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Letf : N x N — N be a computable function such that
Vx,s f(x,s+1) <f(x,s)

Let X be an infinite non-decreasing subsequence for
f(x) =limsf(x,s)

How complicated must such an X be?
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Identify the right abstraction
of the problem
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There is a Ag function g : N — N for which
every non-decreasing subsequence computes ().
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A function g : N — N is computably bounded if it is dominated
by a computable function.

LNS CNS

For every computable function Every computably bounded
such that f(x,s + 1) < f(x,s) A function has an infinite
there is a non-decreasing non-decreasing sequence.

sequence for f (x) = lims f(x, s).

f is A and dominated by h(x) = f(x,0).
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Theorem (P.)
For every A computably dominated function
» there is a cone avoiding solution

» there is a solution which is low,

» there is a solution computing no Martin-Lof random

Corollary
RCA, -+ CNS ¥ WWKL
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F, X
- AN

Initial segment Reservoir
» Fis finite, X is infinite, max F < min X (Mathias condition)
» X e M[E WKL /\D% (Weakness property)
» Vx € X, FU {x} is non-decreasing (Combinatorics)
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Forcing infinity

Instance : a A function f dominated by h
Context : a condition (F, X)

Pickx € X
Let g(y) = min(f(y),f (x))

>
>
» Apply D? )+ and get a set Y and a color ¢
>
>

If ¢ < f(x), Y is our solution
If c = f(x), take (FU {x},Y)
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Forcing 2(1) formulas

Instance : a A function f dominated by h
Context : a condition (F, X) and a X9 formula ¢(G)

C = {gdom by & : (VE non-decreasing C X)—¢(FUE)}

IfC+#0
» Apply WKL and getg € C

» Get a non-decreasing subsequence Y C X for g
» The condition (F,Y) forces —¢(G)
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Forcing 2(1) formulas

Instance : a A function f dominated by h
Context : a condition (F, X) and a X9 formula ¢(G)

C = {gdom by  : (VE non-decreasing C X)—¢(FUE)}

IfC=10

» In particular f ¢ C.
» Take E C X non-decreasing for f such that o(F UE)
» Using D3 to obtain Y such that (F UE,Y) is a condition
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A function g : N — N is eventually increasing if for each y € N,
the preimage of {y} by g is finite.

LNS ICNS

For every computable function Every eventually increasing,
such that f(x,s + 1) < f(x,s) computably bounded A9
there is a non-decreasing function has an infinite
sequence forf(x) = lim, f(x,s). non-decreasing sequence.

If f is not eventually increasing, it has a
computable solution.
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A function g : N — Nis X-hyperimmune if it is not dominated
by any X-computable function.

Theorem (P.)

Let g0, 81, - - - be hyperimmune functions. For every eventually
increasing, computably dominated A3 function, there is a solution H
such that the g’s are H-hyperimmune.

Corollary
RCA, + ICNS + EM + WKL # SADS
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The strength of
non-decreasing sequences
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A function g : N — N is diagonally non-computable (DNC) if
g(e) # P (e) for every e € N.

Theorem (Liang Yu)

There is a computable function satisfying f(x,s + 1) < f(x,s) such
that every infinite non-decreasing sequence for f computes a DNC
function.

Proof: f(x,s) = plain Kolmovorov complexity of x at stage s.
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A function g : N — N is hyperimmune if it is not dominated by
any computable function.

Theorem (P.)

There is a computable function satisfying f(x,s + 1) < f(x,s) such
that every infinite non-decreasing sequence for f computes a
hyperimmune function.

Proof: by a finite injury priority argument.
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A function f is X-hypersurjective if there is an infinite L C N
such that for every X-computable array Ao, A1, ... and every
y € L, f[Ai] = {y} for somei € N.

Theorem (P.)

Fix f hypersurijective. Every computable instance of WKL and RT3
has a solution H such that f is H-hypersurijective.

Corollary
RCA, +RT3 + WKL ¥ CNS
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ACA
/ l .
RTZ ........ WKL
1 l |
SRT3 -+++» LNS WWKL

Py
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