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Many theorems can be seen as problems.

König’s lemma
Every infinite, finitely branching tree admits an infinite path.
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Some theorems are more effective than others.

Intermediate value theorem
For every continuous function f over an
interval [a,b] such that f (a) · f (b) < 0,
there is a real x ∈ [a,b] such that f (x) = 0.

König’s lemma
Every infinite, finitely branching tree admits
an infinite path.

a
b
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COMPUTABLE REDUCTION

P ≤c Q

A problem P is computably reducible to a problem Q if
for every P-instance X , there is a Q-instance X̂ ≤T X such that
for every solution Y to X̂ , Y ⊕ X computes a solution to X .

4 / 44



THEOREMS AS PROBLEMS STRONG REDUCTIONS OMNISCIENT REDUCTIONS THE BIG QUESTION

COMPUTABLE REDUCTION

“Q is at least as hard as P”

Q solver≤T ≤T

P solver
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RAMSEY’S THEOREM

[X ]n is the set of unordered n-tuples of elements of X

A k -coloring of [X ]n is a map f : [X ]n → k

A set H ⊆ X is homogeneous for f if |f ([H]n)| = 1.

RTn
k

Every k -coloring of [N]n admits
an infinite homogeneous set.
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PIGEONHOLE PRINCIPLE

RT1
k

Every k -partition of N admits
an infinite part.
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RAMSEY’S THEOREM FOR PAIRS

RT2
k

Every k -coloring of the infinite clique admits
an infinite monochromatic subclique.
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AN EXAMPLE

A function f : N→ N is hyperimmune if it is not dominated by
any computable function.

A problem P preserves m among n hyperimmunities if for every
n-tuple of hyperimmune functions f0, . . . , fn−1 and every
computable P-instance X , there is a solution Y to X such that
at least m among the f ’s are Y -hyperimmune.

9 / 44



THEOREMS AS PROBLEMS STRONG REDUCTIONS OMNISCIENT REDUCTIONS THE BIG QUESTION

AN EXAMPLE

RTn
k 6≤c RTn

`
whenever k > ` ≥ 2 and n ≥ 2.

(P.)

RT2
` preserves 2 among k hyperimmunities

but RT2
k does not.

10 / 44



THEOREMS AS PROBLEMS STRONG REDUCTIONS OMNISCIENT REDUCTIONS THE BIG QUESTION

RT1
k =c RT1

`
whenever k , ` ≥ 1.

Refining ≤c

Weihrauch reduction
Consider the uniformity

of reductions

Strong computable
reduction

Removes access
to the instance
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STRONG COMPUTABLE REDUCTION

P ≤sc Q

A problem P is strongly computably reducible to Q if
for every P-instance X , there is a Q-instance X̂ ≤T X
such that every solution to X̂ computes a solution to X .
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STRONG COMPUTABLE REDUCTION

“Q is at least as hard as P”

Q solver≤T ≤T

P solver
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A function f : N→ N is hyperimmune if it is not dominated by
any computable function.

A problem P strongly preserves m among n hyperimmunities if
for every n-tuple of hyperimmune functions f0, . . . , fn−1 and
every P-instance X , there is a solution Y to X such that at least
m among the f ’s are Y -hyperimmune.
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RT1
k 6≤sc RT1

`
whenever k > ` ≥ 2.

(Dzhafarov)

RT1
` strongly preserves 2 among k hyperimmunities

but RT1
k does not.
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RT1
k 6≤sc RT1

`
whenever k > ` ≥ 2.

(Dzhafarov)

The RT1
k -instance witnessing it

defeats all RT1
` -instances.

(Hirschfeldt, Jockusch, P.)
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RT1
k 6≤sc SRT2

`
whenever k > ` ≥ 2.

(Dzhafarov, P., Solomon, Westrick)

SRT2
k : Restriction of RT2

k to stable colorings.

a

b c d e f g

17 / 44



THEOREMS AS PROBLEMS STRONG REDUCTIONS OMNISCIENT REDUCTIONS THE BIG QUESTION

RT1
k 6≤sc SRT2

`
whenever k > ` ≥ 2.

(Dzhafarov, P., Solomon, Westrick)

The RT1
k -instance witnessing it

defeats all SRT2
` -instances.
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WKL : Restriction of König’s lemma to binary trees.

WKL ≤c RTn
k

whenever k ≥ 2 and n ≥ 3.

(Jockusch)

WKL 6≤c RT2
k

whenever k ≥ 1.

(Liu)
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Definition
I A function f is a modulus of a set A if every function

dominating f computes A.

I A set A is computably encodable if for every set X ∈ [ω]ω,
there is a set Y ∈ [X ]ω computing A.

A is computably encodable⇔ A admits a
modulus⇔ A is hyperarithmetic

(Solovay, Groszek and Slaman)
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WKL 6≤sc RTn
k

whenever n, k ≥ 1.

(Hirschfeldt, Jockusch)

The WKL-instance witnessing it
defeats all RTn

k -instances.
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WWKL : Restriction of WKL to trees of positive measure.

WWKL ≤c RTn
k

whenever k ≥ 2 and n ≥ 3.

(Jockusch)

WWKL 6≤c RT2
k

whenever k ≥ 1.

(Liu)
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Definition
I A function f is a Π0

1 modulus of a set C ⊆ ωω if C has a
non-empty g-computably bounded Π

0,g
1 subset for

every g ≥ f .

I A set C ⊆ ωω is Π0
1 encodable if for every set X ∈ [ω]ω,

there is a set Y ∈ [X ]ω such that C admits a non-empty
Y -computably bounded Π0,Y

1 subset.

C is Π0
1 encodable⇔ C admits a Π0

1 modulus
⇔ C has a non-empty Σ1

1 subset
(Monin, P.)
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WWKL 6≤sc RTn
k

whenever n, k ≥ 1.

(Monin, P.)

The WWKL-instance witnessing it
defeats all RTn

k -instances.
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STRONG OMNISCIENT COMPUTABLE REDUCTION

P ≤soc Q

A problem P is strongly omnisciently computably reducible to Q
if for every P-instance X , there is an arbitrary Q-instance X̂
such that every solution to X̂ computes a solution to X .
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STRONG OMNISCIENT COMPUTABLE REDUCTION

“Q is at least as hard as P”

Q solver∃ ≤T

P solver
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P ≤oW Q

P ≤soW Q P ≤oc Q

P ≤W Q

#+

P ≤soc Q

P ≤sW Q

3;

#+

P ≤c Q +3 P ≤ω Q.

P ≤sc Q

3;
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P ≤oW Q

"*
P ≤soW Q

3;

#+

P ≤oc Q

P ≤W Q

#+

<D

P ≤soc Q

4<

P ≤sW Q

3;

#+

<D

P ≤c Q +3

=E

P ≤ω Q.

P ≤sc Q

3;

<D
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STRONG OMNISCIENT COMPUTABLE REDUCTIONS

Whenever k > ` ≥ 1

I RT1
k 6≤soc RT1

` (Hirschfeldt, Jockusch, P.)

I RT1
k 6≤soc SRT2

` (Dzhafarov, P., Solomon, Westrick)

I WKL 6≤soc RTn
k (Hirschfeldt, Jockusch)

I WWKL 6≤soc RTn
k (Monin, P.)
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OMNISCIENT COMPUTABLE REDUCTIONS

I ACA 6≤oc RT1
k (Dzhafarov)

I WWKL 6≤oc RT1
k (Liu.)

I WWKL 6≤oc FS (P.)

I RT2
2 6≤oc FS (P.)
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DIFFERENCES WITH ≤sc

SRT2
3 6≤sc RT2

2
(P.)

SRT2
<∞ ≤soc RT2

2
(Monin, P.)

Proof sketch : g(x , y) = 1 iff f (x , y) = lims f (y , s)
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DIAGRAM UNDER ≤soc

KL WKL

WWKLRT

RT2
3 RT2

2

SRT2
<∞ SRT2

3 SRT2
2

RT1
<∞ RT1

3 RT1
2

?
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QUESTIONS

Is RT ≤soc RT2
2 ?

Is RTn
k+1 ≤soc RTn

k ? No for n = 1.

Is RTn+1
k ≤soc RTn

k ? No for n = 1.
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Revisiting the big question
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REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.

RCA0 ` A↔ T
in a very weak theory RCA0

capturing computable mathematics
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REVERSE MATHEMATICS

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

Except for Ramsey’s theory...

RCA0

WKL

ACA

ATR

Π1
1CA

RT2
2
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COHESIVE SETS

An infinite set C is cohesive for a sequence of sets R0,R1, . . . if
for every i , C ⊆∗ Ri or C ⊆∗ R i .

An infinite set C is p-cohesive if it is cohesive for the primitive
recursive sets.

COH Every sequence of sets
has a cohesive set.
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RT2
2 ↔ COH+SRT2

2

Fix an instance f : [N]2 → 2 of RT2
2

Define Rx = {y : f (x , y) = 1}

Let C be cohesive for R0,R1, . . .

f : [C]2 → 2 is an instance of SRT2
2
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THE BIG QUESTION

Does RCA0 ` SRT2
2 → COH?

Theorem (Chang, Slaman, Yang)
Nope.
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REVISITING THE BIG QUESTION

Hirschfeldt : “We want a computability-theoretic answer”

An L2-structureM = 〈M,S,0,1,+, ·〉 is an ω-structure if M is
the set of standard numbers, equipped with the standard
operations

Does RCA0 ` SRT2
2 → COH

on ω-structures?
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REVISITING THE BIG QUESTION

Dzhafarov : “One step is already complicated”

Is COH ≤c SRT2
2 ?
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REVISITING THE BIG QUESTION

P : “This is about the combinatorics of singletons”

Is COH ≤oc RT1
2 ?

Is there a set X , such that
every infinite set H ⊆ X or H ⊆ X

computes a p-cohesive set?
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A set X is high if X ′ ≥T ∅′′.

Is there a set X , such that every infinite
set H ⊆ X or H ⊆ X is high?

If yes, then COH ≤oc RT1
2.

If no, well, this is still interesting per se.
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A set S is P-jump-encodable if there is an instance of P such
that the jump of every solution computes S.

Are the RT1
2-jump-encodable sets

precisely the ∅′-computable ones?
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