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STRENGTH OF A THEOREM

Some theorems are more effective than others.

Theorem (Intermediate value theorem)
For every continuous function f over [a, b] and every y ∈ [f (a), f (b)],
there is some x ∈ [a, b] such that f (x) = y.

Theorem (König’s lemma)
Every infinite, finitely branching tree has an infinite path.
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STRENGTH OF A THEOREM

Provability strength
I Reverse mathematics
I Intuitionistic reverse mathematics

Computational strength
I Computable reducibility
I Uniform reducibility
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Provability approach
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REVERSE MATHEMATICS

Goal

Determine which axioms are required to prove ordinary
theorems in reverse mathematics.

I Simpler proofs
I More insights

Subsystems of second-order arithmetic.
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BASE THEORY RCA0

I Basic Peano axioms

I Σ0
1 induction scheme

(ϕ(0) ∧ ∀n.(ϕ(n)→ ϕ(n + 1)))→ ∀n.ϕ(n)

where ϕ(n) is any Σ0
1 formula of L2

I ∆0
1 comprehension scheme

∀n(ϕ(n)↔ ψ(n))→ ∃X.∀n.(n ∈ X↔ ϕ(n))

where ϕ(n) is any Σ0
1 formula of L2 in which X does not occur

freely and ψ(n) is any Π0
1 formula of L2.
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HOW TO THINK ABOUT RCA0 ?

RCA0 captures computable mathematics

RCA0 has modelM = {ω,S, <,+, ·}where
I ω is the set of the standard integers
I S = {X ∈ 2ω : X is computable } is the second-order part
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Computational approach



INTRODUCTION RAMSEY’S THEOREM THIN SET THEOREM

THEOREMS AS PROBLEMS

Many theorems P are of the form

(∀X)[Φ(X)→ (∃Y)Ψ(X,Y)]

where Φ and Ψ are arithmetic formulas.

We may think of P as a class of problems.
I An X such that Φ(X) holds is an instance.
I A Y such that Ψ(X,Y) holds is a solution to X.
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THEOREMS AS PROBLEMS

Examples:

I (König’s lemma)
Every infinite, finitely branching tree has an infinite path.

I (Ramsey’s theorem)
Every k-coloring has an infinite monochromatic subset.

I (The atomic model theorem)
Every complete atomic theory has an atomic model.

I ...
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COMPUTABLE REDUCIBILITY

Definition (Computable reducibility)
A theorem P is computably reducible to a theorem Q if
every P-instance I computes a Q-instance J such that for every
solution X to J, X ⊕ I computes a solution to I.

Intuition:
If P ≤c Q then solving Q is harder than solving P.
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PROVABILITY VS COMPUTATIONAL APPROACH

If we forget induction,

P ≤c Q

can be seen as

RCA0 ` Q→ P

where only one application of Q is allowed.
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Ramsey’s theorem
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RAMSEY’S THEORY

Given some size s, every sufficiently large
collection of objects has a sub-collection of size s,
whose objects satisfy some structural properties.
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RAMSEY’S THEOREM

Definition
Given a coloring f : [N]n → k, a set H is f -homogeneous if there exists
a color i < k such that f ([H]n) = i.

Definition (Ramsey’s theorem)
Every coloring f : [N]n → k has an infinite f -homogeneous set.
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RAMSEY’S THEOREM

RTk
n

Over k-tuples

Using n colors
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RAMSEY’S THEOREM

Fix the number of colors n.
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RAMSEY’S THEOREM FOR k-TUPLES

Theorem (Jockusch, 1972)
Every computable coloring f : [N]k → n has a Π0

k infinite
f -homogeneous set.

Theorem (Jockusch, 1972)
For every k ≥ 3, there is a computable coloring f : [N]k → n such that
every infinite f -homogeneous set computes ∅(k−2).



INTRODUCTION RAMSEY’S THEOREM THIN SET THEOREM

RAMSEY’S THEOREM FOR k-TUPLES

Theorem (Simpson, 2009)
For each k1, k2 ≥ 3, RCA0 ` RTk1

n ↔ RTk2
n .

What about RT2
n ?
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RAMSEY’S THEOREM FOR PAIRS

Theorem (Seetapun, 1995)
For every computable coloring f : [N]2 → n and every
non-computable set C, there is an infinite f -homogeneous set H 6≥T C.

Corollary
RT2

n does not imply RT3
n over RCA0.
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HOW MANY APPLICATIONS?

When 3 ≤ k1 < k2, the proof of

RCA0 ` RTk1
n → RTk2

n

involves multiple applications of RTk1
n .

How many applications of RTk1
n are necessary?
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HOW MANY APPLICATIONS?

Theorem (Jockusch, 1972)
For every k ≥ 2, there is a computable coloring f : [N]k → n with no
Σ0

k infinite f -homogeneous set.

Corollary
For every k ≥ 2, RTk

n 6≤c RTk+1
n .

At least 2 applications of RTk
n are necessary to prove RTk+1

n .
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HOW MANY APPLICATIONS?

Theorem (Cholak, Jockusch, Slaman, 2001)
For every k ≥ 2, every set P� ∅(k−1), and every computable
coloring f : [N]k → n, there is an infinite f -homogeneous set H such
that H′ ≤T P.

I At most 3 applications of RT3
n are necessary to prove RT4

n

I Exactly 2 applications of RTk
n are necessary to prove RTk+1

n
whenever k ≥ 4.
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SUMMARY FOR A FIXED n

RT2
n RT2

n

RTk
n, k ≥ 3 RT3

n

RT4
n

Over RCA0 Over ≤c
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RAMSEY’S THEOREM

Fix the size of tuples k.
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RAMSEY’S THEOREM

Theorem (Folklore)
For every n,m ≥ 2, RCA0 ` RTk

n ↔ RTk
m

Proof for m = n2.
I Take a coloring f : [N]k → n2

I Define g : [N]k → n by merging colors by blocks of size n
I Apply RTk

n to g to obtain H such that |f ([H]2)| ≤ n.
I Apply again RTk

n to f restricted to H.
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HOW MANY APPLICATIONS?

Theorem (P.)
Fix some n > m ≥ 2 and n sets B0, . . . ,Bn−1 whose complements are
hyperimmune. For every m-partition A0 ∪ · · · ∪ Am−1 = N, there
exists an infinite subset H of some Ai and a pair j0 < j1 < n such that
every infinite H-computable set intersects both Bj0 and Bj1 .
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HOW MANY APPLICATIONS?

Theorem
For every n > m ≥ 2, RT2

n 6≤c RT2
m.

Proof (Part I).

I Define a ∆0
2 partition B0 ∪ · · · ∪ Bn−1 = N such that the B’s

are hyperimmune.
I Consider its ∆0

2 approximation function as a computable
instance of RT2

n.
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HOW MANY APPLICATIONS?

Theorem
For every n > m ≥ 2, RT2

n 6≤c RT2
m.

Proof (Part II).

I Fix computable instance f : [N]2 → m of RT2
m.

I Construct a p-cohesive set C such that the B’s are
hyperimmune relative to C.

I Define f̃ : N→ m by f̃ (x) = lims∈C f (x, s)
I Apply previous theorem to obtain an infinite

f̃ -homogeneous set H such that H⊕C does not compute an
infinite set homogeneous for the B’s.
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HOW MANY APPLICATIONS?

Theorem (P.)
For every n > m ≥ 2, RTk

n 6≤c RTk
m.

Proof.
By induction over k ≥ 2 using prehomogeneous sets.
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SUMMARY FOR A FIXED k

RTk
n, n ≥ 2 RTk

2

RTk
3

RTk
4

Over RCA0 Over ≤c
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RAMSEY’S THEOREM

RTk
n

Over k-tuples

Using n colors
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RAMSEY’S THEOREM

RTk
n,r

Over k-tuples

Using n colors

Allows r colors
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THIN SET THEOREM

TSk
n RTk

n,n−1
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ALLOWING MORE COLORS

Theorem (Wang, 2014)
Fix some k and some sufficiently large n. For every instance f of TSk

n
and every non-computable set C, there is an infinite solution to f
which does not compute C.

Corollary
For every k and sufficiently large n, TSk

n does not imply RT3
2

over RCA0.
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ALLOWING MORE COLORS

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer, 2015)
RCA0 ` TSks+1

ns → TSk+1
n

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer, 2015)
RCA0 ` TSk+2

2k → TS3
2
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ALLOWING MORE COLORS

Tuples Strong avoidance Computes ∅′

TS1
k k ≥ 2 never

TS2
k k ≥ 3 k = 2

TS3
k k ≥ 7 k ≤ 4

Does any of TS3
5 or TS3

6 admit strong cone avoidance?
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ALLOWING MORE COLORS

Theorem (P.)
For every n ≥ 2, TS2

n+1 does not imply TS2
n over RCA0.

Theorem (P.)
Fix some m ≥ 2. For every k and sufficiently large n, TSk

n does not
imply TS2

m over RCA0.
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SUMMARY FOR k = 2

RT2
2

TS2
3

TS2
4

Over RCA0
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CONCLUSION

I Computable reducibility gives a more fine-grained
analysis than reverse mathematics.

I Ramsey’s theorem is not robust for computable
reducibility.

I Changing the number of allowed colors has a great impact
on the strength of Ramsey’s theorem.
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QUESTIONS

Thank you for listening!
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