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Abstract

A problem is a multivalued function from a set of instances to a set of solutions. We consider only
instances and solutions coded by sets of integers. A problem admits preservation of some computability-
theoretic weakness property if every computable instance of the problem admits a solution relative to
which the property holds. For example, cone avoidance is the ability, given a non-computable set A and
a computable instance of a problem P, to find a solution relative to which A is still non-computable.

In this article, we compare relativized versions of computability-theoretic notions of preservation which
have been studied in reverse mathematics, and prove that the ones which were not already separated
by natural statements in the literature actually coincide. In particular, we prove that it is equivalent to
admit avoidance of 1 cone, of ω cones, of 1 hyperimmunity or of 1 non-Σ0

1 definition. We also prove that
the hierarchies of preservation of hyperimmunity and non-Σ0

1 definitions coincide. On the other hand,
none of these notions coincide in a non-relativized setting.

1 Introduction

In this article, we classify computability-theoretic preservation properties studied in reverse mathematics,
namely cone avoidance, preservation of hyperimmunities, preservation of non-Σ0

1 definitions, among others.
Many of these preservation properties have already been separated using natural problems in reverse math-
ematics – that is, there is a natural problem which is known to admit preservation of one property but not
preservation of the other. The observation that emerges from our work is that those properties which have
not already been separated in fact coincide.1

Reverse mathematics is a foundational program whose goal is to determine the optimal axioms for proving
ordinary theorems. It uses subsystems of second-order arithmetics, with a base theory, RCA0, capturing
computable mathematics. See Simpson’s book [31] for a reference in reverse mathematics. A structure in
this language is a tuple (N,S,+N ,∗N ,<N ,0N ,1N), where N stands for the first-order part, and S for the set
of reals. We are in particular interested in structures in which the first-order part consists of the standard
integers ω, equipped with the natural operations. These structures are called ω-structures, and are fully
specified by their second-order part S. The choice of the axioms of RCA0 yields a nice characterization of
the second-order part of ω-models of RCA0 in terms of Turing ideals.

Definition 1.1. A Turing ideal is a collection of reals S ⊆ 2ω which is closed under the effective join and
downward-closed under the Turing reduction. In other words

(a) ∀X,Y ∈ S,X ⊕ Y = {2n ∶ n ∈X} ∪ {2n + 1 ∶ n ∈ Y } ∈ S

(b) ∀X ∈ S,∀Y ⩽T X,Y ∈ S

Many statements studied in reverse mathematics can be formulated as mathematical problems, with in-
stances and solutions. For example, weak König’s lemma (WKL) asserts that every infinite, finitely branching
subtree of 2<ω has an infinite path. Here, an instance is such a tree T , and a solution to T is an infinite path

1The authors are thankful to Mariya Soskova for interesting comments and discussions about cototal degrees.
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through it. An ω-structureM with second-order part S is a model of a problem P (writtenM ⊧ P) if every
instance in S has a solution in it. In this case we also say that P holds in S. In order to separate a problem
P from another problem Q in reverse mathematics, one usually constructs a Turing ideal S in which P holds,
but not Q. However, when closing the Turing ideal with solution to instances of P, one must be careful not
to make it a model of Q. This motivates the use of preservation properties.

Definition 1.2. Fix a collection of sets W ⊆ 2ω downward-closed under Turing reduction. A problem P
admits preservation of W if for every set Z ∈W and every Z-computable instance X of P, there is a solution
Y to X such that Z ⊕ Y ∈W.

The following basic lemma is at the core of separations in reverse mathematics.

Lemma 1.3. Suppose a problem P admits preservation of some collection W, but another problem Q does
not. Then there is a Turing ideal S ⊆W in which P holds, but not Q.

Proof. Since Q does not admit preservation of W, there is some Z ∈ W, and a Q-instance XQ ⩽T Z such
that for every solution Y to XQ, Z ⊕ Y /∈ W. We will build a Turing ideal S ⊆ W containing Z and in
which P holds. In particular, Q cannot hold in any such Turing ideal. We build a countable sequence of
sets Z0, Z1, . . . such that for every n ∈ ω, ⊕s<nZs ∈ W, and for every P-instance X ⩽T ⊕s<nZs, there is
some m ∈ ω such that Zm is a P-solution to X. Start with Z0 = Z. Having defined Z0, . . . , Zn−1, pick the
next P-instance X ⩽T ⊕s<nZs by ensuring that each instance will receive attention at a finite stage. Since P
admits preservation ofW, there is a P-solution Zn to X such that ⊕s⩽nZs ∈Wn. Then go to the next stage.
The collection S = {X ∶ (∃s)X ⩽T ⊕s<nZs} is a Turing ideal included in W in which P holds but not Q.

Many statements in reverse mathematics, mostly coming from Ramsey theory, have been separated by
looking at the appropriate computability-theoretic notion of preservation. We now detail some outstanding
ones, which will serve as a basis for our classification study.

1.1 Cone avoidance

Perhaps the most important property of preservation in reverse mathematics is the notion of cone avoidance,
both for its intrinsic significance, namely, the inability to code sets into the solutions of a computable instance
of a problem, and as a tool to separate statements from the Arithmetic Comprehension Axiom (ACA).

Definition 1.4. Fix n ⩽ ω. A problem P admits avoidance of n cones if for every set Z and every collection
{Bs ∶ s < n} of non-Z-computable sets, every P-instance X ⩽T Z has a solution Y such that for every s < n,
Bs /⩽T Z ⊕ Y .

This definition can be understood in terms of Definition 1.2 by defining

W(Bs ∶ s < n) = {Y ∶ (∀s < n)Bs /⩽T Y }.

Then P admits avoidance of n cones precisely if it admits preservation of W(Bs ∶ s < n) for every collection
{Bs ∶ s < n}. A similar analysis applies to all of the avoidance properties we will study, although for the rest
we will not take the time to make it explicit.

Jockusch and Soare [13, Theorem 2.5] proved that weak König’s lemma (WKL) admits avoidance of
ω cones.2 Seetapun’s celebrated theorem (see [29]) states that Ramsey’s theorem for pairs (RT2

2) admits
avoidance of ω cones, answering a long-standing open question. On the other hand, Jockusch [12] proved
that Ramsey’s theorem for triples (RT3

2) does not. Later, Wang [34] proved the surprising result that for
every n ⩾ 2, there is some k ∈ ω such that RTnk+1,k admits avoidance of ω cones, where RTnk+1,k asserts that
for every coloring f ∶ [ω]n → k + 1, there is an infinite set H ⊆ ω such that ∣f[H]n∣ ⩽ k. By looking at the
literature, one can observe that all the proofs of cone avoidance hold for ω cones simultaneously. In this
paper, we justify this observation by proving that avoidance of 1 cone and of ω cones coincide.

2Avoidance of ω cones is known as cone avoidance in the literature.
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1.2 Preservation of non-Σ0
1 definitions

Wang [33] dramatically simplified separation proofs of the Erdős-Moser (EM) from the Ascending Descend-
ing Sequence (ADS) of Lerman, Solomon and Towsner [18] by proving that some problems “preserve” the
arithmetical hierarchy, in the sense that given a fixed strictly non-Σ0

n set A and given a P-instance, there is
a solution Y such that A is not Σ0

n(Y ). We consider the case of non-Σ0
1 sets.

Definition 1.5. Fix n ⩽ ω. A problem P admits preservation of n non-Σ0
1 definitions if for every set Z and

every collection {Bs ∶ s < n} of non-Z-c.e. sets, every P-instance X ⩽T Z has a solution Y such that for every
s < n, Bs is not Z ⊕ Y -c.e.

This framework was very successful in proving separation results between Ramsey-like statements over
ω-models. Wang [33] proved that WKL and the Erdős-Moser theorem (EM) admits preservation of ω non-Σ0

1

definitions, while the thin set theorem for pairs (TS2ω) does not. Patey [24] proved that for every k ⩾ 1,
RT2

k+1,k admits preservation of k but not k + 1 non-Σ0
1 definitions. In particular, Ramsey’s theorem for pairs

and two colors admits preservation of 1 but not 2 non-Σ0
1 definitions.

1.3 Preservation of hyperimmunities

The proof that Ramsey’s theorem for triples does not admit cone avoidance consists of constructing a
computable coloring f ∶ [ω]3 → 2 such that every f -homogeneous set H = {x0 < x1 < . . .} is so sparse that its
principal function pH ∶ ω → ω defined by pH(n) = xn grows faster than the settling time of the halting set.
Actually, all the proofs that a Ramsey-like statement does not admit cone avoidance exploit the existence of
instances whose solutions are all sufficiently sparse to compute fast-growing functions dominating moduli of
computation [26]. It is therefore natural to consider which problems have the ability to compute fast-growing
functions.

A function f ∶ ω → ω is hyperimmune if it is not dominated by any computable function. An infinite set
A = {x0 < x1 < . . .} is hyperimmune if its principal function pA is hyperimmune. Equivalently, a set A is
hyperimmune if for every computable sequence of pairwise disjoint non-empty finite coded sets F0, F1, . . . ,
there is some n ∈ ω such that A ∩ Fn = ∅.

Definition 1.6. Fix n ⩽ ω. A problem P admits preservation of n hyperimmunities if for every set Z and
every collection {fs ∶ s < n} of Z-hyperimmune functions, every P-instance X ⩽T Z has a solution Y such
that for every s < n, fs is Z ⊕ Y -hyperimmune.

Jockusch and Soare [13, Theorem 2.4] proved that WKL admits preservation of ω hyperimmunities (in
fact, every computable instance of WKL has a solution of hyperimmune-free degree). Patey [25] proved that
the Erdős-Moser theorem admits preservation of ω hyperimmunities and that for every k ⩾ 1, RT2

k+1,k admits
preservation of k, but not k + 1, hyperimmunities. He also proved that the thin set theorem for pairs admits
preservation of k hyperimmunities for every k ∈ ω, but not of ω hyperimmunities.

As it happens, all the separations over ω-models and over computable reduction which have been proven
by notions of preservation of non-Σ0

1 definitions can also be proved by preservation of hyperimmunities, and
vice versa. We prove in this paper that this is not a coincidence, and that the two notions of preservation
are indeed equivalent.

1.4 Constant-bound trace avoidance

Both the original proof of cone avoidance of Ramsey’s theorem for pairs by Seetapun [29] and the proof
by Cholak, Jockusch and Slaman [4] involve Mathias-like notions of forcing within models of weak König’s
lemma. Their proofs seem to make an essential use of compactness, and the community naturally wondered
whether this use was necessary. Liu [19] recently negatively answered the long-standing open question of
whether Ramsey’s theorem for pairs implies weak König’s lemma in reverse mathematics. He later [20]
refined his argument and proved that RT2

2 does not even imply the existence of Martin-Löf randoms, using
the notion of constant-bound trace avoidance for closed sets3.

3In his article, Liu calls this notion constant-bound enumeration avoidance. We rechristen it in keeping with the notion of
traces as studied in algorithmic randomness [32]
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Given a closed set C ⊆ 2ω, a trace is a collection of finite coded sets of strings F0, F1, . . . such that for
every n ∈ ω, Fn contains only strings of length exactly n, and C ∩ [Fn] ≠ ∅ where [Fn] is the clopen set
generated by Fn. In other words, for every n ∈ ω, there is a string σ ∈ Fn with ∣σ∣ = n such that σ ≺ P for
some P ∈ C. A k-trace of C is a trace such that ∣Fn∣ = k for every n ∈ ω. A constant-bound trace of C is a
k-trace for some k ∈ ω.

Definition 1.7. Fix n ⩽ ω. A problem P admits avoidance of constant-bound traces for n closed sets if
for every set Z and every collection of closed sets {Cs ⊆ 2ω ∶ s < n} with no Z-computable constant-bound
trace, every P-instance X ⩽T Z has a solution Y such that for every s < n, Cs has no Z ⊕ Y -computable
constant-bound trace.

This notion of avoidance, which at first sight seems slightly more artificial, happens to be a very powerful
tool to prove that Ramsey-like statements do not imply notions of compactness.

Liu [20] proved that Ramsey’s theorem for pairs and two colors (RT2
2) admits avoidance of constant-bound

traces for 1 closed set, while weak König’s lemma (WKL) does not. Patey [22] proved that the Erdős-Moser
theorem (EM) admits avoidance of constant-bound traces for ω closed sets, and that for every k ⩾ 1, RT2

k+1,k
admits avoidance of constant-bound traces for k but not k + 1 closed sets, and that TS2ω admits avoidance
of constant-bound traces for k closed sets for every k ∈ ω, but not for ω closed sets.

1.5 Other preservation notions

As explained, the notion of hyperimmunity can be expressed both in terms of fast-growing functions, and as
sets which cannot be traced by computable strong arrays. Hyperimmunity strengthens another property of
sets called immunity, which refers to the impossibility of computing an infinite subset of the set. Immunity
is a natural notion to look at when considering Ramsey-like theorems, since their sets of solutions are
closed under infinite subsets. Although hyperimmunity is a strengthening of immunity, preservation of
hyperimmunity is actually strictly weaker than preservation of immunity.

Definition 1.8. Fix n ⩽ ω. A problem P admits preservation of n immunities if for every set Z and every
collection {Bs ∶ s < n} of Z-immune sets, every P-instance X ⩽T Z has a solution Y such that for every s < n,
Bs is Z ⊕ Y -immune.

Very few statements in reverse mathematics admit preservation of ω immunities. The most notable is the
cohesiveness principle (COH). All the statements which are known to admit preservation of ω immunities
actually also preserve the following seemingly stronger notion.

Definition 1.9. Fix n ⩽ ω. A problem P admits avoidance of n closed sets in the Baire space if for every
set Z and every collection {Cs ∶ s < n} of closed sets in the Baire space with no Z-computable member, every
P-instance X ⩽T Z has a solution Y such that for every s < n, Cs has no Z ⊕ Y -computable member.

A similar notion can be defined for closed sets in the Cantor space. We will prove that avoiding closed
sets in the Cantor space or in the Baire space are equivalent. We leave open the question whether every
problem admitting preservation of ω immunities also admits avoidance of ω closed sets.

1.6 Summary of the relations between properties of preservation

The notions of preservation admit a combinatorial counterpart, in which no effectiveness restriction is im-
posed on the instance of the problem. This is the notion of strong preservation.

Definition 1.10. Fix a collection of sets W ⊆ 2ω downward-closed under the Turing reduction. A problem
P admits strong preservation of W if for every set Z ∈W and every (not-necessarily Z-computable) instance
X of P, there is a solution Y to X such that Z ⊕ Y ∈W.

Considering strong preservation has two main justifications. First, its reflects the combinatorial weakness
of problems, as opposed to the computational weakness of standard notions of preservation. Indeed, by
proving that the infinite pigeonhole principle admits strong avoidance of ω cones, Dzhafarov and Jockusch [8]
show that there is an intrinsic combinatorial weakness in the pigeonhole principle which prevents the coding
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Avoidance of
ω closed sets

Avoidance of
1 closed set

Preservation of
ω immunities

Preservation
of 1 immunity

Avoidance of cb traces
for ω closed sets

Avoidance of cb traces
for 2 closed sets

Avoidance of cb
traces for 1 closed set

Preservation of ω
hyperimmunities

Preservation of ω
non-Σ0

1 definitions

Preservation of 2
hyperimmunities

Preservation of 2
non-Σ0

1 definitions

Preservation of 1
hyperimmunity

Preservation of 1
non-Σ0

1 definition
Avoidance
of 1 cone

Avoidance
of ω cones

Figure 1: Diagram of relations between properties of preservation. A double arrow denotes a strict implica-
tion, a dotted double arrows express a strict hierarchy, while a bidirectional arrow is an equivalence. The
only unknown arrow is the reversal from preservation of ω immunities to avoidance of ω closed sets.
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of arbitrary sets in the collection of solutions. On the other hand, the proof of Seetapun [29] that Ramsey’s
theorem for pairs admits avoidance of ω cones strongly relies on the effectiveness of the colorings of pairs.
When removing the effectiveness restriction, one can code any hyperarithmetical set, and therefore RT2

2 does
not admit strong avoidance of ω cones. These results can be considered as interesting per se.

The second reason is more technical, and specific to Ramsey-like statements. Many such statements
are about colorings over [ω]n and are parametrized by the size n of the tuples. See for example Ramsey’s
theorem [12], the thin set [3], free set [3], and rainbow Ramsey [34] theorems. Such theorems admit inductive
proofs based on n. Proofs that such a statement Pn+1 admits some preservation are usually obtained by
proving that Pn admits strong preservation of the property, and then deducing the non-strong version for
Pn+1. One can even obtain reversals for the notions of avoidance mentioned in this article. See for example
Theorem 1.5. of [5].

One can directly deduce implications between strong notions of preservation from their corresponding
weak notions of preservation.

Theorem 1.11. Suppose preservation of W1 implies preservation of W2. Then strong preservation of W1

implies strong preservation of W2.

Proof. Let P be a problem which admits strong preservation of W1. We prove that P admits strong preser-
vation of W2. Fix a set Z ∈ W2 and an instance X of P. Let P̃ be the problem whose unique instance is
∅, and whose solutions are the P-solutions of X. In particular, P̃ admits preservation of W1, so it admits
preservation of W2. Let Y be a P̃-solution to the P̃-instance ∅ such that Z ⊕ Y ∈W2. In particular, Y is a
P-solution to the P-instance X.

The remainder of this article is devoted to proving the equivalences and non-equivalences of the notions
of preservation presented above.

2 Avoiding cones

The goal of this section is to prove the following theorem. The variety of notions of preservation which
happen to be equivalent can be taken as an argument in favor of the naturality of the notion.

Theorem 2.1. Let P be a problem. Then the following are equivalent:

1. P admits avoidance of 1 cone.

2. P admits avoidance of ω cones.

3. P admits preservation of 1 non-Σ0
1 definition.

4. P admits preservation of 1 hyperimmunity.

The proof of Theorem 2.1 breaks into several parts, corresponding to subsections. In the first part, we
prove the equivalence between avoiding 1 cone and avoiding ω cones. Then, we prove the equivalence between
avoiding 1 cone and preserving 1 non-Σ0

1 definition. Last, we prove the equivalence between avoiding 1 cone
and preserving 1 hyperimmunity.

2.1 Avoiding ω cones

We start by proving that the notions of avoidance of 1 cone and of ω cones coincide. For this, we need to
prove two lemmas which say that given a collection of non-zero Turing degrees d0,d1, . . . , one can always
find a degree e relative to which these degrees collapse into a single non-zero degree.

Lemma 2.2. Fix Z and B,A0,A1, . . . ≰T Z. Then there is G such that A0,A1, . . . ≰T Z⊕G but A0,A1, . . . ⩽T
Z ⊕G⊕B.
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Proof. We may assume that B is not Σ0
1(Z). We build G by finite extensions as the union of a sequence

σ−1 ⊆ τ0 ⊆ σ0 ⊆ τ1 ⊆ σ1 ⊆ τ1 ⊆ ⋯.
Begin σ−1 = ∅. In general, let σ⟨j,k⟩ = τ⟨j,k⟩ˆ⟨Aj(k)⟩. Given σi, define τi as follows. Let i = ⟨j, k⟩. Define

a Σ0
1(Z) set D such that n ∈D if and only if there are ρ0, ρ1 ⪰ σiˆ0nˆ1 and ` with

ΦZ⊕ρ0j (`) ≠ ΦZ⊕ρ1j (`).

Now as B is not Σ0
1(Z) there is n ∈ B △D. If n ∈ B −D, then let τi = σiˆ0nˆ1. If n ∈ D −B, find the first

witness (ρ0, ρ1, `) and choose τi to be whichever ρ has

ΦZ⊕ρj (`) ≠ Ak(`).

This completes the construction of G.
First we claim that Ak ≰T Z ⊕G. Indeed, suppose that ΦZ⊕Gj = Ak. Let i = ⟨j, k⟩. Then, when defining

τi, we must have had n ∈ B −D, or we would have chosen τi such that for some `

ΦZ⊕τij (`) ≠ Ak(`).

So we set τi = σiˆ0nˆ1 and for all ρ0, ρ1 ⪰ τi and `,

ΦZ⊕ρ0j (`) ↓ and ΦZ⊕ρ1j (`) ↓ Ô⇒ ΦZ⊕ρ0j (`) = ΦZ⊕ρ1j (`).

Thus Z ⩾T Ak, a contradiction.
Finally, we argue that for each j, Aj ⩽T Z ⊕ G ⊕ B. This is because Z ⊕ G ⊕ B can reconstruct the

sequence σ−1 ⊆ τ0 ⊆ σ0 ⊆ τ1 ⊆ ⋯, and σ⟨j,k⟩ = τ⟨j,k⟩ˆ⟨Aj(k)⟩. Indeed, given τi, G can determine σi+1. Given
σi, using G we can find n such that σiˆ0nˆ1 ≺ G. If n ∈ B, then τi = σiˆ0nˆ1. If n ∉ B, let i = ⟨j, k⟩ and
search for the first ρ0, ρ1 ⪰ σi and ` with

ΦZ⊕ρ0j (`) ≠ ΦZ⊕ρ1j (`).

Then τi is whichever ρ has ρ ≺ G.

Lemma 2.3. Fix Z and B,A0,A1,A2, . . . ≰T Z. Then there is G such that B ≰T Z ⊕ G but, for each i,
B ⩽T Z ⊕G⊕Ai.

Proof. Using Lemma 2.2 we can inductively choose G0,G1,G2, . . . such that for each n, B,An+1,An+2, . . . ≰T
Z ⊕G0 ⊕⋯⊕Gn but B ⩽T Z ⊕G0 ⊕⋯⊕Gn ⊕An.

We will define H = ⊕Hn where Hn =∗ Gn. We want to have that B ≰T Z ⊕H; since Hn =∗ Gn, it will
be automatic that for each i, B ⩽T Z ⊕H ⊕ Ai. We define H by forcing; our conditions are of the form
H0⊕⋯⊕H` where Hn =∗ Gn. We argue that given a Turing reduction Φ and a condition H0⊕⋯⊕H`, there
is an extension H0 ⊕⋯⊕Hk such that we either force that ΦZ⊕H is partial or that ΦZ⊕H ≠ B. If there are
x, k, σ`+1, . . . , σk such that

ΦZ⊕H0⊕⋯⊕H`⊕σ`+1⊕⋯⊕σk(x) ↓≠ B(x)
then we can find a condition extending H0 ⊕⋯⊕H` which forces that ΦZ⊕H ≠ B. Otherwise, suppose that
for each x there are σ`+1, . . . , σk such that

ΦZ⊕H0⊕⋯⊕H`⊕σ`+1⊕⋯⊕σk(x) ↓ .

Then B ⩽T Z ⊕H0 ⊕⋯⊕H`, a contradiction. So there must be some x such that for all σ`+1, . . . , σk,

ΦZ⊕H0⊕⋯⊕H`⊕σ`+1⊕⋯⊕σk(x) ↑ .

Then H0 ⊕⋯⊕H` already forces that ΦZ⊕H(x) does not converge.

Corollary 2.4. Avoidance of 1 cone implies avoidance of ω cones.
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Proof. Let P be a problem admitting avoidance of 1 cone. Fix some set Z, non-Z-computable sets A0,A1, . . .
and a Z-computable instance X of P. By Lemma 2.3, letting B = A0, there is a set G such that B ≰T Z ⊕G
but, for each i, B ⩽T Z ⊕G⊕Ai. Since P admits avoidance of 1 cone, there is a P-solution Y to X such that
B ≰T Z ⊕G⊕ Y . We claim that for every i ∈ ω, Ai ≰T Z ⊕ Y . Indeed, otherwise, B ⩽T Z ⊕G⊕Ai, but then
B ⩽T Z ⊕G⊕ Y , contradiction.

However, when considering non-relativized versions of cone avoidance, avoiding 2 cones is strictly stronger
than avoiding 1 cone. We call unrelativized a notion for which the ground set Z is ∅. A pair of Turing degrees
a,b is minimal if they are both non-zero, 0 is the only degree below both of them.

Theorem 2.5. There is a problem which admits non-relativized avoidance of 1 cone, but not of 2 cones.

Proof. Fix two sets A and B whose Turing degrees form a minimal pair. Let P be the problem with unique
instance ∅. A solution is either of A or B. P does not admit non-relativized avoidance of 2 cones, as
witnessed by taking the cones A and B. On the other hand, P admits non-relativized avoidance of 1 cone.
Indeed, let C be a non-computable set, and consider the unique instance ∅ of P. By minimality of the pair
of degrees of A and B, either A /⩾T C or B /⩾T C. In either case, there is a P-solution Y ∈ {A,B} to ∅ such
that C /⩽T Y .

The equivalence between the two relativized notions show in particular that there is no pair of Turing
degrees which is minimal relative to every degree which lies above neither of them. Indeed, if there were
such a pair A,B, one could define the problem P whose unique instance is ∅ and whose solutions are either
A or B. The problem P would not admit avoidance of 2 cones as witnessed by the cones above A and B.
However, by relativizing the argument of Theorem 2.5, one could prove that P admits avoidance of 1 cone,
contradicting Corollary 2.4.

2.2 Preserving 1 hyperimmunity

We now prove that preserving 1 cone is equivalent to preserving 1 hyperimmunity. The forward implication
is relatively simple.

Lemma 2.6. Fix a set Z and a nondecreasing Z-hyperimmune function f ∶ ω → ω. There is a set G and a
∆0

2(G) set A /⩽T Z ⊕G such that f is a G-modulus for A.

Proof. We construct G which will be a ∆0
2-approximation of A, with f a G-modulus for A. More precisely,

(∀x)(∀y > f(x))G(x, y) = G(x, f(x)) = A(x)

It is now clear that for any h dominating f , A ⩽T G⊕ h. It remains only to show that A /⩽T Z ⊕G. We
will construct our set G by forcing. A condition is a partial function σ ∶ ω2 → 2 with finite domain. The
function σ is a stem for the ∆0

2 approximation G ∶ ω2 → 2. We moreover require that there can only be
(x, y), (x, z) ∈ dom(σ) with σ(x, z) ≠ σ(x, y) if f(x) ⩾ min(y, z). This ensures that f is a modulus for the
convergence of G.

A condition τ extends σ (written τ ⩽ σ) if τ ⊇ σ. Every sufficiently generic filter yields G such that G is
a stable function whose limit is A ∶= limsG(⋅, s). We now prove that the set of conditions forcing ΦG⊕Ze ≠ A
is dense.

Fix a condition σ. For each x ⩽ n, let sx be largest with (x, sx) ∈ dom(σ), if this exists, and sx = 0
otherwise. For every n, we define h(n) by a Z-computable search. We search for τ ⊇ σ such that:

• For all x ⩽ n and all t, r ⩾ sx with (x, t), (x, r) ∈ dom(τ), τ(x, t) = τ(x, r); and

• Φτ⊕Z(n) ↓.

We define h(n) = ∣τ ∣ for the first such τ found, and h(n) ↑ if there is no such τ . Note that we are not
restricting our search to conditions, as that would not be a Z-computable search. We have two cases.

Case 1: h(n) ↑ for some n ∈ ω. Then let µ ≺ σ be a condition such that for all x ⩽ n and all t with
sx < t ⩽ f(x), (x, t) ∈ dom(µ) and µ(x, t) = σ(x, sx) if (x, sx) ∈ dom(σ), and µ(x, t) = 0 otherwise. This
condition forces ΦG⊕Ze (n) ↑.
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Case 2: the function h is total Z-computable. Since f is Z-hyperimmune, there is some n > ∣σ∣ such that
f(n) > h(n). Let τ witness that h(n) ↓= ∣τ ∣. Let τ̂ ⊃ τ be obtained by defining τ̂(n, s) = 1 − Φτ⊕Z(n) for
all s with h(n) < s ⩽ f(n). Note that τ has no alternations in the columns x < n that weren’t present in σ,
and any alternations in a column x ⩾ n occur before ∣τ ∣ = h(n) < f(n) ⩽ f(x). There is possibly one more
alteration in τ̂ , in column n, but by construction this occurs before f(n). So τ̂ is a valid condition extending
σ. Moreover, τ̂ forces ΦG⊕Ze (n) ↓≠ A

Corollary 2.7. Avoidance of 1 cone implies preservation of 1 hyperimmunity.

Proof. Suppose a problem P admits avoidance of 1 cone. Fix a set Z, a Z-hyperimmune function f ∶ ω → ω
and a P-instance X ⩽T Z. By lemma 2.6, there is a set G and a ∆0

2(G) set A /⩽T Z ⊕ G such that f
is a modulus for A. Since P admits avoidance of 1 cone, then there is a P-solution Y to X such that
A /⩽T Z ⊕G⊕Y . If f is not Z ⊕Y -hyperimmune, then Z ⊕Y computes a function h dominating f , and since
f is a Z ⊕G-modulus for A, Z ⊕G⊕ Y computes A, contradiction.

Lemma 2.8 (Patey [22]). For every set Z, every closed set C ⊆ ωω with no Z-computable member, and every
set A, there is a set G such that C has no Z ⊕G-computable member and A is ∆0

2(G).

Proof. Consider the notion of forcing whose conditions are pairs (σ,n), where σ is a partial function ⊆ ω2 → 2
with finite support, and n ∈ ω. Informally, σ is a stem of the ∆0

2 approximations G ∶ ω2 → 2 of A, and n
specifies that the n first columns of σ are already locked to A↾n. Accordingly, a condition (τ,m) extends
(σ,n) (written (τ,m) ⩽ (σ,n)) if τ ⊇ σ, m ⩾ n, and for every x < n and t with (x, t) ∈ dom τ ∖ dom(σ),
τ(x, t) = A(x). Any sufficiently generic filter yields a stable function whose limit we denote A.

We now prove that the set of conditions forcing ΦG⊕Ze not to be a member of C is dense. Given a condition
(σ,n), define a Z-computable decreasing sequence of conditions (σ,n) ⩾ (τ0, n) ⩾ (τ1, n) ⩾ . . . such that for
every i, Φτi⊕Ze (i) ↓. We have two cases. In the first case, this sequence is finite, with some maximal element
(τk, n). Then the condition (τk, n) is an extension of (σ,n) forcing ΦG⊕Ze (k + 1) ↑. In the second case, the
sequence is infinite. Since C has no computable member, and by closure of C, there must be some k ∈ ω such
that Φτk⊕Ze ↾k ↓= ρ for some ρ ∈ ω<ω such that C ∩ [ρ] = ∅. Again, the condition (τk, n) is an extension of
(σ,n) forcing ΦG⊕Ze not to be a member of C. This completes the proof of the lemma.

Lemma 2.9. Fix a set Z and C ≰T Z. There is a set G and a function f ∶ω → ω such that f is G ⊕ Z-
hyperimmune, but Z ⊕G⊕C computes a function dominating f .

Proof. By Lemma 2.8 applies to Z and the closed set {C}, there is G such that C is ∆0
2(Z ⊕ G) but

C ≰T Z ⊕G. Fix a ∆0
2 approximation C(x, s) for C relative to Z ⊕G. Let f ∶ω → ω be the modulus for C

with respect to this approximation, i.e., f(n) is the least s ⩾ n such that for all m ⩽ n, C(m,s) = C(m).
Note that Z ⊕ G ⊕ C ⩾T f , and any function dominating f , together with Z ⊕ G, computes C: given g
dominating f , compute C(n) by finding s∗ ⩾ n such that for all s with s∗ ⩽ s ⩽ g(s∗), C(m,s) = C(m,s∗);
then C(n) = C(n, s∗) (see [10]).

Then f is G ⊕ Z-hyperimmune, as any function dominating f would together with Z ⊕G compute C,
and C ≰T Z ⊕G. But Z ⊕G⊕C computes a function dominating f , namely f itself.

Corollary 2.10. Preservation of 1 hyperimmunity implies avoidance of 1 cone.

Proof. Suppose that P admits preservation of one hyperimmunity. Fix a set Z, a C ≰T Z, and a Z-computable
instance X of P. By Lemma 2.9, there is a set G and a function f ∶ω → ω such that f is G⊕Z-hyperimmune
but Z ⊕G⊕C computes a function dominating f . Since P admits preservation of one hyperimmunity, there
is a solution Y to X such that f is Z ⊕G⊕ Y -hyperimmune. Then C ≰T Z ⊕ Y .

Here again, we can consider unrelativized versions of these notions of preservation, and prove that they
do not coincide.

Theorem 2.11. There is a problem which admits non-relativized avoidance of 1 cone, but not non-relativized
preservation of 1 hyperimmunity.
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Proof. Fix a ∆1
1-random set A = {x0 < x1 < . . .}, and let pA denote its principal function, that is, the

function defined by pA(n) = xn. Let P be the problem with unique instance ∅. A solution is any function
dominating pA. Since A is ∆1

1-random, it is in particular hyperimmune [16], so P does not admit unrelativized
preservation of 1 hyperimmunity. We now prove that P admits non-relativized avoidance of 1 cone. Fix a
non-computable set C, and the unique instance ∅ of P. If C is hyperarithmetical, then since any ∆1

1-random
forms a minimal pair with any non-zero hyperarithmetical set [7], C /⩽T A, and therefore pA is a P-solution
to ∅ such that C /⩽T pA. If C is non-hyperarithmetical, then it does not admit a modulus [10], and therefore
there is a function f ∶ ω → ω dominating pA such that C /⩽T f . In either case, there is a P-solution f to ∅
such that C /⩽T f .

The other direction does not hold either. A Turing degree d is hyperimmune-free if it does not bound a
hyperimmune function. There exists non-zero hyperimmune-free degrees.

Theorem 2.12. There is a problem which admits non-relativized preservation of 1 hyperimmunity, but not
non-relativized avoidance of 1 cone.

Proof. Fix a set A of non-zero hyperimmune-free degree. Let P be the problem with unique instance ∅. The
unique solution is the set A. Clearly, P does not admit non-relativized avoidance of 1 cone. On the other
hand, P admits non-relativized preservation of 1 hyperimmunity. Indeed, fix a hyperimmune function f and
the unique P-instance ∅. Since every A-computable function is dominated by a computable function, f is
hyperimmune relative to A.

Again, the fact that the relativized version of these notions coincide shows that every hyperimmune
function behaves, relative to some degree, like a modulus for a non-computable set. On the other hand,
no non-zero hyperimmune-free degree remains hyperimmune-free relative to every degree strictly below it.
Indeed, the failure of the former property could be used to relativize the proof of Theorem 2.11, and the
failure of the latter would enable us to relativize Theorem 2.12.

2.3 Preserving 1 non-Σ0
1 definition

We now prove our last equivalence of Theorem 2.1, namely, preserving 1 non-Σ0
1 definition is equivalent to

avoiding 1 cone. The first direction is immediate, given the fact that if a set is non-computable, then either
it or its complement is not Σ0

1.

Lemma 2.13. Preservation of 1 non-Σ0
1 definition implies avoidance of 1 cone.

Proof. Suppose that P admits preservation of 1 non-Σ0
1 definition. Fix A and Z such that A ≰T Z, and let X

be a Z-computable instance of P. We may assume that A is not Σ0
1(Z), otherwise we take the complement

of A. Then there is a solution Y to X such that A is not Σ0
1(Z ⊕ Y ), and so A ≰T Z ⊕ Y .

The reversal requires several lemmas which will also be useful in a latter section, when studying the
hierarchy of preservation of k non-Σ0

1 definitions. In particular, these lemmas imply the non-existence of
some particular enumeration degrees, namely, totally cototal degrees.

We review some basic facts about the enumeration degrees. Enumeration reducibility was introduced
by Friedberg and Rogers in 1959 [9]. This reducibility mimics Turing reducibility, except that only positive
information about sets is used or required. Formally, for A,B ⊆ ω, we say that A is enumeration reducible
to B (and write A ⩽e B) if there is a uniform way to compute an enumeration of A from an enumeration
of B; equivalently, if there is a c.e. set Φ of pairs of finite sets (called an enumeration functional, or operator)
such that A = Φ(B) = ⋃{a ∶ (∃b ⊆ B) (a, b) ∈ Φ}. There is a natural embedding of the Turing degrees into
the enumeration degrees, by mapping degT (A) to dege(A⊕A). The latter is called the total degree of A, and
the degrees thus obtained are called total degrees (the terminology originates in viewing the enumeration
degrees as the degrees of partial functions, by identifying a partial function with its graph. The total degrees
are then the degrees containing total functions).

For our purposes, enumeration reducibility is useful since a set A is c.e. relative to B if and only if
A ⩽e B⊕B, that is, if the enumeration degree of A lies below the total degree of B. Thus, avoiding making A
c.e. is the same as avoiding the upper cone above A in the enumeration degrees (but considering the degree
doing the avoiding as total). Relevant here is Selman’s theorem [30], that states that every enumeration
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degree is determined by the total degrees above it; indeed, every enumeration degree is the infimum of two
total degrees. It follows that enumeration reducibility is equivalent to its non-uniform version: A ⩽e B if and
only if every enumeration of B computes an enumeration of A.

Now, the plan for showing the converse of Lemma 2.13 is as follows. We suppose that a problem P avoids
upper cones in the Turing degrees. Ignoring the parameter Z for notational simplicity for the moment, let X
be a computable instance of P and let A be a set which is not c.e. We would like to “change the basis”
to a parameter G which makes enumerating A equivalent to computing it; that is, some G such that A is
co-c.e. in G, but not c.e. in G (so that it is not G-computable). We cannot always do this; but we can show
that there is some B ⩽e A, still not c.e., such that B ∈ Π0

1(G) ∖Σ0
1(G). This suffices, because avoiding the

enumeration cone above B will clearly imply avoiding the cone above A.
Now it turns out that the existence of such G is equivelnt to B being not co-total. A set B is co-total

if B ⩽e B. The reason for this terminology is a characterisation of the total degrees as those enumeration
degrees containing sets C satisfying C ⩽e C. Every total degree is co-total (contains a co-total set) but not
vice-versa. The co-total degrees were investigated extensively by Miller, Soskova and their co-authors [21, 1].
Now, the existence of some G making a set B co-c.e. but not c.e. is equivalent to the existence of some total
degree above degeB which is not above degeB. By Selman’s theorem mentioned above, this is equivalent
to B ≰e B, i.e., to B not being co-total. Thus, our main technical result required for the proof is that every
nonzero enumeration degree bounds a set which is not co-total. We say that A is totally co-total if every
B ⩽e A is a co-total set. We show:

Proposition 2.14. There is no totally cototal degree above 0e.

To show Proposition 2.14, we use th notion of semi-computable sets. A set X is semi-computable if
there is a total computable function g ∶ [ω]2 → ω such that for every {x, y} ∈ [ω]2, if {x, y} ∩X ≠ ∅ then
g({x, y}) ∈ {x, y} ∩X. This notion was introduced by Jockusch in his Ph.D. thesis [15]; he studied them in
relation to Dekker’s retraceable sets [6]. In [14], Jockusch showed that a set X is semi-computable if and
only if it is an initial segment of some computable linear ordering. The relvance of semi-computable sets to
our proof is the following:

Lemma 2.15 (Arslanov, Cooper, Kalimullin [2]). Let A be a semi-computable set. Then:

1. A and A form a minimal pair in the enumeration degrees.

2. A is not co-total unless A is c.e.

Proof. For (1), suppose that B ⩽e A and B ⩽e A via enumeration operators Φ and Ψ respectively. Let f be
the function that witnesses that A is semi-computable. Then to see that B is c.e., note that

B = {x ∶ ∃ finite sets F,G such that x ∈ ΦF , x ∈ ΨG, and for all a ∈ F and b ∈ G, f(a, b) = a}.

For (2), suppose that A is cototal. Then A ⩾e A, and so since A and A form a minimal pair in the
enumeration degrees, A ≡e ∅.

Thus, it suffices to show that if A is non-c.e., then there is some C ⩽e A which is semi-computable. This
was independently proved by Kihara, Ng and Pauly [17, Lem.7.12]. As we will shortly see, the main case is
when A is ∆0

2. We prove:

Lemma 2.16. For every A ∈ ∆0
2 −Σ0

1, there is B ⩽e A such that:

1. B ∈ ∆0
2; and

2. B is neither left c.e. nor right c.e.

Here we identify the set B with the real with binary representation 0.B.

Given this lemma, we proceed as follows.

Corollary 2.17. For any set A ∈ ∆0
2 −Σ0

1, there is C ⩽e A which is semi-computable and immune.
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Proof. The argument is due to Jockusch [14]. Fix B ⩽e A as from Lemma 2.16. Since B is ∆0
2, fix a

computable sequence of rationals (qe)e∈ω converging to B. Let C = {i ∶ qi < B} = {i ∶ qi ⩽ B} (since B is
noncomputable). Then C ⩽e B, and C is semi-computable via the induced ordering from Q. C is infinite
because B is not right c.e., and it is immune because B is not left c.e.

We remark that for our purposes now, we do not need the immunity of C; this will be used in a later
section.

Proof of Proposition 2.14. The argument is due to Mariya Soskova (private communication).
Suppose A is a totally cototal set of non-zero degree. First we argue that A is ∆0

2. Let LA be the
set of all finite binary strings lexicographically to the left of or along A. Then LA ⩽e A. Moreover, LA is
semi-computable: let f(x, y) be the left-most of x and y. Since LA ⩽e A, it is cototal, but by Lemma 2.15
LA cannot be cototal unless it is c.e. We also have that LA ⩾T A so A is ∆0

2.
Since A is ∆0

2 and not Σ0
1, by Corollary 2.17 there is C ⩽e A which is semi-computable and immune, hence

not Σ0
1. By assumption, C must be cototal, and so C ⩽e C. But as mentioned above, each semi-computable

set forms a minimal pair in the enumeration degrees with its complement. This gives a contradiction.

Corollary 2.18. Avoidance of 1 cone implies preservation of 1 non-Σ0
1 definition.

Proof. Suppose a problem P admits avoidance of 1 cone. Fix a set Z, a non-Σ0
1(Z) set A and a Z-computable

instance X of P. By Proposition 2.14 relativized to Z, there is a non-Σ0
1(Z) set C ⩽e A ⊕ Z ⊕ Z which is

not Z-cototal. In other words, there is an enumeration G of C such that C is not Σ0
1(Z ⊕ G). Since P

admits avoidance of 1 cone, there is a P-solution Y to X such that C /⩽T Z ⊕G⊕Y . We claim that A is not
Σ0

1(Z ⊕ Y ). Indeed, otherwise C would be Σ0
1(Z ⊕ Y ), and therefore C ⩽T Z ⊕G⊕ Y , contradiction.

It remains to prove Lemma 2.16.

Proof of Lemma 2.16. Fix a computable sequence (As)s∈ω converging to A. We simultaneously construct B
and an enumeration functional Φ with B = Φ(A). Our functional Φ will have the property that for any x,
there will be at most one axiom (x,F ) ∈ Φ with F ≠ ∅; from this it follows that B ∈ ∆0

2 (using A ∈ ∆0
2).

We interpret c.e. sets as subsets of the rationals. We have the following requirements to meet, for all
e ∈ ω:

Re: B ≠ sup(We);

Qe: B ≠ inf(We).

Our construction will be a finite injury construction, and so a strategy for a given requirement will act
under the assumption that no higher priority strategy will ever act.

Strategy for requirement Qe:

1. Choose a large x, and keep both x and x + 1 out of B (no axioms for x or x + 1 are to be enumerated
into Φ);

2. Wait for a stage s and a y ∈We,s with y −Bs < 2−(x+2).

3. Declare x ∈ B and enumerate the axiom (x,∅) into Φ.

Strategy for requirement Re:
We construct a c.e. set De as we work. This set is reset whenever the strategy is initialized.
Our strategy will have modules for each k ∈ ω. We will begin by running the 0-module. For each k, the

k-module may run the (k + 1)-module, but we will argue that this iteration will eventually terminate.
Here is the k-module:

1. Choose a large xk. Let the current stage be sk. Declare x,x + 1 ∈ B, enumerating the axioms (x,Fk)
and (x + 1, Fk) into Φ, where Fk is the positive information from Ask ↾k.

2. Wait for a stage s at which one of the following happens:
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(a) As ↾k≠ Ask ↾k. In this case, enumerate axioms (x,∅) and (x + 1,∅) into Φ, declaring x,x + 1 ∈ B.
Return to Step (1).

(b) There is a y ∈ We,s with Bs − y < 2−(x+2). In this case, enumerate all of Fk into De and proceed
to Step (3).

3. Wait for a stage s with Fk /⊆ As. While waiting, run the (k + 1)-module.

4. Freeze the action of any running j-modules for j > k.

5. Wait for a stage s with Fk ⊆ As. When found, return to Step (3), resuming the action of any frozen
j-modules.

Full construction: Whenever a strategy moves between steps, we initialize all lower priority strategies.
When a Qe-strategy is initialized, we enumerate (x,∅) and (x + 1,∅) into Φ for the strategy’s chosen x,
declaring them both to be in B. Similarly, when an Re-strategy is initialized, we enumerate (xj ,∅) and
(xj + 1,∅) into Φ for all appropriate j.

Verification:

Claim 1. For each e:

(a) The Qe-strategy eventually waits forever at Step (2) or Step (3).

(b) There is some k such that for all j < k, the j-module of the Re-strategy eventually waits forever at Step
(3), and the k-module eventually waits forever at Step (2) or Step (5).

Proof. By simultaneous induction. (a)e is immediate.
For (b)e, by induction there is a final time when the Re-strategy is intialized. Let sk be the stage at

which xk is chosen after this final initialization, and suppose towards contradiction that sk is defined for all
k < ω. Since (As)s∈ω converges to A, the k-module cannot move between Steps (3) and (5) infinitely often,
so it must be that each k-module eventually waits forever at Step (3).

But then each Fk ⊆ A, and De = ⋃k Fk. Further, for any z ∈ A, there is a sufficiently large k such that
z ∈ Ask = Fk, so D = A, contrary to A not being c.e.

It follows that each strategy is initialized only finitely many times.

Claim 2. Each Qe-strategy meets its requirement.

Proof. Let t be the final stage at which the Qe-strategy is initialized, so no higher priority strategy acts at
any stage s > t. Consider the x chosen by this strategy. Since lower priority strategies choose their elements
large, Bs ↾x= Bt ↾x for all s > t. Observe that by construction, x + 1 /∈ B.

If the strategy waits forever at Step (2), then certainly B ≠ inf(We).
Suppose the strategy moves from Step (2) to Step (3) at stage t1 > t. Since x,x + 1 /∈ Bt1 , but x ∈ B, we

have

inf(We) < Bt1 + 2−(x+2)

⩽ (B ↾x)̂0∞ + 2−(x+2) + 2−(x+2)

= (B ↾x)̂1̂0∞ − 2−(x+1) + 2−(x+2) + 2−(x+2)

= (B ↾x)̂1̂0∞

⩽ B.

Thus B ≠ inf(We).

Claim 3. Each Re-strategy meets its requirement.
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Proof. Let k be such that the k-module of the strategy eventually waits forever at Step (2) or Step (5), and
let sj for j ⩽ k be the stages at which the xj is chosen after the strategy’s final initialization. If it is defined,
let sk+1 be the same for xk+1. Note that for j < k, sj+1 is also the stage at which the j-module first reaches
Step (3). Similarly, sk+1 is defined precisely if the k-module reaches Step (3), in which case sk+1 is the first
stage at which this happens.

By construction, for any y ∈ (xj + 1, xj+1), one of the following must occur:

(i) (y,∅) has been enumerated into Φ by stage sj+1; or

(ii) For all finite sets F , (y,F ) /∈ Φ.

To see this: since xj is chosen large and no higher priority strategy acts after stage s0, no such y can be
chosen by a higher priority strategy. Also, no such y can be chosen by a lower priority strategy after stage
sj+1, since elements are always chosen large. If y is chosen by a lower priority strategy before stage sj+1,
then at stage sj+1 we initialize that strategy and enumerate (y,∅) into Φ, if we have not already done so. If
y is chosen by no strategy, then no axioms for y are ever enumerated into Φ.

Note also that for all j < k, xj ∈ B, and indeed xj ∈ Bs for any stage at which the k-module is running
(not frozen). So Bsk ↾xk

= Bs ↾xk
for any s > sk at which the k-module is not frozen. The argument is now

identical to the argument for the Qe-strategy.

This completes the proof.

Note that the implication from preservation of 1 non-Σ0
1 definition to avoidance of 1 cone is natural

enough to hold again when considering their non-relativized counterparts. However, these notions are not
equivalent.

Lemma 2.19 (Folklore). Let A be a semi-computable set. The following are equivalent:

(a) A is immune

(b) A is hyperimmune

Either implies (c) that A is not c.e.

Proof. (b) → (a) is immediate as every hyperimmune set is immune. (a) → (c) is also immediate as
every infinite c.e. set contains an infinite computable subset. Last, we prove (a) → (b). Suppose A is not
hyperimmune. Then there is a computable strong array F0, F1, . . . such that for every n ∈ ω, Fn ∩A ≠ ∅. By
[14, Theorem 4.1], any semi-computable set A is the initial segment of a computable linear order L. Then
{minL Fn ∶ n ∈ ω} is an infinite c.e. subset of A and contains an infinite computable subset.

Theorem 2.20. There is a problem which admits non-relativized avoidance of 1 cone, but not non-relativized
preservation of 1 non-Σ0

1 definition.

Proof. Fix a computable linear ordering L of order type ω + ω∗ with no infinite computable ascending or
descending sequence. Such a linear order exists by Tennenbaum (see [28]). Let A be the ω part of this linear
order. In particular, A and A are both ∆0

2, semi-computable and immune. By Lemma 2.19, A and A are
both non-Σ0

1 and hyperimmune. Let P be the problem with unique instance ∅. A solution is an infinite
subset of A.

For any solution Y ⊆ A, A = {x ∶ ∃y ∈ Y x ⩽L y}, so A ∈ Σ0
1(Y ), and thus P does not admit non-relativized

preservation of 1 non-Σ0
1 definition. We claim that P admits non-relativized avoidance of 1 cone. Fix a

non-computable set C and the unique P-instance ∅. If C is not ∆0
2, then A is a P-solution to ∅ such that

C /⩽T A. If C is ∆0
2, then since A is hyperimmune and ∆0

2, by Proposition 4.4 of [11], there is an infinite
subset H ⊆ A such that C /⩽T H. In both cases, there is a Q-solution Y to ∅ such that C /⩽T Y .
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3 The hierarchy of preservations

Given a coloring f ∶ [ω]n → k, an infinite set H ⊆ ω is f -homogeneous if f uses only one color on [H]n.
Ramsey’s theorem asserts the existence of homogeneous sets for every k-coloring of [ω]n. Jockusch [12]
proved that whenever n ⩾ 3, there is a computable coloring f ∶ [ω]n → 2 such that every f -homogeneous set
computes ∅′. However, Wang [34] proved the surprising result that this is no longer the case when we relax
the f -homogeneity condition to allow more colors.

Definition 3.1. For every n, ` ⩾ 2, let RTn<∞,` be the problem whose instances are functions f ∶ [ω]n → k
for some k ∈ ω. An RTn<∞,`-solution to f is an infinite set H ⊆ ω such that ∣f[H]n∣ ⩽ `.

Wang [34] proved that for every n ⩾ 1, there is some ` such that RTn<∞,` admits cone avoidance.
Patey [24, 25] proved the following theorem, which shows in particular that the hierarchies of preserva-
tion of ` hyperimmunities and ` non-Σ0

1 definitions is strictly increasing.

Theorem 3.2. For every ` ⩾ 1, RT2
<∞,` admits preservation of ` but not ` + 1 non-Σ0

1 definitions, and of `
but not ` + 1 hyperimmunities.

Let us sketch the proof that RTn<∞,` does not admit preservation of ` + 1 hyperimmunities. Given ` ⩾ 1,

build a ∆0
2 (` + 1)-partition A0 ⊔ ⋅ ⋅ ⋅ ⊔A` = ω such that for every i ⩽ `, Ai is hyperimmune. By Schoenfield’s

limit lemma, there is a computable coloring f ∶ [ω]2 → ` + 1 such that for every x ∈ ω, limy f(x, y) exists,
and x ∈ Alimy f(x,y). We claim that for every RT2

<∞,`-solution H to f , there is some i ⩽ ` such that Ai is not

H-hyperimmune. Since ∣f[H]2∣ ⩽ `, there is some i ⩽ ` such that i /∈ f[H]2. In particular, H ⊆ Ai, so the
principal function of H dominates the principal function of Ai, which proves that Ai is not H-hyperimmune.

3.1 The hyperimmunities and non-Σ0
1 definitions hierarchies

We now prove that the two hierarchies of preservation of hyperimmunities and of non-Σ0
1 definitions coincide.

Lemma 3.3. For every k ⩽ ω and every Z, for any nondecreasing functions (fi)i<k which are not Z-
computably dominated, there is a G and sets (Ai)i<k such that none of the Ai is c.e. relative to Z ⊕G, but
for any i and any function h dominating fi, Ai is c.e. relative to Z ⊕G⊕ h.

Proof. We construct (Gi)i<k which will be Π0
2-approximations to the Ai, with each fi a Σ0

1-modulus for Gi.
That is,

x ∈ Ai ⇐⇒ ∃∞s [(x, s) ∈ Gi] ⇐⇒ ∃s > fi(x) [(x, s) ∈ Gi].
Then G =⊕i<kGi. It is now clear that for any h dominating fi, Ai is c.e. relative to Z ⊕G⊕ h. It remains
only to show that none of the Ai is c.e. relative to Z ⊕G.

We will construct ourGi generically. Conditions in our notion of forcing are pairs of sequences ((σi)i<k, (Ni)i<k),
with:

• σi ∈ 2<ω×ω;

• Ni ∈ [ω]<ω;

• If x ∈ Ni, s > fi(x) and (x, s) ∈ dom(σi), then σi(x, s) = 0; and

• All but finitely many of the σi and Ni are empty.

Of course the last requirement only matters when k = ω. Extension is defined elementwise.
Note that for a sufficiently generic filter F , x ∈ AFi ⇐⇒ x /∈ NF

i .
Note also that for any s > fj(x) and any condition ρ = ((σi)i<k, (Ni)i<k), if σj(x, s) = 1 then ρ ⊩ [x /∈ Ni].

So for a sufficiently generic filter F , each AFi is infinite.
For a c.e. operator W and a j < k, we must show that for a sufficiently generic G, Aj ≠WZ⊕G. Given a

condition ρ = ((σi)i<k, (Ni)i<k), we define a function g. For each n, search Z-effectively for a (τi)i<k and a
y ∈ ω such that:

• y > n;
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• For each i < k, τi extends σi;

• For all i < k, x ∈ Ni and s > fi(x), we have τi(x, s) ≠ 1; and

• y ∈WZ⊕(τi)i<k .

Note that this search is Z-effective, albeit nonuniformly in the information {(i, x, fi(x)) ∶ x ∈ Ni}. For the
first y and (τi)i<k found, define g(n) to be the largest s with τj(y, s) = 1, or g(n) = 0 if no such s exists.

If some g(n) is undefined, then no extension of ρ forces any y > n into WZ⊕G, and so WZ⊕G is finite.
But we already said that Aj is infinite, and so ρ ⊩ [Aj ≠WZ⊕G

j ].
If g is total, then since g is Z-computable, there must be an n with g(n) < fj(n). Let (τi)i<k and y

be the witnesses to the definition of g(n). Define Mi = Ni for i ≠ j, and define Mj = Nj ∪ {y}. Since
fj(n) ⩽ fj(y), there is no s > fj(y) with τj(y, s) = 1, so ρ̂ = ((τi)i<k, (Mi)i<k) is a condition extending ρ, and
ρ̂ ⊩ [y ∈WZ⊕G −Aj].

Corollary 3.4. For any k ⩽ ω, preservation of k non-Σ0
1 definitions implies preservation of k hyperimmu-

nities.

Proof. Suppose a problem P admits preservation of k non-Σ0
1 definitions. Fix a set Z, k Z-hyperimmune

functions f0, f1, . . . , fk−1 and a Z-computable P-instance X. By lemma 3.3, there is a G and sets (Ai)i<k
such that none of the Ai is Σ0

1(Z ⊕G), but for any i and any function h dominating fi, Ai is Σ0
1(Z ⊕G⊕h).

Since P admits preservation of k non-Σ0
1 definitions, there is a P-solution Y to X such that for every i < k,

Ai is not Σ0
1(Z ⊕G⊕ Y ). In particular, for every i < k, fi is Z ⊕G⊕ Y -hyperimmune.

Lemma 3.5. For every set Z, every countable sequence of non-Z-c.e. sets B0,B1, . . . , and every set A,
there is a set G such that Bi is not Z ⊕G-c.e. for every i ∈ ω and A is ∆0

2(G).

Proof. Consider again the notion of forcing whose conditions are pairs (σ,n), where σ is a partial function
⊆ ω2 → 2 with finite support, and n ∈ ω. A condition (τ,m) extends (σ,n) if τ ⊇ σ, m ⩾ n, and for every
(x, y) ∈ dom τ ∖ domσ such that x < n, τ(x, y) = A(x). Any sufficiently generic filter yields a stable function
whose limit is A.

We now prove that the set of conditions forcing WG⊕Z
e ≠ Bi is dense. Given a condition (σ,n), let

U = {x ∶ ∃(τ, n) ⩽ (σ,n)x ∈W τ⊕Z
e }. The set U is Σ0

1(Z), so Bi∆U ≠ ∅. If there is some x ∈ Bi ∖U then the
condition (σ,n) already forces x /∈WG⊕Z

e are we are done. If there is some x ∈ U ∖Bi, then then condition
(τ, n) ⩽ (σ,n) such that x ∈ W τ⊕Z

e is an extension forcing x ∈ WG⊕Z
e . In both cases, there is an extension

forcing WG⊕Z
e ≠ Bi. This completes the proof of the lemma.

Corollary 3.6. For any k ⩽ ω, preservation of k hyperimmunities implies preservation of k non-Σ0
1 defini-

tions.

Proof. Suppose some problem P admits preservation of k hyperimmunites. Fix a set Z and k non-Σ0
1(Z)

sets ⟨Ai ∶ i < k⟩. By Lemma 3.5, there is a set G such that for every i < k, Ai is not Σ0
1(Z ⊕G), but ⊕i<kAi

is ∆0
2(G). By Corollary 2.17, there are semi-Z ⊕G-computable sets ⟨Bi ∶ i < k⟩ such that for every i < k,

Bi ⩽e Ai⊕Z⊕G⊕Z⊕G and Bi is Z⊕G-immune. By Lemma 2.19, Bi is Z⊕G-hyperimmune. Since P admits
preservation of k hyperimmunites, there is a P-solution Y to X such that Bi is Z ⊕G⊕ Y -hyperimmune for
every i < k. We claim that Ai is not Σ0

1(Z ⊕G⊕Y ). Indeed, otherwise, Bi would be Σ0
1(Z ⊕G⊕Y ), and by

Lemma 2.19, Bi would not be Z ⊕G⊕ Y -hyperimmune.

3.2 The hierarchy of constant-bound traces of closed sets

One can define a similar hierarchy for avoidance of constant-bound traces of closed sets. By the hyperimmune-
free basis theorem, WKL admits preservation of ω hyperimmunities (hence of ω non-Σ0

1 definitions as well).
On the other hand, WKL does not admit avoidance of constant-bound traces of even 1 closed set. Indeed,
letting C be the effectively closed set of all the completions of Peano arithmetics, every constant-bound trace
of C computes a member of C. This separates the hierarchies of preservation of hyperimmunities and non-Σ0

1

definitions from the hierarchy of constant-bound traces of closed sets.
On the other direction, avoidance of constant-bound traces for closed sets does not imply the preservation

of more hyperimmunities than closed sets, as shows the following theorem.
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Theorem 3.7. For every ` ⩾ 1, there is a problem which admits avoidance of constant-bound traces for `
closed sets, but not preservation of ` + 1 hyperimmunities.

Proof. Patey [22] proved that RT2
<∞,` admits avoidance of constant-bound traces of ` closed sets. On the

other hand, we already argued that RT2
<∞,` does not admit preservation of ` + 1 hyperimmunities.

We finish this section by proving that avoidance of constant-bound traces for k closed sets implies
preservation of k hyperimmunities.

Lemma 3.8. For any k ⩽ ω, for any Z ∈ 2ω and (fi)i<k such that each fi is Z-hyperimmune, there is a
G ∈ 2ω and closed sets (Ci)i<k in Cantor space such that each Ci has no constant-bound (Z ⊕G)-trace, but
for any function h dominating fi, there is a (Z ⊕G⊕ h)-computable element of Ci.

Proof. We construct sets (Ei)i<k and (Fi)i<k, which will be Σ0
2 approximations to sets Ai and Bi, respectively,

and such that each fi is a Π0
1-modulus for Ai and Bi. That is,

x ∈ Ai ⇐⇒ ∃s∀t > s [(x, t) ∈ Ei] ⇐⇒ ∀t > fi(x) [(x, t) ∈ Ei]

and
x ∈ Bi ⇐⇒ ∃s∀t > s [(x, t) ∈ Fi] ⇐⇒ ∀t > fi(x) [(x, t) ∈ Fi].

Then G =⊕i<kEi ⊕⊕i<k Fi.
Our sets will have the property that Ai ∩Bi = ∅. Each Ci will then be the set of separators of Ai and Bi.

That is, Ci = {X ∈ 2ω ∶ Ai ⊆ X ∧Bi ⊆ X}. Observe that if h dominates fi, then Ai and Bi are Π0
1(h ⊕G),

and so h⊕G computes an element of Ci. It remains only to show that none of the Ci has a constant-bound
trace relative to Z ⊕G.

We will construct our Ei and Fi simultaneously generically. Conditions in our notion of forcing are tuples
of sequences ((σi)i<k, (Ni)i<k, (τi)i<k, (Mi)i<k) with:

• σi, τi ∈ 2<ω×ω;

• Ni,Mi ∈ [ω]<ω;

• If x ∈ Ni, s > fi(x) and (x, s) ∈ dom(σi), then σi(x, s) = 1;

• If x ∈Mi, s > fi(x) and (x, s) ∈ dom(τi), then τi(x, s) = 1;

• Ni ∩Mi = ∅; and

• All but finitely many of the σi, τi,Ni and Mi are empty.

Extension is defined elementwise.
Note that for a sufficiently generic filter, Ai = Ni and Bi =Mi.
For a b ∈ ω, a j < k and a Turing functional Φ, we must show that for a sufficiently generically chosen

G, ΦZ⊕G is not a b-bounded trace of Cj . We may assume that for all oracles X and all n ∈ ω, ΦX(n) is a
subset of 2n of size at most b. Given a condition ρ = ((σi)i<k, (Ni)i<k, (τi)i<k, (Mi)i<k), we define a function
g. On input n, we search for (σ̂i)i<k and (τ̂i)i<k such that:

• For each i, σ̂i extends σi, and τ̂i extends τi;

• For all i < k, x ∈ Ni and s > fi(x) with (x, s) ∈ dom(σ̂i), we have σ̂i(x, s) = 1;

• For all i < k, x ∈Mi and s > fi(x) with (x, s) ∈ dom(τ̂i), we have τ̂i(x, s) = 1; and

• ΦZ⊕(σ̂i)i<k⊕(τ̂i)i<k(n + b)↓.

Note that this search is Z-effective, albeit nonuniformly in the information {(i, x, fi(x)) ∶ x ∈ Ni ∪Mi}. For
the first (σ̂i)i<k and (τ̂i)i<k found, define g(n) to be the largest s with σ̂j(n + a, s) = 0 or τ̂j(n + a, s) = 0 for
some a < b, or g(n) = 0 if no such s exists.

If some g(n) is undefined, then no extension of ρ forces ΦZ⊕G(n + b)↓, and so ρ forces that ΦZ⊕G is
partial, and thus not a b-bounded trace.
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If g is total, then since it is Z-computable, there must be an n with g(n) < fj(n). Let (σ̂i)i<k and (τ̂i)i<k be

the witnesses to the definition of g(n). Let ΦZ⊕(σ̂i)i<k⊕(τ̂i)i<k(n+b) = {π0, . . . , πb−1}. Define N̂i = Ni and M̂i =
Mi for i ≠ j. Define N̂j = Nj ∪{a < b ∶ πa(n+a) = 0} and M̂j =Mj ∪{a < b ∶ πa(n+a) = 1}. Since fj(n) > g(n),
there is no s > fj and a < b with σ̂j(n + a, s) = 0 or τ̂j(n + a, s) = 0, so ρ̂ = ((σ̂i)i<k, (N̂i)i<k, (τ̂i)i<k, (M̂i)i<k)
is a condition extending ρ, and ρ̂ forces that no element of ΦZ⊕G(n) is extendible to an element of Cj .

Corollary 3.9. For all k ⩽ ω, avoidance of constant-bound traces for k closed sets implies preserving k
hyperimmunities.

Proof. Suppose a problem P admits avoidance of constant-bound traces for k closed sets. Fix a set Z, a
collection of Z-hyperimmune functions (fi)i<k and a Z-computable P-instance X. By Lemma 3.8, there is a
G and closed sets (Ci)i<k in the Cantor space such that none of the Ci has a constant-bound Z⊕G-trace, but
for any function h dominating fi, there is a Z ⊕G⊕ h-computable element of Ci. Since P admits avoidance
of constant-bound traces for k closed sets, there is a P-solution Y to X such that for every i < k, Ci has no
constant-bound Z ⊕G⊕ Y -trace. In particular, for every i < k, fi is Z ⊕G⊕ Y -hyperimmune.

4 Immunity and closed sets

This last section is devoted to the study of two notions of preservation whose hierarchies collapse, namely,
preservation of immunities and avoidance of closed sets. These notions are strictly stronger than the notions
of preservation we considered so far, and are not known to be distinct.

Lemma 4.1. Fix a set Z and A0,A1, . . . all Z-immune. There is a set G which is Z-immune and such that
for every n, G[n] =∗ An.

Proof. Write ω[n] = {⟨n,x⟩ ∶ x ∈ ω}. We will define G = ⊕n∈ωGn where Gn =∗ An. We want G to be Z-
immune, so that no Z-computable set is a subset of G. Since each An is immune, no Z-computable infinite
set which is a subset of ω[0] ∪⋯ ∪ ω[n] can be a subset of G.

Let B0,B1, . . . be a list of the infinite Z-computable sets which intersect infinitely many of the ω[n].
Suppose that we have defined a0 < a1 < ⋯ < ak and G0, . . . ,Gk such that for each i ⩽ k, Bi ∩ ω[ak] ⊈ ⟨k,Gk⟩.
Then for some ak+1 > ak, Bk+1 intersects ω[ak+1], say ⟨ak+1, n⟩ ∈ Bk+1. Set Gi = Ai for ak < i < ak+1, and
Gak+1 = Aak+1 − {n}. So no Bi is a subset of G, and hence G =⊕n∈ωGn is Z-immune.

Theorem 4.2. Let P be a problem. Then the following are equivalent:

1. P admits preservation of 1 immunity.

2. P admits preservation of ω immunities.

Proof. (2)⇒(1) is obvious. For (1)⇒(2): Let Z be a set and X a Z-computable instance of P. Suppose that
A1,A2, . . . are Z-immune. Let G be as in Lemma 4.1: G is Z-immune, and G[i] =∗ Ai for all i. Then there
is a solution Y to X such that G is Z ⊕ Y -immune. If, for some i, Ai was not Z ⊕ Y -immune, then Z ⊕ Y
would compute an infinite subset of Ai, and hence of G (since G[i] =∗ Ai). This cannot happen as G is
Z ⊕ Y -immune.

Lemma 4.3. Preservation of ω immunities implies avoidance of constant-bound traces for ω closed sets.

Proof. Suppose a problem P admits preservation of ω immunities. Fix a set Z and a countable collection of
closed sets C0,C1, ⋅ ⋅ ⋅ ⊆ 2ω with no Z-computable constant-bound trace. For every n, k ∈ ω, let An,k be the
set of all finite coded k-sets F of binary strings such that every string in F has the same length, and such
that [F ]∩ Cn ≠ ∅. Every infinite subset of An,k computes a k-trace of Cn, so An,k is Z-immune. Conversely,
every k-trace of Cn computes an infinite subset of An,k. Since P admits preservation of ω immunities, there
is a P-solution Y to X such that for every n, k, An,k is Z ⊕Y -immune. In particular, for every n ∈ ω, Cn has
no Z ⊕ Y -computable constant-bound trace.

Lemma 4.4. Fix a set Z and a closed set C ⊆ ωω in the Baire space with no Z-computable member. There
exists a closed set D ⊆ 3ω with no Z-computable member, and such that every member of C computes a
member of D.
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Proof. Fix Z and C. Let T ⊆ 2<ω be a Z-computable infinite tree with no Z-computable infinite path. Given
some P ∈ C, let P̂ ∈ 3ω be defined by σ02σ12σ22σ32 . . . , where for every n ∈ ω, σn is the left-most string in T
of length P (n). Let D be the closure of {P̂ ∶ P ∈ C}. Note that for any X ∈ D ∖ {P̂ ∶ P ∈ C}, X = σ̂Y for
some σ ∈ 3<ω and Y ∈ [T ], and that neither {P̂ ∶ P ∈ C} nor [T ] has Z-computable members. Therefore D
has no Z-computable member. Moreover any P ∈ C computes P̂ ∈ D.

Corollary 4.5. Avoidance of 1 closed set in the Cantor space implies avoidance of ω closed sets in the Baire
space.

Proof. Suppose a problem P admits avoidance of 1 closed set in the Cantor space. Fix a set Z, countably
many closed sets in the Baire space C0,C1, ⋅ ⋅ ⋅ ⊆ ωω with no Z-computable member, and a Z-computable
P-instance X. Let E = {n⌢P ∶ P ∈ Cn}. In particular, E is a closed set with no Z-computable member.
By Lemma 4.4, there is a closed set D ⊆ 3ω with no Z-computable member, and such that every member
of E computes a member of D. Let D̃ ⊆ 2ω be the closed set obtained from D by fixing a binary coding of
the ternary strings. In particular, any member of Cn computes a member of D̃, and D̃ has no Z-computable
members. Since P admits avoidance of 1 closed set in the Cantor space, there is a P-solution Y to X such
that D̃ has no Z ⊕ Y -computable member. In particular, for every n ∈ ω, Cn has no Z ⊕ Y -computable
member.

We now prove that preservation of 1 immunity is strictly above the hierarchy of avoidance of constant-
bound traces. Let EM (Erdős-Moser) be the problem whose instances are colorings f ∶ [ω]2 → 2. An
EM-solution to f is an infinite set H ⊆ ω such that for every x < y < z ∈H, and every i < 2, if f(x, y) = i and
f(y, z) = i, then f(x, z) = i.

Theorem 4.6. There is a problem that admits avoidance of constant-bound traces for ω closed sets but not
preservation of 1 immunity.

Proof. Patey [22] proved that EM admits avoidance of constant-bound traces for ω closed sets. On the other
hand, Rice [27] constructed a computable instance of EM such that every solution computes a diagonally
non-computable function, while Patey [23] constructed a ∆0

2 immune set A such that every diagonally non-
computable function computes an infinite subset of A. This shows that EM does not admit preservation of
1 immunity.

The following question is left open:

Question 4.7. Does preservation of 1 immunity implies avoidance of 1 closed set?

The combinatorics used to prove that a problem admits preservation of 1 immunity and avoidance of 1
closed set are very similar, which could be taken as an argument in favor of a positive answer.
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