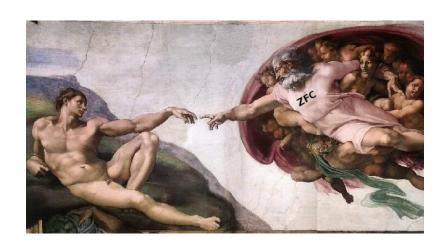
Introduction aux Mathématiques à rebours

Ludovic PATEY

9 octobre 2017



Mathématiques infinitaires

Théorème

SÉPARATIONS

Axiomes Théorème
$$A_1,\ldots,A_n\Rightarrow T$$

Axiomes Théorème
$$A_1, \ldots, A_n \Leftarrow T$$

Arithmétique du second ordre

$$f ::= t_1 = t_2 \mid t_1 < t_2 \mid t_1 \in X \mid f_1 \lor f_2$$

 $\mid \neg f \mid \forall x.f \mid \exists x.f \mid \forall X.f \mid \exists X.f$

 $t := 0 | 1 | x | t_1 + t_2 | t_1 \cdot t_2$

(Hilbert et Bernays)

Thèse de Church-Turing Cette définition est indépendante du langage de programmation choisi.

Arithmétique de Robinson

1.
$$m + 0 = m$$

2.
$$m + (n + 1) = (m + n) + 1$$

3.
$$m \times 0 = 0$$

4.
$$m \times (n+1) = (m \times n) + m$$

5.
$$m + 1 \neq 0$$

6.
$$m + 1 = n + 1 \rightarrow m = n$$

7.
$$\neg (m < 0)$$

8.
$$m < n + 1 \leftrightarrow (m < n \lor m = n)$$

$$\exists X \forall n (n \in X \Leftrightarrow \varphi(n))$$

pour toute formule $\varphi(n)$ où X est libre.

- \triangleright Σ_1^0 : définissable par une formule $\exists n.\phi$
- $ightharpoonup \Pi_1^0$: définissable par une formule $\forall n.\phi$
- \blacktriangleright Δ_1^0 : à la fois Σ_1^0 et Π_1^0

où ϕ est une formule ne contenant que des quantificateurs bornés.

Hiérarchie arithmétique

- \triangleright Σ_1^0 : définissable par une formule $\exists n.\phi$
- ▶ Π_1^0 : définissable par une formule $\forall n.\phi$
- \blacktriangleright Δ_1^0 : à la fois Σ_1^0 et Π_1^0

où ϕ est une formule ne contenant que des quantificateurs bornés.

Calculable = définissable par un prédicat Δ_1^0

SÉPARATIONS

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \Rightarrow \exists X \forall n(n \in X \Leftrightarrow \varphi(n))$$

où $\varphi(n)$ est une formule Σ_1^0 où X est libre, et ψ est une formule Π_1^0 .

$$\varphi(0) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \Rightarrow \forall n\varphi(n)$$

pour toute formule $\varphi(n)$

Schéma d'induction Σ_1^0

$$\varphi(0) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \Rightarrow \forall n\varphi(n)$$

où $\varphi(n)$ est une formule Σ_1^0

équivalent à

Schéma de compréhension bornée Σ_1^0

$$\forall p \exists X \forall n (n \in X \Leftrightarrow n$$

où $\varphi(n)$ est une formule Σ_1^0 où X est libre.

Schéma d'induction Σ_1^0

$$\varphi(0) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \Rightarrow \forall n\varphi(n)$$

où $\varphi(n)$ est une formule Σ_1^0

RCA_0

Arithmétique de Robinson

$$m+1 \neq 0$$

 $m+1 = n+1 \rightarrow m = n$
 $\neg (m < 0)$
 $m < n+1 \leftrightarrow (m < n \lor m = n)$

$$m + 0 = m$$

 $m + (n + 1) = (m + n) + 1$
 $m \times 0 = 0$
 $m \times (n + 1) = (m \times n) + m$

SÉPARATIONS

Schéma d'induction Σ_1^0

$$\varphi(0) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1))$$

\Rightarrow \forall n\varphi(n)

où $\varphi(n)$ est une formule Σ_1^0

Schéma de compréhension Δ_1^0

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \Rightarrow \exists X \forall n(n \in X \Leftrightarrow \varphi(n))$$

où $\varphi(n)$ est une formule Σ^0_1 où X est libre, et ψ est une formule Π_1^0 .

RCA₀ capture les mathématiques calculables

$$\mathcal{M} = (\omega, \{X : X \text{ calculable } \}, +, \cdot <)$$

Les mathématiques sont calculatoirement très structurées

Presque tous les théorèmes sont empiriquement équivalents à un parmi cinq ensembles d'axiomes. П¹СА **ATR** ACA WKL RCA₀

- ▶ Le lemme de couverture de Heine/Borel : Toute couverture de l'intervalle [0, 1] par une séquence d'ouverts admet une sous-couverture finie.
- ► Toute fonction à valeurs réelles sur [0, 1] est bornée.
- ▶ Le théorème de complétude de Gödel : tout ensemble dénombrable d'énoncés dans le calcul des prédicats admet un modèle dénombrable.
- ➤ Tout anneau commutatif dénombrable admet un idéal premier.
- ➤ Tout corps dénombrable de caractéristique 0 admet une unique cloture algébrique
- ▶ Le théorème de point fixe de Brouwer : Toute fonction uniformément continue sur [0, 1]ⁿ admet un point fixe.

ENONCÉS ÉQUIVALENTS À ACA

- ▶ Toute suite de réels croissante bornée a un supremum.
- ▶ Le théorème de Bolzano/Weierstrass : Toute suite de réels a une sous-suite convergente.
- ▶ Tout anneau commutatif dénombrable a un idéal maximal.
- ► Tout espace vectoriel sur ℚ admet une base.
- ➤ Tout corps dénombrable de caractéristique 0 a une base de transcendance.
- ► Le lemme de König : Tout arbre infini à branchement fini admet un chemin infini.
- ▶ Le théorème de Ramsey pour les coloriages de [N]³.

ENONCÉS ÉQUIVALENTS À ATR

- ▶ Toute paire d'ordres bien-fondés dénombrables est comparables.
- ► Le théorème d'Ulm : Les p-groupes abéliens réduits dénombrables ayant les mêmes invariants d'Ulm sont isomorphes.
- ▶ Le théorème de séparation de Lusin : toute paire d'ensembles analytiques disjoints peut être séparée par un ensemble borélien.
- ▶ Tout sous-ensemble ouvert de $[\mathbb{N}]^{\mathbb{N}}$ a la propriété de Ramsey.

ENONCÉS ÉQUIVALENTS À Π¹CA

- ▶ Tout arbre a un sous-arbre parfait maximal.
- ▶ Le théorème de Cantor/Bendixson : Tout sous-ensemble fermé de R est l'union d'un ensemble dénombrable et d'un ensemble parfait.
- ▶ Tout groupe abélien dénombrable est la somme directe d'un groupe divisible et d'un groupe réduit.
- ▶ Tout ensemble G_δ a la propriété de Ramsey.

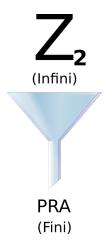
PROGRAMME DE HILBERT

Justification des méthodes infinitaires pour prouver le fini

Réductionnisme finitaire :

$$T \vdash \varphi \Rightarrow PRA \vdash \varphi$$
 pour φ une formule Π^0_1

"Au moins 85% des mathématiques sont réductibles à des méthodes finitaires" (Stephen Simpson)



THÉORÈME DE RAMSEY

 $[X]^n$ est l'ensemble des *n*-uplets non-ordonnés dans X

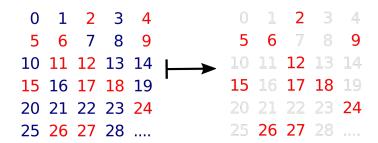
Un *k*-coloriage de $[X]^n$ est une fonction $f:[X]^n \to k$

Un ensemble $H \subseteq X$ est homogène pour f si $|f([H]^n)| = 1$.

Tout *k*-coloriage de $[\mathbb{N}]^n$ admet un ensemble homogène infini.

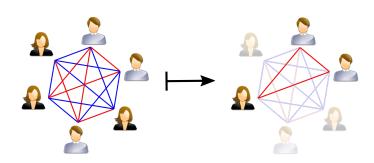
Toute k-partition de \mathbb{N} admet une partie infinie.

SÉPARATIONS



CONTEXTE

 RT^2_k Tout k-coloriage d'une clique infinie admet une sous-clique infinie monochromatique.

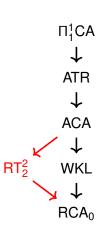


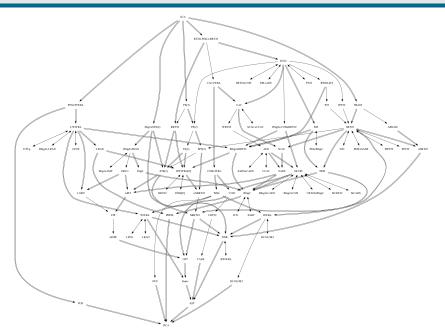
Les mathématiques sont calculatoirement très structurées

Presque tous les théorèmes sont empiriquement équivalents à un parmi cinq ensembles d'axiomes.

Presque tous les théorèmes sont empiriquement équivalents à un parmi cinq ensembles d'axiomes.

Exceptée la théorie de Ramsey...





$$\omega$$
-structure $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$

- (i) ω est l'ensemble des entiers standards
- (ii) < est l'ordre naturel sur les entiers
- (iii) + et · sont les opérations standards sur les entiers
- (iv) $S \subseteq \mathcal{P}(\omega)$

Une ω -structure est déterminée par son second ordre \mathcal{S} .

Idéal de Turing ${\cal M}$

- \blacktriangleright $(\forall X \in \mathcal{M})(\forall Y <_T X)[Y \in \mathcal{M}]$
- \blacktriangleright $(\forall X, Y \in \mathcal{M})[X \oplus Y \in \mathcal{M}]$

Exemples

- ► {X : X est calculable }
- ▶ $\{X: X \leq_T A \land X \leq_T B\}$ pour des ensembles A et B

Soit
$$\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$$
 une ω -structure

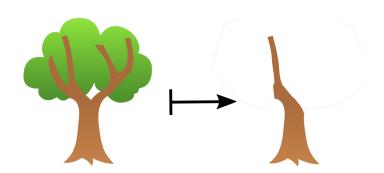
$$\mathcal{M} \models \mathsf{RCA}_0$$

\mathcal{S} est un idéal de Turing

Certains théorèmes peuvent être vus comme des problèmes.

Lemme de König

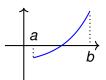
Tout arbre infini à branchement fini admet un chemin infini.



Certains théorèmes sont plus calculables que d'autres.

Théorème des valeurs intermédiaires

Pour toute fonction continue f sur un intervalle [a, b] tel que $f(a) \cdot f(b) < 0$, il existe un réel $x \in [a, b]$ tel que f(x) = 0.



Lemme de König

Tout arbre infini à branchement fini admet un chemin infini.

Soit \mathcal{M} un idéal de Turing et P, Q des problèmes.

Satisfaction

$$\mathcal{M} \models \mathsf{P}$$

si toute instance de P dans \mathcal{M} a une solution dans \mathcal{M} .

Implication calculatoire

$$P \models_{c} Q$$

si tout idéal de Turing satisfaisant P satisfait Q.

Soient deux problèmes P et Q.

Comment prouver que $RCA_0 + P \nvdash Q$?

Construire un idéal de Turing \mathcal{M} tel que

- $ightharpoonup \mathcal{M} \models \mathsf{P}$
- $ightharpoonup \mathcal{M} \not\models Q$

Choisir une instance / de Q sans solution calculable en /

Commencer avec $\mathcal{M}_0 = \{Z : Z \leq_T I\}$

Etant donné un idéal de Turing $\mathcal{M}_n = \{Z : Z \leq_T U\}$ pour un ensemble U,

Choisir une instance / de Q sans solution calculable en /

Commencer avec $\mathcal{M}_0 = \{Z : Z \leq_T I\}$

Etant donné un idéal de Turing $\mathcal{M}_n = \{Z : Z \leq_T U\}$ pour un ensemble U,

1. choisir une instance $X \in \mathcal{M}_n$ de P

PROUVER QUE $RCA_0 + P \vdash Q$

Choisir une instance / de Q sans solution calculable en /

Commencer avec
$$\mathcal{M}_0 = \{Z : Z \leq_T I\}$$

Etant donné un idéal de Turing $\mathcal{M}_n = \{Z : Z \leq_T U\}$ pour un ensemble U,

- 1. choisir une instance $X \in \mathcal{M}_n$ de P
- 2. choisir une solution Y de X

PROUVER QUE $RCA_0 + P \vdash Q$

Choisir une instance / de Q sans solution calculable en /

Commencer avec
$$\mathcal{M}_0 = \{Z : Z \leq_T I\}$$

Etant donné un idéal de Turing $\mathcal{M}_n = \{Z : Z \leq_T U\}$ pour un ensemble U,

- 1. choisir une instance $X \in \mathcal{M}_n$ de P
- 2. choisir une solution Y de X
- 3. définir $\mathcal{M}_{n+1} = \{Z : Z \leq_T Y \oplus U\}$

QUESTIONS OUVERTES

Exemples

CONTEXTE

- ▶ {*X* : *X* est low}
- \blacktriangleright {X : $A \not\leq_{\mathcal{T}} X$ } pour un ensemble A
- ► {*X* : *X* est hyperimmune-free}

SÉPARATIONS

Soit une propriété de faiblesse \mathcal{W} .

Un problème P préserve \mathcal{W} si pour tout $Z \in \mathcal{W}$, toute instance Z-calculable X de P admet une solution Y telle que $Y \oplus Z \in \mathcal{W}$

I emma Si P préserve W et non Q, alors RCA₀ +P \nvdash Q

I EMME FAIRLE DE KÖNIG

 $2^{<\omega}$ est l'ensemble des chaînes binaires finies

Un arbre binaire est un ensemble $T \subseteq 2^{<\omega}$ clos par préfixes

Un chemin à travers T est une séquence infinie P telle que tous les segments initiaux sont dans T

WKI

Tout arbre binaire infini admet un chemin infini

Soit W la collection des ensembles qui ne calculent pas le problème de l'arrêt

WKL préserve W contrairement à ACA

SÉPARATIONS

 $f: [\mathbb{N}]^{n+1} \to k$ est stable si pour tout $\sigma \in [\mathbb{N}]^n$, $\lim_{y} f(\sigma, y)$ existe.

 SRT_k^n : RT_k^n restreint aux coloriages stables.

Un ensemble infini C est \vec{R} -cohésif for une séquence R_0, R_1, \ldots si pour tout i, soit $C \subset^* R_i$ soit $C \subset^* \overline{R}_i$.

COH: Toute collection d'ensembles a un ensemble cohésif.

Ø'-calculable

$$RT_k^n$$

stable calculable

$$\Leftrightarrow \mathsf{RT}^{n+1}_k$$

SÉPARATIONS

∅′-calculable

 RT_k^n

stable calculable

"Tout ensemble Δ_2^0 a un sous-ensemble ou un sur-ensemble infini"

SRT₂²

SÉPARATIONS

$$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{COH} \land \mathsf{SRT}_2^2$$
.

Etant donné $f: [\mathbb{N}]^2 \to 2$, définir $\langle R_x : x \in \mathbb{N} \rangle$ par

$$R_X = \{y : f(x, y) = 1\}$$

Par COH, il existe un ensemble \vec{R} -cohésif C.

$$f: [C]^2 \rightarrow 2$$
 est une instance de SRT_2^2

$$RCA_0 \nvdash COH \rightarrow SRT_2^2$$

(Hirschfeldt, Jocksuch, Kjos-Hanssen, Lempp, and Slaman)

En préservant $W = \{X : X \text{ ne calcule pas d'ensemble f-homogène } \}$ avec un forcing de Mathias calculable.

$$\mathsf{RCA}_0 \nvdash \mathsf{SRT}_2^2 \to \mathsf{COH}$$

(Chong, Slaman and Yang)

En utilisant un modèle non-standard contenant seulement des ensembles low.

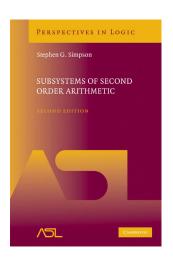
Questions dont la résolution peut apporter de nouvelles preuves plus élémentaires.

Théorème de Hindman: Pour tout *k*-coloriage des entiers, il existe un ensemble infini sur lequel les sommes finies sont monochromatiques.

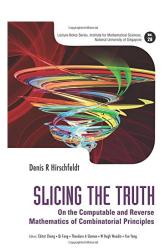
	0	1	2	3	4
	5	6	7	8	9
ı	10	11	12	13	

$$\left\{\begin{array}{ccc} 3 & 3+5 & 3+5+9 \\ 5 & 3+9 \\ 9 & 5+9 \end{array}\right\}$$

Quelle est la force exacte du théorème de Hindman?



Subsystems of second-order arithmetic



Slicing the truth

REFERENCES

- David Hilbert and Paul Bernays.

 Grundlagen der Mathematik. I/Foundations of mathematics. I. Part A. Prefaces and §§1–2.

 College Publications, London, 2011.
- Stephen G. Simpson.
 Partial realizations of Hilbert's Program.
 J. Symbolic Logic, 53(2):349–363, 1988.
- W. W. Tait.
 Finitism.
 Journal of Philosophy, 78(9):524–546, 1981.