag)dBo(x) |=n

which is £9**% and not £,
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IDEA: MAKE AN OVERAPPROXIMATION

“Can we find an extension for every instance of RT,?”

Given a condition ¢ = (Fg, F1, X), let ¢)(x, n) be the formula

(VBoUB;y = N)(3i < 2)(3E; € XnB))®L 5(x) |=n

. <0.X
P(x,n)is X
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Case 1: ¥(x, n) holds

Letting B; = A;, there is an extension d < ¢ forcing

d>eGo°(x) l=nv ¢g11 (x)l=n

Case 2: ¥(x, n) does not hold
(3Bo L By = N)(Vi < 2)(VE; € X N B)o5"5 (x) # n
The condition (Fy, F1, X N B;) < c forces

O3 (x) #nV OS (x) # n
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SECOND ATTEMPT

D = {(x,n) - ¢(x, )}

Y case
(Ix)(x,1 = S(x)) e D

Thendd <c3di<?2
d - g (x) |=1 - S(x)

My case
(@) (x, S(x)) ¢ D

Thendd <cdi<?2
d - &8(x) # S(x)

Impossible case
(Vx)(x,1—=8S(x)) ¢ D
(Vx)(x, S(x)) € D

Then since D is X-c.e
S<r X4
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!

CJS ARGUMENT

Context: We build a solution G to a P-instance X
Goal: Decide a property o(G).

Question: For every P-instance Y, can | find a solution G
satisfying ¢(G)?

If yes: In particular for Y = X, | can satisfy p(G).

If no: If no: By making G be a solutionto X and Y
simultaneously, | will satisfy —¢(G).
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Mathias forcing
with a

CJS argument

are sufficient to compare
Ramsey-type statements.
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RAMSEY’S THEOREM

Over n-tuples
Using k colors
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RAMSEY’S THEOREM

Over n-tuples

I = I k AIIowsrcoIors

Usmg k colors
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Thm (Wang)

A set is RT ,-encodable iff it is computable for large ¢
(whenever ¢ is at least the nth Schréder Number)
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Thm (Wang)

A setis RTZ,g-encodabIe iff it is computable for large ¢
(whenever ¢ is at least the nth Schréder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is RT ,-encodable iff it is hyperarithmetic for small £
(whenever £ < 27— 1)
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Thm (Wang)

A setis RTZ,g-encodabIe iff it is computable for large ¢
(whenever ¢ is at least the nth Schréder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is RT ,-encodable iff it is hyperarithmetic for small £
(whenever £ < 27— 1)

Thm (Cholak, P.)

A set is RT} ,-encodable iff it is arithmetic for medium ¢
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COMPARING PROBLEMS

OPEN QUESTIONS

RTy ,~ENCODABLE SETS

RT;j N
> 1
RTie . \
1 >2
U >
1-3 >5
RT:. \
1 I 4

8—-13

4
-7
B e arith.

comp.
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How simple can be
the solutions of a
computable instance of RT}?
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3
Fix some n > 2. RTk

Thm (Jockusch)

™M
No

-
No

Every computable instance of RT} )
has a M9 solution. RTx

Thm (Jockusch) 50 Mo

There is a computable instance of
RT} with no X9 solution.

RT}
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f:[N]™' — kis stable if for every o € [N]”, lim, f(o, y) exists.

If f: [N]™! — K is stable, define (o) = lim, f(c, y).

Given a problem P, define its jump
IJ(P)) = {f: f e Z(P)}

J(P) = .
Syp)(f) = Sp(f)
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SRT} : RT}, restricted to stable colorings.

(-computable stable computable

RT} <« RTH
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SRT} : RT}, restricted to stable colorings.
(-computable stable computable

RT} <« RTH

“Every A set has

2
an infinite subset <:> SRT2

or cosubset”
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! !

A set Sis computably P-encodable if there is a computable
instance of P whose solutions compute S.

Thm
¢ is computably J(RT3)-encodable.

_ [ ity > pe(x)
fx.y) _{ 0 otherwise

Cor (Jockusch)

0(" is computably RT52-encodable.
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Given a problem P, define its finite-error version
Z(P) =1(P)
Sp()={Y:3Z e Sp(l), Z="Y}

P* —
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Given a problem P, define its finite-error version
Z(P) =1(P)
Sp()={Y:3Z e Sp(l), Z="Y}

P* —

An infinite set C is R-cohesive for some sets Ry, Ry, . .. if for
every i, either C C* Rjor C C* R;.

N RT;* : Every collection of sets has a cohesive set.
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RT7 follows from (RT" and J(RTY).
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! !

RT7 follows from (RT" and J(RTY).

Given f : [N]™ — k, define (R, : o € [N]", ¢ < k) by
RU,C = {.y : f(O’,y) = C}

By (RTL", there is an R-cohesive set C.

43/57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS
! !

RT7 follows from (RT" and J(RTY).

Given f : [N]™ — k, define (R, : o € [N]", ¢ < k) by
Ryc={y:f(o,y) = c}

By (RTL", there is an R-cohesive set C.

f[C]™" — k is an instance of J(RT})

By J(RTY), there is an infinite f-homogeneous set H

H @& C computes an infinite -homogeneous set

43/57
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A set Sis (computably) P-encodable if there is a (computable)
instance of P whose solutions compute S.

The RT}-encodable and the (| RT}*-encodable sets are the
computable ones.

The computably RTi—encodabIe sets are the computable ones.
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The combinatorial features of
RT} reveal the computational
features of RT} "
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How do Ramsey-type
problems compare?
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COMPUTABLE REDUCTION

P solver

Computable Computable
> _ Q solver ,
transformation transformation

P<cQ

Every P-instance / computes a Q-instance J such that for every
solution X to J, X & I computes a solution to /.
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RT3

Thm (Jockusch) Zg ng

For every n> 1, RT{" £, RTY. RT2

Proof: RT}, has MY solutions, but
RT?™" doesn't. ' o

RT}
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A function f is hyperimmune if it is not dominated by a
computable function.
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! !

A function f is hyperimmune if it is not dominated by a
computable function.

A problem P preserves ¢ among k hyperimmunities if for every
k-tuple fi, ..., fx of hyperimmune functions and every
computable P-instance /, there is a solution Y such that at least
¢ among k of the f; are Y-hyperimmune.
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! !

A function f is hyperimmune if it is not dominated by a
computable function.

A problem P preserves ¢ among k hyperimmunities if for every
k-tuple fi, ..., fx of hyperimmune functions and every
computable P-instance /, there is a solution Y such that at least
¢ among k of the f; are Y-hyperimmune.

RT% preserves 2 among k + 1 hyperimmunities, but not RT%_, ;.

RT%., £c RT%.
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What is left?
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Have we found the right framework?

Can Mathias forcing and the
CJS argument answer all the
Ramsey-type questions?
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The CJS argument applied to RT3 yields solutions to () RT4*.

Fix a computable sequence of sets Ry, Ry, . ..

Is there a set X, suchthat
every infinte set HC Xor HC X
computes an R-cohesive set?
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A set X is high if X’ >1 0.

Is there a set X, such that every infinite
set HC Xor HC Xis high?

If yes, then RT3 <oc RTS.

If no, well, this is still interesting per se.
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A set Sis P-jump-encodable if there is an instance of P such
that the jump of every solution computes S.

Are the RT,-jump-encodable sets
precisely the (’-computable ones?
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CONCLUSION

We have a minimalistic framework which answers accurately
many questions about Ramsey’s theorem.

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are
often immediate consequences of their combinatorics.

We understand what the Ramsey-type problems compute, but
ignore what the jump of their solutions compute.
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