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What is Ramsey’s theorem?
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RAMSEY’S THEOREM

[X ]n is the set of unordered n-tuples of elements of X

A k -coloring of [X ]n is a map f : [X ]n → k

A set H ⊆ X is homogeneous for f if |f ([X ]n)| = 1.

RTn
k

Every k -coloring of [N]n admits
an infinite homogeneous set.
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PIGEONHOLE PRINCIPLE

RT1
k

Every k -partition of N admits
an infinite part.
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RAMSEY’S THEOREM FOR PAIRS

RT2
k

Every k -coloring of the infinite clique admits
an infinite monochromatic subclique.
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Why do we care about
Ramsey’s theorem?
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REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.

RCA0 ` A↔ T
in a very weak theory RCA0

capturing computable mathematics
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RCA0

Robinson arithmetics

m + 1 6= 0 m + 0 = m
m + 1 = n + 1→ m = n m + (n + 1) = (m + n) + 1
¬(m < 0) m × 0 = 0
m < n + 1↔ (m < n ∨m = n) m × (n + 1) = (m × n) + m

Σ0
1 induction scheme

ϕ(0) ∧ ∀n(ϕ(n)⇒ ϕ(n + 1))
⇒ ∀nϕ(n)

where ϕ(n) is Σ0
1

∆0
1 comprehension scheme

∀n(ϕ(n)⇔ ψ(n))
⇒ ∃X∀n(n ∈ X ⇔ ϕ(n))

where ϕ(n) is Σ0
1 with free X , and ψ

is Π0
1.
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REVERSE MATHEMATICS

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

Except for Ramsey’s theory...

RCA0

WKL

ACA

ATR

Π1
1CA

RT2
2
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Many theorems can be seen as problems.

Intermediate value theorem
For every continuous function f over an
interval [a,b] such that f (a) · f (b) < 0, there
is a real x ∈ [a,b] such that f (x) = 0.

König’s lemma
Every infinite, finitely branching tree admits
an infinite path.

a
b
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A problem P has a collection of instances I(P).
Every instance I has set of solutions S(I).

I(RTn
k ) = {f : [N]n → k}

S(f ) = { infinite f -homogeneous set }
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[X ]ω denotes the set of infinite subsets of X

A problem P is of Ramsey-type if for every instance I, the set
of solutions is dense and closed downward in ([N]ω,⊆):

∀X ∈ [N]ω, [X ]ω ∩ S(I) 6= ∅

∀X ∈ S(I), [X ]ω ⊆ S(I)
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We can solve Ramsey-type problems
simultaneously.

Given two Ramsey-type problems P and Q, define the problem

P ∩Q =

{
I(P ∩Q) = I(P)× I(Q)

S(I, J) = S(I) ∩ S(J)
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What sets can encode
Ramsey’s theorem?
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Fix a problem P.

A set S is P-encodable if there is an instance of
P such that every solution computes S.

What sets can encode an
instance of RTn

k?
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A function f is a modulus of a set S if every function
dominating f computes S.

A set S is computably encodable if for every infinite set X ,
there is an infinite subset Y ⊆ X computing S.

Thm (Solovay, Groszek and Slaman)

Given a set S, TFAE
� S is computably encodable
� S admits a modulus
� S is hyperarithmetic
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Thm (Jockusch)

A set is RTn
k -encodable for some n ≥ 2 iff it is hyperarithmetic.

Proof (⇒).

Let g : [ω]n → k be a coloring whose homogeneous sets
compute S.

Since every infinite set has a homogeneous subset,
S is computably encodable.

Thus S is hyperarithmetic.

18 / 57
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Thm (Jockusch)

A set is RTn
k -encodable for some n ≥ 2 iff it is hyperarithmetic.

Proof (⇐).

Let S be hyperarithmetic with modulus µS.

Define g : [ω]2 → 2 by g(x , y) = 1 iff y > µS(x).

Let H = {x0 < x1 < . . . } be an infinite g-homogeneous set.

The function pH(n) = xn dominates µS, hence computes S.
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The encodability power
of RTn

k comes from the

sparsity
of its homogeneous sets.
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What about RT1
k?

Sparsity of red implies
non-sparsity of blue
and conversely.
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Thm (Dzhafarov and Jockusch)

A set is RT1
2-encodable iff it is computable.

Input : a set S 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that S 6≤T G
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(F0,F1,X )
Initial segment Reservoir

� Fi is finite, X is infinite, max Fi < min X (Mathias condition)

� S 6≤T X (Weakness property)

� Fi ⊆ Ai (Combinatorics)
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Extension

(E0,E1,Y ) ≤ (F0,F1,X )

� Fi ⊆ Ei

� Y ⊆ X

� Ei \ Fi ⊆ X

Satisfaction

〈G0,G1〉 ∈ [F0,F1,X ]

� Fi ⊆ Gi

� Gi \ Fi ⊆ X

[E0,E1,Y ] ⊆ [F0,F1,X ]
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(F0,F1,X ) 
 ϕ(G0,G1)

Condition Formula

ϕ(G0,G1) holds for every 〈G0,G1〉 ∈ [F0,F1,X ]
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Input : a set S 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that S 6≤T G

ΦG0
e0 6= S ∨ ΦG1

e1 6= S

The set

c : c 
 (∃x) ΦG0
e0

(x) ↓6= S(x) ∨ ΦG0
e0

(x) ↑

∨ ΦG1
e1

(x) ↓6= S(x) ∨ ΦG1
e1

(x) ↑

 is dense
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FIRST ATTEMPT

Given a condition c = (F0,F1,X ), suppose the formula

ϕ(x ,n) = (∃d ≤ c)d 
 ΦG0
e0

(x) ↓= n

is Σ0,X
1 (it is not). Then the set

C = {(x ,n) : ϕ(x ,n)}

is X -c.e.
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FIRST ATTEMPT

C = {(x ,n) : ϕ(x ,n)}

Σ1 case

(∃x)(x ,1− S(x)) ∈ C

Then ∃d ≤ c such that

d 
 ΦG0
e0 (x) ↓= 1− S(x)

Π1 case

(∃x)(x ,S(x)) 6∈ C

Then

c 
 ΦG0
e0 (x) 6= S(x)

Impossible case

(∀x)(x ,1− S(x)) 6∈ C

(∀x)(x ,S(x)) ∈ C

Then since C is X -c.e

S ≤T X �
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THE FIRST ATTEMPT FAILS

Given a condition c = (F0,F1,X ), the formula

ϕ(x ,n) = (∃d ≤ c)d 
 ΦG0
e0

(x) ↓= n

is too complex because it can be translated in

(∃E0 ⊆ X ∩ A0)ΦF0∪E0
e0

(x) ↓= n

which is Σ0,A⊕X
1 and not Σ0,X

1 .
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IDEA: MAKE AN OVERAPPROXIMATION

“Can we find an extension for every instance of RT1
2?”

Given a condition c = (F0,F1,X ), let ψ(x ,n) be the formula

(∀B0tB1 = N)(∃i < 2)(∃Ei ⊆ X∩Bi)ΦFi∪Ei
ei

(x) ↓= n

ψ(x ,n) is Σ0,X
1
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Case 1: ψ(x ,n) holds

Letting Bi = Ai , there is an extension d ≤ c forcing

ΦG0
e0

(x) ↓= n ∨ ΦG1
e1

(x) ↓= n

Case 2: ψ(x ,n) does not hold

(∃B0 t B1 = N)(∀i < 2)(∀Ei ⊆ X ∩ Bi)ΦFi∪Ei
ei

(x) 6= n

The condition (F0,F1,X ∩ Bi) ≤ c forces

ΦG0
e0

(x) 6= n ∨ ΦG1
e1

(x) 6= n
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SECOND ATTEMPT

D = {(x ,n) : ψ(x ,n)}

Σ1 case

(∃x)(x ,1− S(x)) ∈ D

Then ∃d ≤ c ∃i < 2

d 
 ΦGi
ei

(x) ↓= 1− S(x)

Π1 case

(∃x)(x ,S(x)) 6∈ D

Then ∃d ≤ c ∃i < 2

d 
 ΦGi
ei

(x) 6= S(x)

Impossible case

(∀x)(x ,1− S(x)) 6∈ D

(∀x)(x ,S(x)) ∈ D

Then since D is X -c.e

S ≤T X �

31 / 57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS

CJS ARGUMENT

Context: We build a solution G to a P-instance X

Goal: Decide a property ϕ(G).

Question: For every P-instance Y , can I find a solution G
satisfying ϕ(G)?

If yes: In particular for Y = X , I can satisfy ϕ(G).

If no: If no: By making G be a solution to X and Y
simultaneously, I will satisfy ¬ϕ(G).
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Mathias forcing
with a

CJS argument
are sufficient to compare
Ramsey-type statements.

33 / 57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS

RAMSEY’S THEOREM

RTn
k

,r

Over n-tuples

Using k colors

Allows r colors

34 / 57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS

RAMSEY’S THEOREM

RTn
k ,r

Over n-tuples

Using k colors

Allows r colors

34 / 57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS

Thm (Wang)

A set is RTn
k ,`-encodable iff it is computable for large `

(whenever ` is at least the nth Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is RTn
k ,`-encodable iff it is hyperarithmetic for small `

(whenever ` < 2n−1)

Thm (Cholak, P.)

A set is RTn
k ,`-encodable iff it is arithmetic for medium `
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RTn
k ,`-ENCODABLE SETS

RT1
k ,` `

≥ 1

RT2
k ,` `

1 ≥ 2

RT3
k ,` `

1− 3 4 ≥ 5

RT4
k ,` `

1− 7 8− 13 ≥ 14

hyp. arith. comp.
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How simple can be
the solutions of a

computable instance of RTn
k?
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Fix some n ≥ 2.

Thm (Jockusch)

Every computable instance of RTn
k

has a Π0
n solution.

Thm (Jockusch)

There is a computable instance of
RTn

k with no Σ0
n solution.

Σ0
1 Π0

1

Σ0
2

Σ0
3

Π0
2

Π0
3

∆0
1

∆0
2

∆0
3

RT1
k

RT2
k

RT3
k
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f : [N]n+1 → k is stable if for every σ ∈ [N]n, limy f (σ, y) exists.

If f : [N]n+1 → k is stable, define f̃ (σ) = limy f (σ, y).

Given a problem P, define its jump

J(P) =

 I(J(P)) = {f : f̃ ∈ I(P)}

SJ(P)(f ) = SP(f̃ )

39 / 57
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SRTn
k : RTn

k restricted to stable colorings.

∅′-computable stable computable

RTn
k ⇔ RTn+1

k

“Every ∆0
2 set has

an infinite subset ⇔ SRT2
2

or cosubset”
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A set S is computably P-encodable if there is a computable
instance of P whose solutions compute S.

Thm

∅′ is computably J(RT2
2)-encodable.

f (x , y) =

{
1 if y ≥ µ∅′(x)
0 otherwise

Cor (Jockusch)

∅(n) is computably RTn+2
2 -encodable.

41 / 57
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Given a problem P, define its finite-error version

P∗ =

{
I(P∗) = I(P)

SP∗(I) = {Y : ∃Z ∈ SP(I), Z =∗ Y}

An infinite set C is ~R-cohesive for some sets R0,R1, . . . if for
every i , either C ⊆∗ Ri or C ⊆∗ R i .⋂

RT1∗
2 : Every collection of sets has a cohesive set.

42 / 57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS

Given a problem P, define its finite-error version

P∗ =

{
I(P∗) = I(P)

SP∗(I) = {Y : ∃Z ∈ SP(I), Z =∗ Y}

An infinite set C is ~R-cohesive for some sets R0,R1, . . . if for
every i , either C ⊆∗ Ri or C ⊆∗ R i .⋂

RT1∗
2 : Every collection of sets has a cohesive set.

42 / 57



INTRODUCTION ENCODING SETS SIMPLE SOLUTIONS COMPARING PROBLEMS OPEN QUESTIONS

RTn+1
k follows from

⋂
RT1∗

2 and J(RTn
k).

Given f : [N]n+1 → k , define 〈Rσ,c : σ ∈ [N]n, c < k〉 by

Rσ,c = {y : f (σ, y) = c}

By
⋂

RT1∗
2 , there is an ~R-cohesive set C.

f [C]n+1 → k is an instance of J(RTn
k )

By J(RTn
k ), there is an infinite f̃ -homogeneous set H

H ⊕ C computes an infinite f -homogeneous set
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A set S is (computably) P-encodable if there is a (computable)
instance of P whose solutions compute S.

Thm (Dzhafarov, Jockusch; Wang)

The RT1
k -encodable and the

⋂
RT1∗

2 -encodable sets are the
computable ones.

Cor (Seetapun)

The computably RT2
k -encodable sets are the computable ones.
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The combinatorial features of
RTn

k reveal the computational
features of RTn+1

k
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How do Ramsey-type
problems compare?
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COMPUTABLE REDUCTION

Q solver
Computable

transformation

Computable

transformation

P solver

P ≤c Q
Every P-instance I computes a Q-instance J such that for every
solution X to J, X ⊕ I computes a solution to I.
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Thm (Jockusch)

For every n ≥ 1, RTn+1
k 6≤c RTn

k .

Proof: RTn
k has Π0

n solutions, but
RTn+1

k doesn’t. Σ0
1 Π0

1

Σ0
2

Σ0
3

Π0
2

Π0
3

∆0
1

∆0
2

∆0
3

RT1
k

RT2
k

RT3
k
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A function f is hyperimmune if it is not dominated by a
computable function.

A problem P preserves ` among k hyperimmunities if for every
k -tuple f1, . . . , fk of hyperimmune functions and every
computable P-instance I, there is a solution Y such that at least
` among k of the fi are Y -hyperimmune.

Thm (P.)

RT2
k preserves 2 among k + 1 hyperimmunities, but not RT2

k+1.

Cor (P.)

RT2
k+1 6≤c RT2

k .
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What is left?
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Have we found the right framework?

Can Mathias forcing and the
CJS argument answer all the

Ramsey-type questions?
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The CJS argument applied to RT1
2 yields solutions to

⋂
RT1∗

2 .

Fix a computable sequence of sets R0,R1, . . .

Is there a set X , such that
every infinite set H ⊆ X or H ⊆ X

computes an ~R-cohesive set?
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A set X is high if X ′ ≥T ∅′′.

Is there a set X , such that every infinite
set H ⊆ X or H ⊆ X is high?

If yes, then
⋂

RT1∗
2 ≤oc RT1

2.

If no, well, this is still interesting per se.
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A set S is P-jump-encodable if there is an instance of P such
that the jump of every solution computes S.

Are the RT1
2-jump-encodable sets

precisely the ∅′-computable ones?
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CONCLUSION

We have a minimalistic framework which answers accurately
many questions about Ramsey’s theorem.

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are
often immediate consequences of their combinatorics.

We understand what the Ramsey-type problems compute, but
ignore what the jump of their solutions compute.
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Subsystems of second-order
arithmetic

Slicing the truth
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