
INTRODUCTION RAMSEY’S THEOREM KÖNIG’S LEMMA Conclusion

Ramsey’s theorem and compactness

Ludovic PATEY
PPS, Paris 7

November 19, 2015

November 19, 2015



INTRODUCTION RAMSEY’S THEOREM KÖNIG’S LEMMA Conclusion

THEOREMS AS PROBLEMS

Many theorems P are of the form

(∀X)[Φ(X)→ (∃Y)Ψ(X,Y)]

where Φ and Ψ are arithmetic formulas.

We may think of P as a class of problems.
I An X such that Φ(X) holds is an instance.
I A Y such that Ψ(X,Y) holds is a solution to X.
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THEOREMS AS PROBLEMS

Examples:

I (König’s lemma)
Every infinite, finitely branching tree has an infinite path.

I (Ramsey’s theorem)
Every k-coloring has an infinite monochromatic subset.

I (The atomic model theorem)
Every complete atomic theory has an atomic model.

I ...
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TURING IDEALS

A Turing ideal is a collection of setsM closed under
I the Turing reduction: (∀X ∈M)(∀Y ≤T X)[Y ∈M]

I the effective join: (∀X,Y ∈M)[X ⊕ Y ∈M]

Example:
I {X : X is computable}
I {X : X ≤T A ∧ X ≤T B} for some sets A and B
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COMPARE THEOREMS

A Turing idealM satisfies a theorem P (writtenM |= P)
if every P-instance inM has a solution inM.

A theorem P computably entails a theorem Q (written P `c Q)
if every Turing ideal satisfying P satisfies Q.
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SEPARATING THEOREMS

Fix two theorems P and Q.

How to prove that P 6` Q?

Build a Turing idealM such that
I M |= P
I M 6|= Q
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SEPARATING THEOREMS

Pick a Q-instance I with no I-computable solution.

Start withM0 = {Z : Z ≤T I}.

Given a Turing idealMn = {Z : Z ≤T U} for some set U,

1. pick some P-instance X ∈Mn

2. choose a solution Y to X
3. letMn+1 = {Z : Z ≤T Y⊕U}.
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SEPARATING THEOREMS

Beware, while adding sets toM,
we may add a solution to the Q-instance!
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SEPARATING THEOREMS

An avoidance property is a collection of sets closed upwards
under the Turing reducibility.

Examples
I {X : A ≤T X} for some set A
I {X : X is of PA degree}
I {X : X computes a Martin-Löf random}
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SEPARATING THEOREMS

Fix a property P .

A statement P avoids P if for every Z 6∈ P , every Z-computable
P-instance X has a solution Y such that Y⊕ Z 6∈ P

Lemma
If P avoids P but Q does not, then P 6` Q
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Ramsey’s theorem
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RAMSEY’S THEOREM

Fix a coloring f : [N]n → k. A set H is f -homogeneous if there
exists a color i < k such that f ([H]n) = i.

Ramsey’s theorem
Every coloring f : [N]n → k has an infinite f -homogeneous set.
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CONE AVOIDANCE

A theorem P avoids cones if it avoids {A0,A1, . . . } for every
countable sequence of non-computable sets A0,A1, . . . .

I RT3
2 does not avoid {∅′} (Jockusch, 1972)

I RT2
2 avoids cones (Seetapun, 1995)
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AVOIDANCE VS STRONG AVOIDANCE

Avoidance
≡

effective weakness
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STRONG AVOIDANCE

Fix a property P .

A statement P strongly avoids P if for every Z 6∈ P , every
P-instance X has a solution Y such that Y⊕ Z 6∈ P
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AVOIDANCE VS STRONG AVOIDANCE

Strong avoidance
≡

combinatorial weakness
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STRONG CONE AVOIDANCE

A theorem P strongly avoids cones if it strongly avoids
{A0,A1, . . . } for every countable sequence of non-computable
sets A0,A1, . . . .

I RT2
2 does not strongly avoid {∅′} (Jockusch, 1972)

I RT1
2 strongly avoids cones (Dzhafarov and J., 2009)
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König’s lemma
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KÖNIG’S LEMMA

A tree is a subset of N<N downward-closed under the prefix
relation.

A tree T is finitely branching if for every σ ∈ T, there are
finitely many n’s such that σn ∈ T.

König’s lemma
Every infinite, finitely branching tree has an infinite path.
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KÖNIG’S LEMMA

A tree is binary if it is a subset of 2<N.

weak König’s lemma
Every infinite, binary tree has an infinite path.
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KÖNIG’S LEMMA

A binary tree T has positive measure if

lim
s

|{σ ∈ T : |σ| = s|
2s > 0

weak weak König’s lemma
Every binary tree of positive measure has an infinite path.
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AVOIDANCE

I KL does not avoid {∅′} (J., Lewis, Remmel, 1991)
I WKL avoids cones (J. and Soare, 1972)

I WKL does not avoid PA degrees (Solovay)
I WWKL avoids PA degrees (Kučera, 1985)
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SUMMARY

Here, diagram
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RAMSEY VS KÖNIG

A function is hyperimmune if it is not dominated by any
computable function.

I RT2
2 does not avoid hyp. functions (Jockusch, 1972)

I WKL avoids hyp. functions (J. and Soare, 1972)

I RT2
2 avoids PA degrees (Liu, 2012)

I RT1
2 strongly avoids PA degrees (Liu, 2012)
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CONSTANT-BOUND ENUMERATIONS

A k-enumeration of a class C ⊆ NN is a sequence E0,E1, . . .
such that for each n ∈ N,

I En contains k strings of length n
I C ∩ [En] 6= ∅

A constant-bound enumeration of C is a k-enum for some k ∈ ω.
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C.B-ENUM AVOIDANCE

A theorem P (strongly) avoids c.b-enums if it (strongly) avoids
the c.b-enum’s of C for every class C ⊆ 2N.

I WWKL does not avoid c.b-enums (Liu, 2015)
I RT2

2 avoids c.b-enums (Liu, 2015)
I RT1

2 strongly avoids c.b-enums (Liu, 2015)
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C.B-ENUM AVOIDANCE

If a theorem P avoids c.b-enums then

I P avoids cones

I P avoids PA degrees

Any c.b-enum of C = {X : X is a completion of PA}
computes a member of C.

RT2
2 ∧WWKL 6`c WKL
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Which theorems avoid c.b-enums?



INTRODUCTION RAMSEY’S THEOREM KÖNIG’S LEMMA Conclusion

RAMSEY’S THEOREM

RTn
k

Over n-tuples

Using k colors
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RAMSEY’S THEOREM

RTn
k,r

Over n-tuples

Using k colors

Allows r colors
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THIN SET THEOREM

TSn
k RTn

k,k−1
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ALLOWING MORE COLORS

For every n and sufficiently large k’s
I TSn

k strongly avoids cones (Wang, 2014)
I TSn

k strongly avoids c.b-enums (P.)

I The free set theorem avoids c.b-enums (P.)
I The rainbow Ramsey theorem avoids c.b-enums (P.)
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Can RT2
2 avoid arbitrary paths?
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PATH AVOIDANCE

A theorem P avoids paths if it avoids C for every closed
class C ⊆ NN.

I Cohesiveness avoids paths (P.)
I The atomic model theorem avoids paths (P.)
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PATH AVOIDANCE

Given a class C ⊆ NN, deg(C) = {deg(X) : X ∈ C}.

Simpson’s embedding lemma
For every Π0

1 class C ⊆ 2N and every Σ0
3 class D ⊆ NN,

there is a Π0
1 class E ⊆ 2N such that

deg(E) = deg(C) ∪ deg(D)
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PATH AVOIDANCE

If for some P-instance X with no X-computable solution

DX = {Y : Y is a solution to X}

is Σ0
3, then P does not avoid paths.

I RT2
2 does not avoid paths (P.)

I RT1
2 does not strongly avoid paths (P.)
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Can RT2
2 avoid 1-enums?
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1-ENUM AVOIDANCE

A theorem P (strongly) avoids 1-enums if it (strongly) avoids
the 1-enum’s of C for every class C ⊆ 2N.

Every c.b-enum of a Π0
1 class computes a 1-enum.

I RT2
2 avoids 1-enums of Π0

1 classes (Liu, 2015)
I rainbow Ramsey’s theorem for pairs avoids 1-enums (P.)
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1-ENUM AVOIDANCE

Theorem (P.)
There is a class C ⊆ 2N

I with no computable 1-enum
I with a computable 2-enum (σ0, τ0), (σ1, τ1), . . .

I such that {n : C ∩ [σn] 6= ∅} is ∆0
2.

I RT2
2 does not avoid 1-enums (P.)
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Can RT2
2 simultaneously avoid

countably many c.b-enums?
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SIMULTANEOUS C.B-ENUM AVOIDANCE

A theorem P simultaneously avoids c.b-enums if it avoids the
c.b-enum’s of all the C’s for every countable sequence of classes
C0, C1, · · · ⊆ 2N.

If P avoids c.b-enums, then it simultaneously avoids c.b-enums
for every increasing countable sequences of classes.

I the Erdős-Moser theorem simu. avoids c.b-enums (P.)
I TS2

k+1 simultaneously avoids k c.b-enums (P.)
I TS2

k does not simultaneously avoid k c.b-enums (P.)
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CONCLUSION

I Ramsey’s theorem for pairs is effectively weak, but not
combinatorially.

I The free set, thin set, Erdös moser and rainbow Ramsey
theorems are combinatorially weak.

I Many Ramsey-type theorems have the ability to compute
paths through binary trees with no computable paths.
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QUESTIONS

Thank you for listening !
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