The strength of Ramsey's theorem under reducibilities

Ludovic PATEY *PPS, Paris 7*

April 20, 2015

STRENGTH OF A THEOREM

Some theorems are more effective than others.

Theorem (Intermediate value theorem)

For every continuous function f over [a,b] and every $y \in [f(a),f(b)]$, there is some $x \in [a,b]$ such that f(x) = y.

Theorem (König's lemma)

Every infinite, finitely branching tree has an infinite path.

STRENGTH OF A THEOREM

Provability strength

- ▶ Reverse mathematics
- ► Intuitionistic reverse mathematics

Computational strength

- ► Computable reducibility
- Uniform reducibility

Provability approach

REVERSE MATHEMATICS

Goal

Determine which axioms are required to prove ordinary theorems in reverse mathematics.

- ► Simpler proofs
- ► More insights

Subsystems of second-order arithmetic.

BASE THEORY RCA₀

- ► Basic Peano axioms
- Σ_1^0 induction scheme

$$(\varphi(0) \land \forall n.(\varphi(n) \to \varphi(n+1))) \to \forall n.\varphi(n)$$

where $\varphi(n)$ is any Σ_1^0 formula of L_2

• Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X. \forall n. (x \in X \leftrightarrow \varphi(n))$$

where $\varphi(n)$ is any Σ_1^0 formula of L_2 in which X does not occur freely and $\psi(n)$ is any Π_1^0 formula of L_2 .

HOW TO THINK ABOUT RCA₀?

RCA₀ captures computable mathematics

RCA₀ has model $\mathcal{M} = \{\omega, S, <, +, \cdot\}$ where

- \blacktriangleright ω is the set of the standard integers
- ► $S = \{X \in 2^{\omega} : X \text{ is computable } \}$ is the second-order part

Computational approach

THEOREMS AS PROBLEMS

Many theorems P are of the form

$$(\forall X)[\Phi(X) \to (\exists Y)\Psi(X,Y)]$$

where Φ and Ψ are arithmetic formulas.

We may think of P as a class of problems.

- ► An X such that $\Phi(X)$ holds is an instance.
- ▶ A Y such that $\Psi(X, Y)$ holds is a solution to X.

THEOREMS AS PROBLEMS

Examples:

- ► (König's lemma)
 Every infinite, finitely branching tree has an infinite path.
- ► (Ramsey's theorem) Every *k*-coloring has an infinite monochromatic subset.
- (The atomic model theorem)
 Every complete atomic theory has an atomic model.
- ▶ ..

COMPUTABLE REDUCIBILITY

Definition (Computable reducibility)

A theorem P is computably reducible to a theorem Q if every P-instance I computes a Q-instance J such that for every solution X to J, $X \oplus I$ computes a solution to I.

Intuition:

If $P \leq_c Q$ then solving Q is harder than solving P.

PROVABILITY VS COMPUTATIONAL APPROACH

If we forget induction,

$$P \leq_c Q$$

can be seen as

$$RCA_0 \vdash Q \rightarrow P$$

where only one application of Q is allowed.

Ramsey's theorem

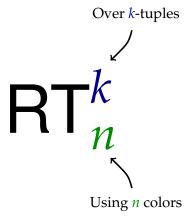
Given some size *s*, every sufficiently large collection of objects has a sub-collection of size *s*, whose objects satisfy some structural properties.

Definition

Given a coloring $f : [\mathbb{N}]^n \to k$, a set H is f-homogeneous if there exists a color i < k such that $f([H]^n) = i$.

Definition (Ramsey's theorem)

Every coloring $f: [\mathbb{N}]^n \to k$ has an infinite f-homogeneous set.



Fix the number of colors n.

RAMSEY'S THEOREM FOR k-TUPLES

Theorem (Jockusch, 1972)

Every computable coloring $f: [\mathbb{N}]^k \to n$ has a Π^0_k infinite f-homogeneous set.

Theorem (Jockusch, 1972)

For every $k \ge 3$, there is a computable coloring $f : [\mathbb{N}]^k \to n$ such that every infinite f-homogeneous set computes $\emptyset^{(k-2)}$.

RAMSEY'S THEOREM FOR k-TUPLES

Theorem (Simpson, 2009) For each $k_1, k_2 \ge 3$, RCA₀ $\vdash \mathsf{RT}_n^{k_1} \leftrightarrow \mathsf{RT}_n^{k_2}$.

What about RT_n^2 ?

RAMSEY'S THEOREM FOR PAIRS

Theorem (Seetapun, 1995)

For every computable coloring $f: [\mathbb{N}]^2 \to n$ and every non-computable set C, there is an infinite f-homogeneous set $H \not\geq_T C$.

Corollary

 RT_n^2 does not imply RT_n^3 over RCA_0 .

When $3 \le k_1 < k_2$, the proof of

$$\mathsf{RCA}_0 \vdash \mathsf{RT}_n^{k_1} \to \mathsf{RT}_n^{k_2}$$

involves multiple applications of $RT_n^{k_1}$.

How many applications of $\mathsf{RT}_n^{k_1}$ are necessary?

Theorem (Jockusch, 1972)

For every $k \geq 2$, there is a computable coloring $f : [\mathbb{N}]^k \to n$ with no Σ_k^0 infinite f-homogeneous set.

Corollary

For every $k \geq 2$, $\mathsf{RT}_n^k \not\leq_c \mathsf{RT}_n^{k+1}$.

At least 2 applications of RT_n^k are necessary to prove RT_n^{k+1} .

Theorem (Cholak, Jockusch, Slaman, 2001)

For every $k \ge 2$, every set $P \gg \emptyset^{(k-1)}$, and every computable coloring $f : [\mathbb{N}]^k \to n$, there is an infinite f-homogeneous set H such that $H' \le_T P$.

- ► At most 3 applications of RT_n^3 are necessary to prove RT_n^4
- ► Exactly 2 applications of RT_n^k are necessary to prove RT_n^{k+1} whenever $k \ge 4$.

SUMMARY FOR A FIXED *n*

$$RT_{n}^{k}$$

$$RT_{n}^{k}$$

$$\downarrow$$

$$RT_{n}^{n}, k \geq 3$$

$$\downarrow$$

$$RT_{n}^{3}$$

$$\downarrow$$

$$RT_{n}^{2}$$

$$RT_{n}^{2}$$

Over RCA₀

Over \leq_c

Fix the size of tuples k.

Theorem (Folklore)

For every $n, m \geq 2$, $\mathsf{RCA}_0 \vdash \mathsf{RT}_n^k \leftrightarrow \mathsf{RT}_m^k$

Proof for $m = n^2$.

- ► Take a coloring $f : [\mathbb{N}]^k \to n^2$
- ▶ Define $g : [\mathbb{N}]^k \to n$ by merging colors by blocks of size n
- ► Apply RT_n^k to g to obtain H such that $|f([H]^2)| \le n$.
- ► Apply again RT_n^k to f restricted to H.

Theorem (Patey)

Fix some $n > m \ge 2$ and n sets B_0, \ldots, B_{n-1} whose complements are hyperimmune. For every m-partition $A_0 \cup \cdots \cup A_{m-1} = \mathbb{N}$, there exists an infinite subset H of some A_i and a pair $j_0 < j_1 < n$ such that every infinite H-computable set intersects both B_{j_0} and B_{j_1} .

Theorem

For every $n > m \ge 2$, $RT_n^2 \not\leq_c RT_m^2$.

Proof (Part I).

- ▶ Define a Δ_2^0 partition $B_0 \cup \cdots \cup B_{n-1} = \mathbb{N}$ such that the \overline{B} 's are hyperimmune.
- ► Consider its Δ_2^0 approximation function as a computable instance of RT_n^0 .

Theorem

For every $n > m \ge 2$, $\mathsf{RT}_n^2 \not\le_c \mathsf{RT}_m^2$.

Proof (Part II).

- ► Fix computable instance $f : [\mathbb{N}]^2 \to m$ of RT_m^2 .
- ► Construct a p-cohesive set C such that the \overline{B} 's are hyperimmune relative to C.
- ▶ Define $\tilde{f}: \mathbb{N} \to m$ by $\tilde{f}(x) = \lim_{s \in C} f(x, s)$
- Apply previous theorem to obtain an infinite f̃-homogeneous set H such that H ⊕ C does not compute an infinite set homogeneous for the B's.

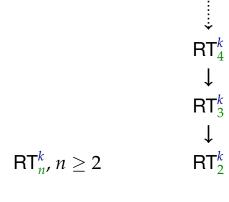
Theorem (Patey)

For every $n > m \ge 2$, $\mathsf{RT}^k_n \not\le_c \mathsf{RT}^k_m$.

Proof.

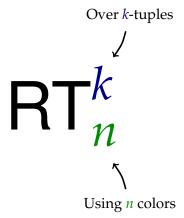
By induction over $k \ge 2$ using prehomogeneous sets.

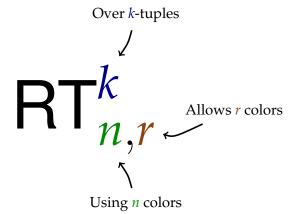
SUMMARY FOR A FIXED k



Over RCA₀

Over \leq_c





THIN SET THEOREM

 TS_n^k

$$\mathsf{RT}^k_{n,n-1}$$

ALLOWING MORE COLORS

Theorem (Wang, 2014)

Fix some k and some sufficiently large n. For every computable instance f of TS_n^k and every non-computable set C, there is an infinite solution to f which does not compute C.

Corollary

For every k and sufficiently large n, TS_n^k does not imply RT_2^3 over RCA_0 .

ALLOWING MORE COLORS

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer, 2015) $RCA_0 \vdash TS_n^{ks+1} \rightarrow TS_n^{k+1}$

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer, 2015) $RCA_0 \vdash TS_{2^k}^{k+2} \rightarrow TS_2^3$

ALLOWING MORE COLORS

Theorem (Patey)

For every $n \geq 2$, TS_{n+1}^2 does not imply TS_n^2 over RCA_0 .

Theorem (Patey)

Fix some $m \ge 2$. For every k and sufficiently large n, TS_n^k does not imply TS_m^2 over RCA_0 .

Summary for k = 2

Over RCA₀

CONCLUSION

- ► Computable reducibility gives a more fine-grained analysis than reverse mathematics.
- Ramsey's theorem is not robust for computable reducibility.
- Changing the number of allowed colors has a great impact on the strength of Ramsey's theorem.

REFERENCES

Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman.

On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, pages 1–55, 2001.

François G Dorais, Damir D Dzhafarov, Jeffry L Hirst, Joseph R Mileti, and Paul Shafer.

On uniform relationships between combinatorial problems. arXiv preprint arXiv:1212.0157, 2012.

Carl G Jockusch.

Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–280, 1972.

Ludovic Patey.

The weakness of being cohesive, thin or free in reverse mathematics. Submitted, 2015.

Wei Wang.

Some logically weak ramseyan theorems. Advances in Mathematics, 261:1–25, 2014.

QUESTIONS

Thank you for listening!