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THEOREMS AS PROBLEMS

Examples:

I (König’s lemma)
Every infinite, finitely branching tree has an infinite path.

I (Ramsey’s theorem)
Every k-coloring has an infinite monochromatic subset.

I (The atomic model theorem)
Every complete atomic theory has an atomic model.

I ...
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THEOREMS AS PROBLEMS

Many theorems P are of the form

(∀X)[Φ(X)→ (∃Y)Ψ(X,Y)]

where Φ and Ψ are arithmetic formulas.

We may think of P as a class of problems.
I An X such that Φ(X) holds is an instance.
I A Y such that Ψ(X,Y) holds is a solution to X.
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TURING IDEALS

A Turing ideal is a collection of setsM closed under
I the Turing reduction: (∀X ∈M)(∀Y ≤T X)[Y ∈M]

I the effective join: (∀X,Y ∈M)[X ⊕ Y ∈M]

Example:
I {X : X is computable }
I {X : X ≤T A ∧ X ≤T B} for some sets A and B
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COMPARE THEOREMS

A Turing idealM satisfies a theorem P (writtenM |= P)
if every P-instance inM has a solution inM.

A theorem P entails a theorem Q (written P ` Q) if every
Turing ideal satisfying P satisfies Q.
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SEPARATING THEOREMS

Fix two theorems P and Q.

How to prove that P 6` Q?

Build a Turing idealM such that
I M |= P
I M 6|= Q
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SEPARATING THEOREMS

Pick a Q-instance I with no I-computable solution.

Start withM0 = {Z : Z ≤T I}.

Given a Turing idealMn = {Z : Z ≤T U} for some set U,

1. pick some P-instance X ∈Mn

2. choose a solution Y to X
3. letMn+1 = {Z : Z ≤T Y⊕U}.
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SEPARATING THEOREMS

Beware, while adding sets toM,
we may add a solution to the Q-instance!
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SEPARATING THEOREMS

A weakness property is a collection of sets closed downwards
under the Turing reducibility.

Examples
I {X : X is low}
I {X : A 6≤T X} for some set A
I {X : X is hyperimmune-free}
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SEPARATING THEOREMS

Fix a property P .

A statement P preserves P if for every Z ∈ P , every
Z-computable P-instance X has a solution Y such
that Y⊕ Z ∈ P

Lemma
If P preserves P but Q does not, then P 6` Q
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SEPARATING THEOREMS

Let V witness that Q does not preserve P .
Start withM0 = {Z : Z ≤T V}⊆ P

Given a Turing idealMn = {Z : Z ≤T U} for some set U ∈ P ,
1. pick some P-instance X ∈Mn

2. choose a solution Y to X such that Y⊕U ∈ P
3. letMn+1 = {Z : Z ≤T U ⊕ Y}⊆ P .
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AN EXAMPLE

Given a sequence of non-c.e. sets A0,A1, . . .

P~A = {Z : the A’s are not Z-c.e.}

Theorem (Wei Wang)

I For every countable sequence of non-c.e. sets A0,A1, . . . , weak
König’s lemma, the Erdős-Moser theorem, and cohesiveness
preserve P~A.

I There is a countable sequence of non-c.e. sets A0,A1, . . . such
that the thin set theorem for pairs does not preserve P~A.
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SEPARATING THEOREMS

Fix two theorems P and Q.

How to design the property P
which will separate P from Q?
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The LST framework
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THE LST FRAMEWORK

Successful approach to separate Ramsey-type statements.

I EM 6` RT2
2 (Lerman, Solomon & Towsner)

I DNC 6` RWKL (Flood & Towsner)
I DNC 6` DNCh (Flood & Towsner)
I EM 6` TS2 (P.)
I TS2 6` RT2

2 (P.)
I RT2

2 6` TT2
2 (P.)

I ...
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THE LST FRAMEWORK

I Analyse the forcing notion to derive a one-step
diagonalization of P

I Generalize the diagonalization to handle multiple
iterations of P

I Abstract the diagonalization to have a property
independent of the partial order
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THE LST FRAMEWORK - ANALYSIS

I Let P be a forcing notion for constructing solutions to P
and G be the generic solution.

I Construct an instance I of Q such that the following set is
P-dense for each functional Γ:

{c ∈ P : c forces “ΓG is not a solution to I”}
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THE LST FRAMEWORK - ANALYSIS

By c forces “ΓG is not a solution to I” we mean

I either c forces ΓG outputs an invalid sub-solution to I

I or c forces ΓG is an incomplete solution

How can we ensure this density property?
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THE LST FRAMEWORK - ANALYSIS

Given some c ∈ P and some Γ, we can usually

I ∅′-effectively decide whether there is an extension of c such
that ΓG produces more information

I effectively find a finite set of extension candidates if the
answer is yes.
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THE LST FRAMEWORK - ANALYSIS

The nature of the ∅′-decidable question strongly
depends on the combinatorics of P and Q.
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THE LST FRAMEWORK - GENERALIZATION

I The partial order at the next iteration is PG0 , where G0 is a
solution to the first P-instance.

I The same Q-instance I must ensure that following set is
PY-dense for each functional Γ:

{c ∈ P : c forces “ΓG0⊕G1 is not a solution to I”}
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THE LST FRAMEWORK - GENERALIZATION

I By extending c ∈ P, we can obtain more information
about PG0 .

I The question over PG0 is parameterized by G0.

I We can box the question over PG0 into a question over P

The questions over P becomes very complicated
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THE LST FRAMEWORK - ABSTRACTION

I The boxing operation shows the ability to answer much
more general questions.

I Generic property about all Σ0
1 formulas.

“For each Σ0
1 formula ϕ(U), either ϕ(I) holds or ϕ(U) does

not hold for every Q-instance U.”

I The property becomes independent of the partial order.
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THE LST FRAMEWORK - ABSTRACTION

In particular, for each c ∈ P,

ϕc,Γ(U) = (∃d ≤ c)[d forces ΓG is an invalid solution to U]

For each c ∈ P, each p ∈ PG0 and each Σ0
1 formula ϕ(G0,V),

ϕc,p(U) = (∃d ≤ c)(∃q ≤ p)[d forces q 6∈ PG0 ∨ d, q force ϕ(G0,V)]
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CONCLUSION

I With the LST framework, we have a systematic method to
design a property separating two statements.

I The properties are independent of the partial order.

I The resulting properties are genericity notions: not helpful
to separate statements from cohesiveness.
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QUESTIONS

Thank you for listening!
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