The weakness of Ramsey's theorem under omniscient reductions

Ludovic PATEY UC Berkeley

July 03, 2017

Many theorems can be seen as problems.

König's lemma

Every infinite, finitely branching tree admits an infinite path.

Some theorems are more effective than others.

Intermediate value theorem

For every continuous function f over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.

König's lemma

Every infinite, finitely branching tree admits an infinite path.

COMPUTABLE REDUCTION

$$P \leq_c Q$$

A problem P is computably reducible to a problem Q if for every P-instance X, there is a Q-instance $\hat{X} <_{\tau} X$ such that for every solution Y to \hat{X} , $Y \oplus X$ computes a solution to X.

COMPUTABLE REDUCTION

"Q is at least as hard as P"

RAMSEY'S THEOREM

THEOREMS AS PROBLEMS

 $[X]^n$ is the set of unordered *n*-tuples of elements of X

A k-coloring of $[X]^n$ is a map $f:[X]^n \to k$

A set $H \subseteq X$ is homogeneous for f if $|f([H]^n)| = 1$.

Every *k*-coloring of $[\mathbb{N}]^n$ admits an infinite homogeneous set.

PIGEONHOLE PRINCIPLE

RT_k^1

THEOREMS AS PROBLEMS

Every k-partition of \mathbb{N} admits an infinite part.

OMNISCIENT REDUCTIONS

```
10 11 12 13 14
15 16 17 18 19
                              17 18 19
                        20 21 22 23 24
20 21 22 23 24
25 26 27 28 ....
                        25 26 27 28 ....
```

RAMSEY'S THEOREM FOR PAIRS

 RT^2_k Every k-coloring of the infinite clique admits an infinite monochromatic subclique.

A function $f: \mathbb{N} \to \mathbb{N}$ is hyperimmune if it is not dominated by any computable function.

A problem P preserves m among n hyperimmunities if for every n-tuple of hyperimmune functions f_0, \ldots, f_{n-1} and every computable P-instance X, there is a solution Y to X such that at least m among the f's are Y-hyperimmune.

AN EXAMPLE

THEOREMS AS PROBLEMS

$$\mathsf{RT}^n_k \not\leq_{c} \mathsf{RT}^n_\ell$$
 whenever $k > \ell \geq 2$ and $n \geq 2$. (P.)

OMNISCIENT REDUCTIONS

 RT_{ℓ}^2 preserves 2 among k hyperimmunities but RT_k^2 does not.

$$\mathsf{RT}^1_k =_{\mathit{c}} \mathsf{RT}^1_\ell$$
 whenever $k,\ell \geq 1$.

$$\mathsf{RT}^1_k =_c \mathsf{RT}^1_\ell$$
 whenever $k,\ell \geq 1$.

$$\mathsf{RT}^1_k =_c \mathsf{RT}^1_\ell$$
 whenever $k,\ell \geq 1$. $\mathsf{Refining} \leq_c$

Weihrauch reduction Consider the uniformity of reductions

Strong computable reduction Removes access to the instance

$$P \leq_{sc} Q$$

A problem P is strongly computably reducible to Q if for every P-instance X, there is a Q-instance $\hat{X} \leq_T X$ such that every solution to \hat{X} computes a solution to X.

"Q is at least as hard as P"

THEOREMS AS PROBLEMS

A function $f: \mathbb{N} \to \mathbb{N}$ is hyperimmune if it is not dominated by any computable function.

A problem P strongly preserves m among n hyperimmunities if for every *n*-tuple of hyperimmune functions f_0, \ldots, f_{n-1} and every P-instance X, there is a solution Y to X such that at least m among the f's are Y-hyperimmune.

$$\mathsf{RT}^1_k \not\leq_{\mathit{SC}} \mathsf{RT}^1_\ell$$
 whenever $k > \ell \ge 2$.

 RT^1_ℓ strongly preserves 2 among k hyperimmunities but RT^1_k does not.

whenever $k > \ell \ge 2$.

(Dzhafarov)

The RT_k^1 -instance witnessing it defeats all RT_ℓ^1 -instances.

(Hirschfeldt, Jockusch, P.)

whenever $k > \ell > 2$.

(Dzhafarov, P., Solomon, Westrick)

 SRT_k^2 : Restriction of RT_k^2 to stable colorings.

whenever $k > \ell > 2$.

(Dzhafarov, P., Solomon, Westrick)

The RT_k^1 -instance witnessing it defeats all SRT_ℓ^2 -instances.

WKL: Restriction of König's lemma to binary trees.

WKL
$$\leq_C \operatorname{RT}_k^n$$
 whenever $k \geq 2$ and $n \geq 3$.

(Jockusch)

WKL
$$\leq_c \operatorname{RT}_k^2$$
 whenever $k \geq 1$.

THEOREMS AS PROBLEMS

WKL: Restriction of König's lemma to binary trees.

Definition

THEOREMS AS PROBLEMS

- ▶ A function f is a modulus of a set A if every function dominating f computes A.
- ▶ A set A is computably encodable if for every set $X \in [\omega]^{\omega}$, there is a set $Y \in [X]^{\omega}$ computing A.

OMNISCIENT REDUCTIONS

A is computably encodable \Leftrightarrow A admits a modulus $\Leftrightarrow A$ is hyperarithmetic

(Solovay, Groszek and Slaman)

whenever n, k > 1.

(Hirschfeldt, Jockusch)

The WKL-instance witnessing it defeats all RT_k^n -instances.

WWKL: Restriction of WKL to trees of positive measure.

WWKL
$$\leq_C \operatorname{RT}_k^n$$
 whenever $k > 2$ and $n > 3$.

THEOREMS AS PROBLEMS

(Jockusch)

WWKL
$$\leq_c RT_k^2$$

whenever k > 1.

(Liu)

Definition

▶ A function f is a Π_1^0 modulus of a set $\mathcal{C} \subseteq \omega^\omega$ if \mathcal{C} has a non-empty g-computably bounded $\Pi_1^{0,g}$ subset for every q > f.

OMNISCIENT REDUCTIONS

▶ A set $\mathcal{C} \subseteq \omega^{\omega}$ is Π_1^0 encodable if for every set $X \in [\omega]^{\omega}$, there is a set $Y \in [X]^{\omega}$ such that C admits a non-empty Y-computably bounded $\Pi_1^{0,Y}$ subset.

 \mathcal{C} is Π_1^0 encodable $\Leftrightarrow \mathcal{C}$ admits a Π_1^0 modulus $\Leftrightarrow \mathcal{C}$ has a non-empty Σ_1^1 subset (Monin, P.)

WWKL $\leq_{sc} RT_k^n$

whenever $n, k \geq 1$. (Monin, P.)

The WWKL-instance witnessing it defeats all RT_k^n -instances.

STRONG OMNISCIENT COMPUTABLE REDUCTION

$$P \leq_{soc} Q$$

A problem P is strongly omnisciently computably reducible to Q if for every P-instance X, there is an arbitrary Q-instance \hat{X} such that every solution to \hat{X} computes a solution to X.

"Q is at least as hard as P"

STRONG OMNISCIENT COMPUTABLE REDUCTIONS

Whenever $k > \ell > 1$

►
$$RT^1_k \not<_{soc} RT^1_\ell$$

(Dzhafarov, P., Solomon, Westrick)

►
$$RT_k^1 \not\leq_{soc} SRT_\ell^2$$

(Hirschfeldt, Jockusch)

(Hirschfeldt, Jockusch, P.)

(Monin, P.)

► WWKL
$$\angle_{soc}$$
 RT $_k^n$

OMNISCIENT COMPUTABLE REDUCTIONS

► ACA
$$\leq_{oc} RT_k^1$$

OMNISCIENT REDUCTIONS

► WWKL
$$\leq_{oc} RT_k^1$$

► RT₂
$$\leq_{oc}$$
 FS

DIFFERENCES WITH < sc

$$SRT_3^2 \not\leq_{sc} RT_2^2$$

$$SRT^2_{<\infty} \leq_{soc} RT^2_2$$
(Monin, P.)

Proof sketch :
$$g(x, y) = 1$$
 iff $f(x, y) = \lim_{s} f(y, s)$

OMNISCIENT REDUCTIONS

DIAGRAM UNDER \leq_{soc}

QUESTIONS

Is RT
$$\leq_{soc}$$
 RT₂?

Is
$$RT_{k+1}^n \leq_{soc} RT_k^n$$
?

Is
$$RT_k^{n+1} \leq_{soc} RT_k^n$$
?

No for
$$n = 1$$
.

No for
$$n = 1$$
.

Revisiting the big question

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

REVERSE MATHEMATICS

THEOREMS AS PROBLEMS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

$$RCA_0 \vdash A \leftrightarrow T$$

in a very weak theory RCA₀ capturing computable mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

REVERSE MATHEMATICS

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...

COHESIVE SETS

THEOREMS AS PROBLEMS

An infinite set C is cohesive for a sequence of sets R_0, R_1, \ldots if for every i, $C \subseteq^* R_i$ or $C \subseteq^* \overline{R}_i$.

An infinite set C is p-cohesive if it is cohesive for the primitive recursive sets.

COH

Every sequence of sets has a cohesive set.

$$RT_2^2 \leftrightarrow COH + SRT_2^2$$

Fix an instance $f: [\mathbb{N}]^2 \to 2$ of RT_2^2

Define
$$R_x = \{y : f(x, y) = 1\}$$

Let C be cohesive for R_0, R_1, \ldots

$$f: [C]^2 \rightarrow 2$$
 is an instance of SRT_2^2

THE BIG QUESTION

Does
$$RCA_0 \vdash SRT_2^2 \rightarrow COH$$
?

THE BIG QUESTION

THEOREMS AS PROBLEMS

Does
$$RCA_0 \vdash SRT_2^2 \rightarrow COH$$
?

Theorem (Chang, Slaman, Yang) Nope.

REVISITING THE BIG QUESTION

Hirschfeldt: "We want a computability-theoretic answer"

An L_2 -structure $\mathcal{M} = \langle M, S, 0, 1, +, \cdot \rangle$ is an ω -structure if M is the set of standard numbers, equipped with the standard operations

OMNISCIENT REDUCTIONS

Does
$$RCA_0 \vdash SRT_2^2 \rightarrow COH$$

on ω -structures?

REVISITING THE BIG QUESTION

Dzhafarov: "One step is already complicated"

Is COH
$$\leq_{\mathcal{C}} SRT_2^2$$
?

REVISITING THE BIG QUESTION

THEOREMS AS PROBLEMS

P: "This is about the combinatorics of singletons"

Is COH
$$\leq_{oc} RT_2^1$$
?

OMNISCIENT REDUCTIONS

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ computes a p-cohesive set?

A set X is high if $X' >_{\mathcal{T}} \emptyset''$.

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ is high?

OMNISCIENT REDUCTIONS

If yes, then COH $<_{oc}$ RT₂.

If no, well, this is still interesting per se.

THEOREMS AS PROBLEMS

A set S is P-jump-encodable if there is an instance of P such that the jump of every solution computes S.

Are the RT₂-jump-encodable sets precisely the \emptyset' -computable ones?

REFERENCES

Damir D. Dzhafarov and Carl G. Jockusch.

Ramsev's theorem and cone avoidance. Journal of Symbolic Logic, 74(2):557-578, 2009.

Damir D. Dzhafarov, Ludovic Patev, D. Reed Solomon, and Linda Brown Westrick. Ramsey's theorem for singletons and strong computable reducibility. Submitted., 2016.

Denis R Hirschfeldt and Carl G Jockusch Jr.

On notions of computability theoretic reduction between Π_2^1 principles. To appear.

Lu Liu.

 RT_2^2 does not imply WKL₀. Journal of Symbolic Logic, 77(2):609-620, 2012.

Benoit Monin and Ludovic Patey.

 Π_1^0 encodability and omniscient reductions. Available at http://arxiv.org/abs/1603.01086.