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Abstract

The family of finite subsets s of the natural numbers such that |s| =
1 + min s is known as the Schreier barrier in combinatorics and Banach
Space theory, and as the family of exactly ω-large sets in Logic. We for-
mulate and prove the generalizations of Friedman’s Free Set and Thin Set
theorems and of Rainbow Ramsey’s theorem to colorings of the Schreier
barrier. We analyze the strength of these theorems from the point of view
of Computability Theory and Reverse Mathematics. Surprisingly, the ex-
actly ω-large counterparts of the Thin Set and Free Set theorems can code
∅(ω), while the exactly ω-large Rainbow Ramsey theorem does not code
the halting set.

1 Introduction and motivation

Ramsey’s theorems have been widely investigated from the point of view of
Computability Theory, Proof Theory and Reverse Mathematics (see [16] for de-
tails and references). In his seminal paper, Jockusch [17] gave a deep analysis
of Ramsey’s theorem using tools from Computability Theory, which established
this theorem as an important bridge between Combinatorics and Computability.
The effective and logical strength of many consequences and variants of Ram-
sey’s theorem have since been investigated. Among those, the Free Set, Thin
Set and Rainbow Ramsey Theorems have attracted significant interest in recent
decades (see, e.g., [4, 34, 27, 3, 21]), due to the peculiar behavior of these the-
orems when compared to Ramsey’s theorem. The Free Set Theorem (denoted
FSn), introduced in the context of Reverse Mathematics by Harvey Friedman
[12], states that for every coloring of the n-subsets of the natural numbers in
unboundedly many colors, there exists an infinite set H of natural numbers
such that for all n-subsets s of H, the color of s is either not in H or else is
in s itself. Such a set is called free for the coloring. The Thin Set Theorem
(denoted TSnω or TSn) is a weak variant of the Free Set Theorem, asserting that
for any coloring of the n-subsets of the natural numbers there is an infinite set
H of natural numbers such that the n-subsets of H avoid at least one color.
The Rainbow Ramsey Theorem (denoted RRTn

k ) asserts that for every coloring
of the n-subsets of the natural numbers in which each color is used at most
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k times, there is an infinite set H of natural numbers such that the coloring
assigns different colors to different n-subsets of H. While Ramsey’s theorem
for colorings of 3-subsets already codes the halting set, none of these principles
does the same for any dimension n ≥ 3. This surprising result is due to Wang
[34].

In the present paper we consider generalizations of the Free Set, Thin Set
and Rainbow Ramsey Theorems to colorings of objects of unbounded dimension.
More precisely, we focus on the natural extensions of these principles to colorings
of so-called exactly ω-large sets, i.e., finite sets s of natural numbers such that
|s| = 1 +min s.1

The concept of ω-large (or relatively large) finite subset of the natural num-
bers is well-known in the proof theory of Arithmetic, as it is the basic ingredient
for the celebrated Paris-Harrington independence result for Peano Arithmetic
[25]. In this context, a finite set s of natural numbers is called relatively large
(or relatively ω-large) if |s| ≥ min s.

Relatively large sets also naturally arise in Ramsey Theory for purely com-
binatorial reasons. It is well-known, and easy to prove, that the natural gen-
eralization of Ramsey’s theorem to finite colorings of all finite sets is a false
principle. This is easily witnessed by coloring according to the parity of the size
of the set. The following weakening is also false: for every finite coloring f of
the finite subsets of the natural numbers there exists an infinite H of natural
numbers such that for infinitely many n, f is constant on the n-subsets of H.
Interestingly, a counterexample is given by the coloring that assigns one color
to all relatively large sets and the opposite color to all other sets.

While relatively ω-large sets provide a counterexample to the natural ex-
tension of Ramsey’s theorem to colorings of all finite sets, exactly ω-large sets
also provide a way to obtain true versions of Ramsey’s theorem for colorings
of families of finite sets containing elements of unbounded size. Weakening the
requirement of homogeneity from all finite sets to all exactly ω-large sets results
in a true principle, sometimes called the Large Ramsey Theorem, which we de-
note by RT!ω following [2]. This principle is arguably the simplest example of
a true version of Ramsey’s theorem for colorings of objects of unbounded di-
mensions, whereas, as noted above, Ramsey’s theorem fails for all finite subsets
of natural numbers. RT!ω

2 is also the base case of a far-reaching generalization
of Ramsey’s theorem due to Nash-Williams, which ensures monochromatic sets
for every coloring of families of finite subsets of the natural numbers satisfying
some properties and called barriers [33]. In this context the family of exactly
ω-large sets is known as the Schreier barrier [33]. The Large Ramsey Theorem
has been studied from the perspective of Computability Theory and Reverse
Mathematics by Carlucci and Zdanowski [2], and its generalization to barriers
in Computability Theory by Clote [5]. They proved that it is computationally
and proof-theoretically stronger than the usual Ramsey’s theorem for each fixed
finite dimension (RTn

k ) and even stronger than Ramsey’s theorem for all finite
dimensions (∀nRTn

k ). From the point of view of Computability, the theorem

1The inessential variant with |s| = min s is also common in the literature.
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corresponds to ∅(ω); in Reverse Mathematics terms, it is equivalent to ACA+
0

over RCA0 (where ACA+
0 extends RCA0 by the axiom of closure under the ω-th

Turing jump).
In the present paper, we formulate and prove the natural generalization of

the Free Set, Thin Set and Rainbow Ramsey Theorems to colorings of exactly
ω-large sets and we investigate their effective and logical strength.

1.1 Framework

We shall study our statements using two frameworks: Reverse Mathematics and
Weihrauch analysis.

Reverse Mathematics is a foundational program whose goal is to find optimal
axioms to prove ordinary theorems. It uses the framework of subsystems of
second-order arithmetic, with a base theory, RCA0 (Recursive Comprehension
Axiom), capturing computable mathematics. More precisely, RCA0 consists of
the axioms of Robinson arithmetic, together with the Σ0

1-induction scheme and
the ∆0

1-comprehension scheme. The Σ0
1-induction scheme states, for every Σ0

1-
formula φ(x),

[φ(0) ∧ ∀x(φ(x) → φ(x+ 1))] → ∀yφ(y)

The ∆0
1-comprehension scheme states, for every Σ0

1-formula φ(x) and every Π0
1-

formula ψ(x),

[∀x(φ(x) ↔ ψ(x))] → ∃Y ∀x(x ∈ Y ↔ φ(x))

There exist four other subsystems which, together with RCA0, calibrate the
strength of most theorems. These theorems are known as the “Big Five” (see
Montálban [23]). Among these, ACA0 (Arithmetic Comprehension Axiom) ex-
tends the axioms of RCA0 with the comprehension scheme for all arithmetic
formulas. Based on the correspondence between computability and definabil-
ity, it is equivalent to stating the existence of the Turing jump of any set
(∀X∃Y (Y = X ′)).

We shall also consider two lesser-known stronger variants of ACA0, namely,
ACA′

0 and ACA+
0 . The system ACA′

0 extends RCA0 with the axiom stating
closure under all finite jumps; the system ACA+

0 extends RCA0 with the axiom
stating the existence of the ω-jump of any set. The ω-jump of a set X is the set
X(ω) =

⊕
nX

(n). The system ACA+
0 is famous for being the best known upper

bound to Hindman’s theorem.
Some of our results are expressed in terms of reductions. All principles stud-

ied in this paper are of the following logical form: ∀X(I(X) → ∃Y S(X,Y )),
where I(X) and S(X,Y ) are arithmetical formulas and X and Y are set vari-
ables. We refer to such theorems as ∀∃-principles. For principles P of this form
we call any X that satisfies I an instance of P and any Y that satisfies S(X,Y ) a
solution to P for X. We will use the following notion of computable reducibility
whose variants became of central interest in Computability Theory and Reverse
Mathematics in recent years (see [10] for background and motivation).
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Definition 1.1. Q is strongly Weihrauch reducible to P (denoted Q ≤sW P) if
there exist Turing functionals Φ and Ψ such that for every instance X of Q we
have that Φ(X) is an instance of P, and if Y is a solution to P for Φ(X) then
Ψ(Y ) is a solution to Q for X.

1.2 Organization of the paper

In Section 2 we recall the usual, finite-dimensional versions of the Free Set,
Thin Set and Rainbow Ramsey theorems and we observe that these principles
fail when generalized to all finite sets. For this, we use the notion of exactly
ω-large set. Then, in Section 3, we recall known facts about the extension of
Ramsey’s theorem to colorings of exactly ω-large sets and show that the gen-
eralized Free Set, Thin Set and Rainbow Ramsey Theorem are consequences of
the corresponding generalization of Ramsey’s theorem. This is analogous to the
finite-dimensional case, but some of the proofs require non-trivial adaptations.
In Section 4 we show that, contrary to their finite-dimensional counterparts
which do not code any non-computable set, the Free Set and Thin Set the-
orems for exactly ω-large sets code ∅(ω) and imply ACA+

0 . In Section 5, we
generalize the statements to a more robust version in terms of barriers, in order
to prove upper bounds on a larger class of instances. In Section 6 we prove
a cone avoidance result for the Rainbow Ramsey Theorem for exactly ω-large
sets and, more generally, for colorings of a larger class of barriers of order type
ωω. This result entails that none of these principles code the halting set or
imply ACA0. This difference of behavior at the exactly ω-large level is surpris-
ing, given the equivalence between the statements

⋃
n∈ω RRTn and

⋃
n∈ω FSn

in Reverse Mathematics (see [26, 34]). Last, in Section 7, we conclude and open
the discussion to future research directions.

2 Free sets, thin sets and rainbows

The main goal of this section is to recall the definitions of the usual finite-
dimensional Free Set, Thin Set and Rainbow Ramsey Theorem and motivate
their generalizations to colorings of exactly ω-large sets in analogy to the case
of Ramsey’s theorem.

Let us first fix some notation and recall the definition of these principles
for colorings of finite subsets of fixed size. We denote by N the set of natural
numbers and by N+ the set of positive natural numbers. For X ⊆ N and n ∈ N
we denote by [X]n the set of all n-subsets of X. We denote by [X]<ω the set of
all finite subsets of X. We always assume that sets are presented in increasing
order and make no distinction between a set and the sequence of its elements in
increasing order. We identify a natural number with the set of its predecessors,
so that, if k ≥ 1 we can write f : X → k to declare a function from X to
{0, 1, . . . , k − 1}. A function of this type is often called a coloring of X in k
colors.
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We start by recalling the classical Ramsey’s theorem for finite colorings of
the n-subsets of a countable set.

Definition 2.1 (Ramsey Theorem). Let n, k ∈ N+. For every coloring f :
[N]n → k there exists an infinite set H ⊆ N such that |f([H]k)| = 1. The set H
is called homogeneous (or monochromatic) for f . We abbreviate this statement
by RTn

k .

Ramsey’s theorem was first studied in Computability Theory by Jockusch [17],
who proved that every computable instance admits an arithmetic solution, and
constructed a computable instance of RT3

2 such that every solution computes
the halting set. The formalization of Jockusch’s proofs in Reverse Mathematics
by Simpson [32] yields that RT1

k is provable over RCA0 for any standard k ∈ N,
and RTn

k is equivalent to ACA0 over RCA0 for n ≥ 3 and any k ≥ 2. The case
n = 2 was a long-standing open question, until Seetapun [31] proved that no
computable instance of RT2

k codes the halting set, hence that RT2
k is strictly

weaker than ACA0 over RCA0.
The following Free Set Theorem has been introduced by Harvey Friedman

[12] and first studied in [4].

Definition 2.2 (Free Set Theorem). Let n ∈ N+. For every coloring f : [N]n →
N, there exists an infinite set H ⊆ N such that for every set s ∈ [H]n, if f(s) ∈ H
then f(s) ∈ s. The set H is called free for f . We abbreviate this statement by
FSn.

The notion of free set in Friedman’s Free Set Theorem is the same as the
one used in a combinatorial characterization theorem for the ℵn cardinals by
Kuratowski [18]. Here, the following property of an n+1-subset U of a set X is
with respect to a function f : [X]n → [X]<ω is considered: for all x ∈ U we have
x /∈ f(U \ {x}). For the particular case of a function mapping in (singletons
from) X this means that for all x ∈ U we have f(U \ {x}) ̸= x. This is the
same as asking that for all n-subset s of U , if f(s) ∈ U then f(s) ∈ s, which
means that U is free for f . Interestingly, in Section 6 we are lead to consider
extensions of the Free Set Theorem with colors in [N]<ω.

The next theorem is a weakening of the Free Set Theorem, introduced in [12]
and first studied in [4].

Definition 2.3 (Thin Set Theorem). For n ≥ 1. For every coloring f : [N]n →
N, there exists an infinite set H ⊆ N such that f([H]n) ̸= N. The set H is called
thin for f . We abbreviate this statement by TSn.

The notion of free set might seem ad-hoc at first sight, but can be better
understood in the light of the Thin Set Theorem. Indeed, an infinite set H ⊆ N
is f -free if and only if, for every x ∈ H, the set H \ {x} is f -thin with witness
color x. Thus, the Free Set Theorem is a natural generalization of the Thin Set
Theorem. The next principle is sometimes called an anti-Ramsey theorem or
the Rainbow Ramsey Theorem. We first need the following definition.
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Definition 2.4 (k-bounded function). Let k ∈ N+ and X be a set. A function
f : X → N is k-bounded if for all i ∈ N, |f−1(i)| ≤ k.

Definition 2.5 (Rainbow Ramsey Theorem). Let n, k ∈ N+. For all k-bounded
colorings f : [N]n → N, there exists an infinite set H ⊆ N such that f is injective
on [H]n. The set H is called a rainbow for f . We abbreviate this statement by
RRTn

k .

The principles TSn,FSn and RRTn
k have been thoroughly investigated from

the point of view of Computability Theory and Reverse Mathematics by a num-
ber of authors ([4, 27, 3, 21]). The general picture that emerged is that these
principles are computationally and combinatorially very weak consequences of
Ramsey’s theorem (RTn → FSn → TSn ∧ RRTn): while RT3 codes the jump
and implies ACA0, Wang [34] showed that the Free Set, Thin Set and Rainbow
Ramsey Theorem do not code the halting set and satisfy the so-called strong
cone avoidance property, which entails that they do not imply ACA0.

In the remainder of this section we observe that, similarly to the case of
Ramsey’s theorem, the natural generalizations of the Free Set, Thin Set and
Rainbow Ramsey Theorems to colorings of all finite subsets of N fail.

Let FS<ω be the following principle: For all f : [N]<ω → N there exists
an infinite free set, where we denote by [N]<ω the set of all finite subsets of
N which we identify with finite increasing sequences. Analogously, let TS<ω

be the following principle: for all f : [N]<ω → N there exists an infinite thin
set. Finally, let RRT<ω

k be the following statement: For all k-bounded coloring
f : [N]<ω → N there exists an infinite set H ⊆ N such that f is injective on
[H]<ω (i.e., H is a rainbow for f).

Proposition 2.6. There exists a coloring of the finite subsets of the natural
numbers that admits no infinite thin set (i.e., TS<ω is false).

Proof. Let f : [N]<ω → N be defined by setting f(s) = |s|. Let X be an infinite
subset of N. Then f([X]<ω) = N.

Similarly to the finite dimensions case [4], the Free Set Theorem for all finite
sets implies the Thin Set Theorem for all finite sets. We formulate this fact in
terms of reductions since the exact same argument applies to other principles
of interest in this paper. The observation that the proof of the next proposition
(see proof Theorem 3.2 in [4]) applies to barriers was one of the starting points
of the present work.

Proposition 2.7. TS<ω ≤sW FS<ω.

Proof. Let f : [N]<ω → N. Let A be an infinite free set for f . Let B be a
non-empty subset of A such that A \ B is infinite. We claim that A \ B is
thin for f . Assume, by way of contradiction, that for all n ∈ N there exists an
sn ∈ [A \B]<ω such that f(sn) = n. Take n ∈ B. Thus, n ∈ A. Since A is free
for f , it must be the case that n ∈ sn, contradicting the fact that sn was chosen
in A \B.
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As a corollary we obtain the following proposition.

Proposition 2.8. There exists a coloring of the finite subsets of the natural
numbers that admits no infinite free set (i.e., FS<ω is false).

We next show that the natural generalization of the Rainbow Ramsey The-
orem to colorings of all finite sequences fails. The proof features the notion of
exactly ω-large set, which is central for the present paper.

Definition 2.9 ((Exactly) ω-large sets). A finite s ⊆ N is ω-large (a.k.a. rela-
tively large) if |s| ≥ 1 + min s and is exactly ω-large if |s| = 1 +min s.

For an infinite X ⊆ [N] we denote by [X]!ω the family of all exactly ω-large
subsets of X. The family [N]!ω coincides with the famous Schreier barrier used
in better quasi ordering theory and Banach Space Theory [33].

Proposition 2.10. There exists a coloring of the finite subsets of the natural
numbers that admits no infinite rainbow (i.e., RRT<ω

2 is false).

Proof. A finite set s ⊆ N is called quasi-exactly ω-large if there exists an exactly
ω-large set t such that s = t \ {min t}. Obviously if t is exactly ω-large then
t\{min t} is quasi exactly ω-large. Also it is easy to see that if s is quasi exactly
ω-large then there exists a unique exactly ω-large t such that s = t\{min t}. Let
b : [N]<ω → N be a bijection. We define a 2-bounded coloring f : [N]<ω → N as
follows. If s is neither exactly ω-large nor quasi exactly ω-large then f(s) = b(s).
If s is exactly ω-large then f(s) = f(s \ {min s}) = b(s). Let H ⊆ N be infinite.
Then for any s ∈ [H]!ω we have s \ {min s} ∈ [H]<ω. But for any such s we
have f(s) = f(s \ {min s}). Thus H is not a rainbow for f .

3 Colorings of exactly ω-large sets

In this section, we introduce and prove the generalizations of the Free Set, Thin
Set and Rainbow Ramsey theorems to colorings of exactly ω-large sets. We also
establish some basic implications and relations among those principles.

As mentioned, Ramsey’s theorem fails when generalized to the family of all
finite sets. On the other hand, there exists a natural generalization of Ramsey’s
theorem to some families of finite sets of unbounded size that is central for our
investigation. The following is the generalization of Ramsey’s theorem to col-
orings of exactly ω-large sets, as a particular case of more general theorems by
Pudlák and Rödl [30] and by Farmaki and Negrepontis [11]. Besides, it is a par-
ticular case of Nash-Williams’ generalization of Ramsey’s theorem to barriers,
which in turn is a consequence of the Clopen Ramsey Theorem (see [32]).

Definition 3.1 (Large Ramsey Theorem). Let k ≥ 1 be an integer. For every
coloring f : [N]!ω → k, there exists an infinite set H ⊆ N such that |f([H]!ω)| =
1. We abbreviate this statement by RT!ω

k .
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The classical Ramsey Theorem is a statement about cardinality, and RTn
k

proves over RCA0 the following stronger statement “For every infinite set X ⊆ N
and every coloring f : [X]n → k, there is an infinite f -homogeneous setH ⊆ X.”
The situation is more complex in the case of Large Ramsey Theorem, as there
is no clear bijection between [X]!ω and [N]!ω. On the other hand, the classi-
cal and computability-theoretic proofs of Large Ramsey Theorem hold for the
strongest version of the statement. Because of this, Large Ramsey Theorem can
arguably be considered as a non-robust statement. A first solution, adopted by
Carlucci and Zdanowski [2], consisted in directly studying the stronger formula-
tion. However, making the domain part of the instance raises some issues when
considering strong cone avoidance as we do in Section 6, since the domain can
be chosen to be sparse enough to compute any hyperarithmetic set. We shall
therefore adopt another approach, and prove our lower bounds in terms of the
weaker version, while proving the upper bounds on a generalized version formu-
lated in terms of barriers, that will be presented in Section 6. All these versions
are equivalent over RCA0 to ACA+

0 , so either formulation can be chosen.
Carlucci and Zdanowski [2] established the following bounds on the effective

content and logical strength of the Large Ramsey Theorem.

Theorem 3.2 (Carlucci-Zdanowski [2]).

1. All computable finite colorings of [N]!ω admit an infinite monochromatic
set computable in ∅(ω).

2. There exists a computable coloring of [N]!ω in 2 colors such that all infinite
monochromatic sets compute ∅(ω).

3. RT!ω
2 is equivalent to ACA+

0 over RCA0.

Clote [6] proved point 1. for a larger family of colorings and point 2. for
colorings of a family closely related to [N]!ω (see Theorem 5.5 below).

It is quite natural to ask if the natural generalizations of the Free Set, Thin
Set and Rainbow Ramsey Theorems to colorings of exactly ω-large sets hold.
The following is the natural generalization of the Free Set Theorem to colorings
of exactly ω-large sets.

Definition 3.3 (Large Free Set Theorem). For every coloring f : [N]!ω → N
there exists an infinite set H ⊆ N such that for every set s ∈ [H]!ω, f(s) /∈
(H \ s). The set H is called free for f . We abbreviate this statement by FS!ω.

There exists a direct combinatorial proof of FS!ω, as for the proof of RT!ω
k ,

involving countable applications of RTn
k and FSn for n ∈ N+ and a final appli-

cation of FS1. A computability-theoretic analysis of this proof yields a solution
computable in the ω-jump of the instance. We rather establish FS!ω by reduc-
tion to RT!ω. The proof combines ideas from the proof of FSn from RTn

2n+2

(Theorem 5.2 and Corollary 5.3 in [4]) and from the proof of Theorem 4.1 in
[2].

Theorem 3.4. FS!ω ≤sW RT!ω
2 .
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Proof. For s = {s0, . . . , ss0} an exactly ω-large set with s0 > 0, and s0 < · · · <
ss0 define s⊖1 to be the following exactly ω-large set: {s0−1, s1−1, . . . , ss0−1−
1}. The idea is to keep one degree of freedom: ss0 , as in the proof of Carlucci
and Zdanowski [2, Proposition 4.1].

Let f : [N]!ω → N be an instance of FS!ω. Consider the following function
g : [N]!ω → 2 defined by induction. Note that the function g is called recursively
on lexicographically smaller parameters, so the induction is well-defined since
the lexicographic order is a well-order. For s = {s0, . . . , ss0} an exactly ω-large
set:

g(s) =



0 if f(s⊖ 1) = si − 1 for some i < s0

1− g(f(s⊖ 1) + 1, s1, . . . , sf(s⊖1)+1)

if f(s⊖ 1) < s0 − 1

1− g(s0, . . . , si, f(s⊖ 1) + 1, si+2, . . . , ss0)

if f(s⊖ 1) ∈ (si − 1, si+1 − 1) for some i < s0 − 1

0 if f(s⊖ 1) ∈ (ss0−1 − 1, ss0 − 1)

1 otherwise (if f(s⊖ 1) ≥ ss0)

Let H = {x0, x1, . . . } ⊆ N+ be an infinite g-homogeneous set. We claim
that H ′ = {x0 − 1, x1 − 1, . . . } is f -free. Consider some exactly ω-large set
{s0 − 1, . . . , ss0−1 − 1} ⊆ H ′. Then {s0, . . . , ss0−1} ⊆ H. There are two cases:

Case 1: H is homogeneous for the color 0. Then, take ss0 to be the next
element of H after ss0−1 and write s = {s0, . . . , ss0}, then g(s) = 0. There are
four subcases:

Subcase 1.1: f(s⊖ 1) = si − 1 for some i < s0. In that case we are done.
Subcase 1.2: f(s⊖ 1) ∈ (ss0−1 − 1, ss0 − 1). In that case, by definition of

ss0 , f(s⊖ 1) is not in H ′.
Subcase 1.3: f(s⊖ 1) < s0 − 1 and g(f(s⊖ 1) + 1, s1, . . . , sf(s⊖1)+1) = 1.

If f(s⊖ 1) ∈ H ′ this contradicts the fact that H is g-homogeneous for the color
0.

Subcase 1.4: f(s ⊖ 1) ∈ (si − 1, si+1 − 1) for some i < s0 − 1 and
g(s0, . . . , si, f(s⊖ 1)+1, si+2, . . . , ss0) = 1. If f(s⊖ 1) ∈ H ′ this contradicts the
fact that H is g-homogeneous for the color 0.

Case 2: H is homogeneous for the color 1. Take ss0 ∈ H bigger than ss0−1

and write s = {s0, . . . , ss0}, then g(s) = 1. There are three subcases:
Subcase 2.1: f(s ⊖ 1) ≥ ss0 . This case is impossible, indeed, as H is

infinite, there exists some element x ∈ H such that x > f(s ⊖ 1) + 1 and
therefore f(s ⊖ 1) ∈ (ss0 − 1, x − 1), which leads to g(s0, . . . , ss0−1, x) = 0
contradicting the fact that H is g-homogeneous for the color 1.

Subcase 2.2: f(s⊖ 1) < s0 − 1 and g(f(s⊖ 1) + 1, s1, . . . , sf(s⊖1)+1) = 0.
If f(s⊖ 1) ∈ H ′ this contradicts the fact that H is g-homogeneous for the color
1.

Subcase 2.3: f(s ⊖ 1) ∈ (si − 1, si+1 − 1) for some i < s0 − 1 and
g(s0, . . . , si, f(s⊖ 1)+1, si+2, . . . , ss0) = 0. If f(s⊖ 1) ∈ H ′ this contradicts the
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fact that H is g-homogeneous for the color 1.

Notice that g is uniformly computable in f and that H ′ is uniformly com-
putable in H. Therefore, FS!ω ≤sW RT!ω

2 .

The above proof uses the fact that the exactly ω-large sets are well-ordered
under lexicographic ordering. Since the order type of this ordering is ωω and the
statement “ωω is well-ordered” implies the consistency of RCA0 (see [14, 15]),
the above proof is not formalizable in RCA0. Yet, since RT!ω

2 implies ACA0 and
the latter proves that ωω is well-ordered we obtain the following corollary.

Corollary 3.5. RCA0 ⊢ RT!ω
2 → FS!ω.

We next introduce the generalization of the Thin Set Theorem to colorings
of exactly ω-large sets. For the fixed-dimension case, Cholak et al. [4] have
proved in RCA0 that for all k ≥ 2, FSk implies TSk (see Theorem 3.2 in [4]; the
proof yields a strong Weihrauch reduction). A completely analogous argument
establishes that the Thin Set Theorem follows from (and is reducible to) the
Free Set Theorem for colorings of exactly ω-large sets.

Definition 3.6 (Large Thin Set Theorem). For every coloring f : [N]!ω → N,
there exists an infinite set H ⊆ N such that f([H]!ω) ̸= N. The set H is called
thin for f . We abbreviate this statement by TS!ω.

Theorem 3.7. TS!ω ≤sW FS!ω and RCA0 ⊢ FS!ω → TS!ω.

Proof. Completely analogous to the proof of Proposition 2.7.

The following proposition states that requiring that one color is omitted is
equivalent to requiring that infinitely many colors are omitted. The result is the
analogue of Theorem 3.5 in [4] and can be proved by exactly the same proof.

Proposition 3.8. For every coloring f : [N]!ω → N there exists an infinite set
X ⊆ N such that N \ f([X]!ω) is infinite. Moreover, the just stated principle is
strongly Weihrauch-equivalent to TS!ω and provably equivalent to the latter over
RCA0.

Proof. See proof of Theorem 3.5 in [4].

We now turn to the generalization of the Rainbow Ramsey Theorem.

Definition 3.9 (Large Rainbow Ramsey Theorem). Let k ∈ N+. For every
k-bounded coloring f : [N]!ω → N there exists an infinite set H ⊆ N such that f
is injective on [H]!ω. The set H is called a rainbow for f . We abbreviate this
statement by RRT!ω

k .

For the fixed dimension case, Galvin gave a reduction to Ramsey’s theo-
rem. His argument is formalizable in RCA0 and yields that for each n, k ∈ N,
RRTn

k ≤sW RTn
k (see [7], proof of Theorem 5.2). Csima and Mileti also showed
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that for each n, k ∈ N+, RRTn
k follows from RRTn+1

k over RCA0 (the proof of
Theorem 5.3 in [7] yields a strong Weihrauch reduction).

We first observe that Galvin’s argument adapts to the case of colorings of
exactly ω-large sets and establishes a strong Weihrauch reduction.

Theorem 3.10. For all k ≥ 1, RRT!ω
k ≤sW RT!ω

k . Moreover RCA0 ⊢ ∀k(RT!ω
k →

RRTω
k ).

Proof. Let f : [N]!ω → N be k-bounded and fix a computable bijection b(·) :
[N]!ω → N. Define g : [N]!ω → k as follows:

g(s) = |{t ∈ [N]!ω : b(t) < b(s) and f(s) = f(t)}|.

The fact that g is a k-coloring depends on the hypothesis that f is k-bounded.
Let H be an infinite set such that g is constant on [H]!ω, as given by RT!ω

k . Let
s, t ∈ [H]!ω. Since g(s) = g(t) and either b(s) < b(t) or b(t) < b(s) we have that
f(s) ̸= f(t). Thus H is rainbow for f .

The following is an adaptation of a result by Wang [34], who showed that
for every n, RRTn

2 ≤sW FSn.

Proposition 3.11. RRT!ω
2 ≤sW FS!ω.

Proof. Fix a computable bijection b(·) : [N]!ω → N. Let f : [N]!ω → N be
2-bounded. Define g : [N]!ω → N as follows:

g(s) =

{
min(t \ s) if there is a t ∈ [N]!ω such that b(t) < b(s) and f(s) = f(t),

0 otherwise.

Since f is 2-bounded, if t exists in the definition of g then it is unique.
If t and s are distinct exactly ω-large sets then (t \ s) ̸= ∅, since t ⊆ s is
impossible. Let A be an infinite g-free set. We claim that A is a rainbow for
f . Suppose otherwise, by way of contradiction, as witnessed by s, t ∈ [A]!ω such
that f(s) = f(t). Without loss of generality we can assume b(t) < b(s). Then
g(s) = min(t \ s) ∈ A \ s, contradicting that A is g-free.

Wang [34] proved that the Free Set, Thin Set and Rainbow Ramsey Theo-
rems for fixed-sized sets satisfy cone-avoidance. This entails that none of these
principles codes the halting set or implies ACA0. A natural question is whether
the same is true of their versions for exactly ω-large sets. We will show that FS!ω

and TS!ω code ∅(ω) and imply the much stronger system ACA+
0 , while RRT!ω

admits cone avoidance.

Some first lower bounds on our principles can be obtained by adapting results
from the finite-dimensional case. For example, the Rainbow Ramsey Theorem
with internal quantification over all fixed finite dimensions ∀nRRTn

2 follows from
the Rainbow Ramsey Theorem for exactly ω-large sets.

11



Proposition 3.12. For each k, n ∈ N+, RRT!ω
k ≥sW RRTn

k . Moreover, RCA0 ⊢
∀k(RRT!ω

k → ∀nRRTn
k ).

Proof. Let n ∈ N+ and f : [N]n → N be k-bounded. Define g : [N]!ω → N as
follows: g(s) = ⟨0, f(s0, s1, . . . , sn−1)⟩ if s0 ≥ n, and ⟨1, s⟩ otherwise (where
⟨·⟩ : N<ω → N is a fixed computable bijection). Let A be an infinite rainbow
for g. Then A ∩ [n,∞) is an infinite rainbow for f .

Analogous results can be obtained for the Large Free Set and the Large
Thin Set Theorem, so that P!ω implies ∀nPn over RCA0 for P ∈ {FS,TS}. Both
implications are also witnessed by strong Weihrauch reductions. We omit the
proofs since these results are superseded by the results of the next section where
we prove that FS!ω and TS!ω imply ACA+

0 .

4 Large Thin and Free Set Theorems code ∅(ω)

In this section we establish strong lower bounds on FS!ω and TS!ω showing that
both these principles code ∅(ω) and imply ACA+

0 . This should be contrasted
with the fact that neither ∀nFSn nor ∀nTSn imply ACA0.

The first goal is to prove the existence of a computable instance of TS!ω

such that every solution uniformly computes ∅(ω). In particular, TS!ω admits
the same lower bound as RT!ω

2 . Since TS!ω is strongly Weihrauch reducible to
FS!ω by Theorem 3.7, it follows that there is a computable instance of FS!ω

such that every solution computes ∅(ω). By results in the previous section, this
bound is optimal, since every computable instance of FS!ω admits a solution
computable in ∅(ω) by Theorem 3.4 and Theorem 3.2. The following definition
of thinness is technically convenient.

Definition 4.1. Let C be any non-empty set. Given a coloring f : [N]n → C,
a set H ⊆ N is f -thin for color c ∈ C if c ̸∈ f([H]n). A set H ⊆ N is f -thin
(or thin for f) if H is f -thin for some color c ∈ C.

The definition of f -thin set depends on the choice of codomain of the func-
tion. It will always be clear from the context.

The following version of the Thin Set Theorem for finite colorings was in-
troduced in [8] and is useful for our purposes.

Definition 4.2 (Thin Set Theorem for finite colorings). Let n ≥ 1 and k ≥ 2.
For every coloring f : [N]n → k, there exists an infinite set H ⊆ N such that H
is thin for f . We abbreviate this statement by TSnk .

Dorais et al. [8, Proposition 5.5] proved the existence, for every n ∈ N+,
of a computable coloring f : [N]n+2 → 2n such that every infinite f -thin set
computes ∅′. However, their proof is not uniform, which is a required feature
for our construction to code ∅(ω). We prove the existence, for every n ≥ 2, of a
computable coloring f : [N]n+1 → n such that every infinite f -thin set uniformly
computes ∅′.
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Lemma 4.3. There exists two computable arrays (en,k)n,k∈N and (dn,k)n,k∈N

of Turing indexes such that for every n ≥ 2 and k ≥ 1, Φ∅(k)

en,k
is a coloring

fkn : [N]n → n such that for every infinite fkn-thin set H, ΦH
dn,k

= ∅(k).

Proof. Let k ∈ N+. Let gk be a uniform modulus of the set ∅(k). Note that
∆0

k+1-indexes for each function gk can be found computably, uniformly in k.

For n ≥ 2 let fkn(x0, . . . , xn−1) = n− 1 if gk(x0) ≤ x1 and if gk(x0) > x1, let
fkn(x0, . . . , xn−1) = i for i < n− 1 the largest value such that gk(x0) > xi+1.

Let H be an infinite fkn -thin set for some color c. The color c cannot be n−1
as for a given x0 ∈ H there exists x1 < · · · < xn−1 ∈ H \ {0, . . . , gk(x0)}, hence
fkn(x0, . . . , xn−1) = n− 1.

We claim H is thin for color n − 2. Indeed, assume by contradiction that
there exists some tuple x0 < · · · < xn−1 ∈ H such that gk(x0) > xn−1 so
that fkn takes color n − 2 on {x0, . . . , xn−1}. Since c < n − 2 and H is in-
finite, there exists some yc+2 < · · · < yn−1 ∈ H \ {0, . . . , gk(x0)}, therefore
fkn(x0, . . . , xc+1, yc+2, . . . , yn−1) = c, contradicting our assumption that H is
fkn -thin for c.

Write H = {x0 < x1 < . . . }. For every i ∈ N, gk(xi) ≤ xi+n−1, hence H
computes a function dominating g and therefore computes ∅(k). This computa-
tion can be done uniformly in the set H, k and n.

Lemma 4.4. There exists a functional Γ such that for every set X and every
index e, if ΦX′

e is a coloring f : [N]n → ℓ, then ΓX(e) is a coloring g : [N]n+1 → ℓ
such that if an infinite set H is g-thin for a color c, then H is f -thin for the
same color c.

Proof. Consider a set X and an index e such that ΦX′

e is a coloring f : [N]n → ℓ
for some n, ℓ ∈ N+. Let (fs)s∈N be a ∆0

2(X)-approximation of f (indexes for
such an approximation, where the fs are seen as X-computable functions, can
computably be found uniformly in X and e). Finally, consider the following
X-computable coloring g defined by g(x0, . . . , xn) = fxn(x0, . . . , xn−1) (again,
the construction is uniform).

Let H ⊆ N be an infinite set. If for some x0 < · · · < xn−1 ∈ H we have
f(x0, . . . , xn−1) = c for some color c, then fs(x0, . . . , xn−1) = c for every s bigger
than a certain threshold. Thus, as H is infinite, there exists some xn ∈ H such
that g(x0, . . . , xn) = c. By contrapositive, if H is g-thin for c, then it is also
f -thin for c.

Combining these two lemmas, we get the following, where the array (dn,k)n,k∈N
is as in Lemma 4.3.

Lemma 4.5. There exists a uniformly computable sequence of colorings fn,k :
[N]n+k → n, for n, k ≥ 1, such that for every infinite fn,k-thin set H, ΦH

dn,k
=

∅(k).

The following theorem states that TS!ω does not admit cone avoidance in a
strong sense: there exists a single computable instance of TS!ω that computes
∅(ω).
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Theorem 4.6. There exists a computable coloring f : [N]!ω → N such that every
infinite f -thin set H computes ∅(ω). Moreover, this computation is uniform in H
and an avoided color c.

Proof. Let f : [N]!ω → N be defined as follows (where the functions fn,k are from
Lemma 4.5): for x0 < · · · < xx0

in N+, let f(x0, . . . , xx0
) = fx0−k,k(x1, . . . , xx0

)
for k = ⌈x0

2 ⌉. By Lemma 4.5, f is indeed computable.
Let H be an infinite f -thin set for some color c and let n ∈ N. Since H

is infinite, there exists some x0 ∈ H such that, by letting k = ⌈x0

2 ⌉, we have
x0 − k > c and k ≥ n. The set G = H \ {0, . . . , x0} is infinite and f -thin for c.
By definition of f , G is fx0−k,k-thin for the color c. Note that c is part of the
range of fx0−k,k as x0− k > c. By Lemma 4.5, since k ≥ n, G ≥T ∅(n). Since G
is obviously H-computable, we have H ≥T ∅(n). This computation can be done
uniformly in H, c and n, thus H ≥T ∅(ω) uniformly in H and c.

Corollary 4.7. There exists a computable coloring f : [N]!ω → N such that
every infinite f -free set computes ∅(ω).

Proof. Immediate by Theorem 4.6 and the fact that TS!ω ≤sW FS!ω by Theo-
rem 3.7.

Since the proof of Theorem 4.6 relativizes and is formalizable in RCA0 we
obtain the following Reverse Mathematics corollary.

Corollary 4.8. Each of TS!ω and FS!ω implies ACA+
0 over RCA0.

The above corollary coupled with Theorem 3.2 and Corollary 3.5 implies the
equivalence over RCA0 of RT!ω

2 , TS!ω and FS!ω. We do not know whether RT!ω
2

is reducible to TS!ω or FS!ω.
The remaining question is whether RRT!ω codes ∅(ω). In the next section,

we shall answer this question negatively in a strong sense: RRT!ω does not code
any non-computable set. Some computability-theoretic weak anti-basis results
for RRT!ω can be obtained by streamlining results from the finite dimensional
case. For instance, Csima and Mileti [7] proved the following theorem:

Theorem 4.9 (Csima-Mileti [7]). For all n, k ≥ 2 there exists a computable
k-bounded f : [N]n → N with no infinite Σ0

n rainbow.

The proof of Theorem 4.9 is uniform in n. Using this uniformity we obtain
the following.

Theorem 4.10. There is a computable instance of RRT!ω
2 with no arithmetical

solution.

Proof. For each n ≥ 2 let fn : [N]n → N be the 2-bounded instance of RRTn
2

with no infinite Σ0
n rainbow given by Theorem 4.9. Let g : [N]!ω → N be defined

as follows:
g(n, x0, . . . , xn−1) = ⟨n, fn(x0, . . . , xn−1)⟩

The function g is clearly 2-bounded since each fn is 2-bounded. Then for every
g-rainbow H and every n in H, the set H \ [0, n] is an fn-rainbow, so H is not
Σ0

n by Theorem 4.9.
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Patey [26] proved that RCA0 ⊢ (∀n)[RRTn+1
2 → TSn] and for every n ∈ N+,

RCA0 ⊢ RRT2n+1
2 → FSn. The argument almost translates in the exactly ω-

largeness setting as follows. A set s ⊆ N is exactly (ω+1)-large if s \ {min s} is

exactly ω-large. Let RRT
!(ω+1)
2 be the Rainbow Ramsey Theorem for 2-bounded

colorings of the exactly (ω + 1)-large sets.

Proposition 4.11. TS!ω ≤sW RRT
!(ω+1)
2 .

Proof. Fix an instance f : [N]!ω → N of TS!ω. Then, consider the following

f -computable instance g of RRT
!(ω+1)
2 : for every s ∈ [N]!ω and every x ∈ N, if

f(s) = ⟨x, y⟩ with x < y < min s, let g(x, s) = g(y, s) and otherwise assign to
g(x, s) a fresh color. The construction of g is uniform in f .

Let H be an infinite rainbow for g and let x, y ∈ H with x < y. The set
H1 = H \ [0, y] is f -thin for the color ⟨x, y⟩. Indeed, for every s ∈ [H1]

!ω, by
definition of H1, x < y < min s, thus, if f(s) = ⟨x, y⟩, then g(x, s) would be
equal to g(y, s), contradicting the fact that H is a rainbow for g. The definition

of H1 is uniform in H, thus TS!ω ≤sW RRT
!(ω+1)
2 .

Corollary 4.12. There exists a computable instance of RRT
!(ω+1)
2 such that

every solution computes ∅(ω).

Proof. Immediate by Theorem 4.6 and Proposition 4.11.

5 Coloring barriers of order type ωω

In the previous sections we established lower bounds showing that the Free Set
Theorem and the Thin Set Theorem for the Schreier barrier code ∅(ω). In this
section we develop a more robust generalization of the principles of interest,
based on the notion of barrier. The main motivation is to prove upper bounds
on a generalization of the Large Rainbow Ramsey theorem.

Ramsey’s theorem for exactly ω-large sets (RT!ω
k ) is arguably the simplest

generalization of Ramsey’s theorem to collections of finite sets of arbitrary
size, which is combinatorially true. However, the restriction |s| = 1 + min s
is somewhat arbitrary, and could be replaced by any restriction of the form
|s| = h(min s) for a computable function h : N → N, while leaving the compu-
tational lower bounds and upper bounds of the statement unchanged. In this
section, we therefore generalize the previous statements about exactly ω-large
sets to a family of statements satisfying better closure properties.

There exist two possible approaches to relate RT!ω
k to existing theorems.

The bottom-up approach, already explained, consists in considering RT!ω
k as a

generalization of Ramsey’s theorem to larger families of finite sets. The top-
down approach, which we explore now, consists in seeing RT!ω

k as a particular
case of the clopen Ramsey theorem by Galvin and Prikry [13]. In what follows,
we write [X]ω for the class of all infinite subsets of X. This notation should not
be confused with the set [X]!ω of all exactly ω-large subsets of X.
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Theorem 5.1 (Clopen Ramsey Theorem). Fix k ∈ N+. For every contin-
uous coloring f : [N]ω → k, there exists an infinite set H ⊆ N which is f -
homogeneous, that is, such that |f([H]ω)| = 1.

Every coloring f : [N]!ω → k can be considered as a continuous coloring
g : [N]ω → k defined by g(X) = f(X ↾1+minX), and every g-homogeneous set is
f -homogeneous. On the other hand, given a continuous coloring g : [N]ω → k,
there exists a prefix-free set B ⊆ [N]<ω and a coloring f : B → k such that

(1) for every infinite set X ∈ [N]ω, there exists a (unique) sX ∈ B such that
sX ≺ X (where ≺ denotes proper initial segment);

(2) for every X ∈ [N]ω, g(X) = f(sX).

Any set B satisfying the above properties is called a block. Marcone [22] proved
over RCA0 that such a set B can always be assumed to satisfy slightly stronger
structural properties, called barrier. Given a set B ⊆ [N]<ω, we write base(B)
for the set {n ∈ N : (∃s ∈ B)(n ∈ ran(s))}. In the following definition ⪯ denotes
the initial segment relation and ⊂ denotes the proper subset relation.

Definition 5.2. A set B ⊆ [N]<ω is a barrier if

(1) base(B) is infinite;

(2) for every X ∈ [base(B)]ω, there is some s ∈ B such that s ⪯ X;

(3) for every s, t ∈ B, s ̸⊂ t.

Note that the last item is stronger than asking for B to be prefix-free. The
simplest notions of barriers are the families [N]n for n ∈ N. Barriers were
introduced by Nash-Williams [24] in order to study better quasi-orders (bqo), a
strengthening of well-quasi-orders (wqo) with better closure properties. Barriers
were studied by Marcone [22] in the context of Reverse Mathematics.

Theorem 5.3 (Barrier Ramsey Theorem). Fix a barrier B ⊆ [N]<ω and some k ∈
N+. For every coloring f : B → k, there exists an infinite set H ⊆ base(B)
such that |f([H]<ω ∩B)| = 1.

Marcone [22] proved over RCA0 that the Barrier Ramsey Theorem is equiv-
alent to ATR0. Thus, the Barrier Ramsey Theorem is much stronger than
Ramsey’s theorem for exactly ω-large sets, which stands at the level of ACA+

0 .
Barriers can be classified based on the order type of their lexicographic

order. Given a barrier B ⊆ [N]<ω and s, t ∈ B, let s <lex t if s(x) < t(x) for
the least x such that s(x) ̸= t(x), if it exists. Here, we identify s and t with
finite increasing sequences over N. Note that since B is prefix-free, <lex is total
on B. The lexicographic orders are not in general well-orders, but Pouzet [29]
proved that they are on barriers. Assous [1] characterized the order types of
lexicographic orders on barriers, and proved that they are either of the form ωn

for some n ∈ N+, or ωα · k for some α ≥ ω and k ∈ N+.
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Definition 5.4. The order type of a barrier is the order type of its lexicographic
order.

Clote [5] proved that the order type of barriers is relevant to the computability-
theoretic analysis of the Barrier Ramsey Theorem, by conducting a level-wise
analysis of its solutions in the hyperarithmetic hierarchy based on the order
type of the barrier. He proved in particular the following theorem:

Theorem 5.5 (Clote [5]). Fix k ∈ N+.

• For every computable barrier B ⊆ [N]<ω of order type at most ωω and
every computable coloring f : B → k, there is an infinite f -homogeneous
set computable in ∅(ω).

• There exists a computable barrier B ⊆ [N]<ω of order type ωω and a
computable coloring f : B → 2 such that every infinite f -homogeneous set
computes ∅(ω).

The Schreier barrier is a simple example of barrier of order type ωω. Carlucci
and Zdanowski [2] showed that the lower bound of Clote is witnessed by the
Schreier barrier. Based on Clote’s analysis, it is natural to conjecture that the
Free set, Thin set and Rainbow Ramsey theorems for barriers of order type ωω

are the robust counterpart of their versions for exactly ω-large sets. Actually,
we shall see that, arguably, the right notion is the restriction of the statements
to a sub-class of barriers of order type ωω.

Given a set X and n ∈ N, we write [X]≤n for the set of all subsets s ⊆
X such that |s| ≤ n, and [X]≤!ω for the set of all subsets s ⊆ X such that
|s| ≤ 1 + min s. By convention, for n = 0, [X]≤n is the singleton {∅}. Given a
function h : N → N, we write [X]≤h(·) for the set of all finite s ⊆ X such that
|s| ≤ h(min s).

Definition 5.6. A set B ⊆ [N]<ω is ω-bounded if and only if B ⊆ [N]≤h(·)

for some function h : N → N. It is computably ω-bounded if furthermore h is
computable.

Lemma 5.7. A barrier B has order type at most ωω if and only if B is ω-
bounded.

Proof. Suppose first B ⊆ [N]≤h(·) for some function h : N → N. For every s ∈ B,
let αs =

∑
i<|s| ω

h(min s)−is(i). Note that s <lex t if and only if αs < αt, so B
has order type at most ωω.

Suppose now B has order type at most ωω. Let x ∈ N and Bx = {s : x · s ∈
B}. Then Bx is a barrier of order type at most ωnx for some nx ∈ N+. By
Assous [1, Proposition II.1], a barrier B has order type at most ωn if and only
if B ⊆ [N]≤n, so Bx ⊆ [N]≤nx . Let h(x) = nx. Then B ⊆ [N]≤h(·).

A function h : N → N is left-c.e. if there is a uniformly computable se-
quence of functions h0, h1, . . . such that for every x, i ∈ N, hi(x) ≤ hi+1(x) and
limi hi(x) = h(x). The sequence (hi)i∈N is then called a left-c.e. approximation
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of h. If B is a computable barrier of order type at most ωω, then it is ω-bounded
by a left-c.e. function. This bound is tight, as there exist computable barriers
of order type ωω which are not computably ω-bounded.

Let us first define a generalized version of Rainbow Ramsey Theorem for
subsets of [N]<ω, and show that its restriction to computable barriers of order
type ωω codes the jump.

Definition 5.8. Let B ⊆ [N]<ω. A coloring f : B → N is k-bounded if
for every c ∈ N, |f−1(c)| ≤ k. A set H ⊆ base(B) is an f -rainbow if for
every s, t ∈ B ∩ [H]<ω such that s ̸= t, f(s) ̸= f(t).

In this paper, we shall consider only sets B such that base(B) = N.

Definition 5.9 (Generalized Rainbow Ramsey Theorem). Given a set B ⊆
[N]<ω and k ∈ N, let RRTB

k be the statement “For every k-bounded coloring
f : B → N, there exists an infinite f -rainbow”.

As seen in Proposition 2.10, the statement RRTB
k is not mathematically

true for B = [N]<ω. However, its restriction to barriers follows from Ramsey’s
theorem for barriers (the proof is completely analogous to the proof of The-
orem 3.10 above). Moreover, we shall see in Section 6 that RRTB

k holds for
every ω-bounded set B ⊆ [N]<ω. The following proposition shows that RRTB

2

restricted to computable barriers of order type ωω codes the halting set.

Proposition 5.10. There exists a computable barrier B of order type ωω and
a computable 2-bounded function f : B → N such that every f -rainbow com-
putes ∅′.

Proof. Let g : N → N be the modulus of ∅′ and let (gn)n∈N be a left-c.e.
approximation of g. It can be assumed that gn is non-decreasing for each n ∈ N.

Let B be defined as follows: for x, y ∈ N with x < y and s ⊆ N with
y < min s, let x · y · s ∈ B if and only if |s| = (gmin s(x))

2.
B is a barrier with base N, indeed, for every infinite set X = {x0, x1, . . . },

(x0, x1, . . . , xgx2
(x0)+1) ∈ B and if x ·y ·s, x′ ·y′ ·s′ ∈ B satisfies x ·y ·s ⊆ x′ ·y′ ·s′

then x ≥ x′ and min s ≥ min s′, hence |s| = (gmin s(x))
2 ≥ (gmin s′(x

′))2 = |s′|,
but also |s| ≤ |s′|, so |s| = |s′| and therefore x · y · s = x′ · y′ · s′. The order type
of B is ωω by Lemma 5.7 as B is ω-bounded by g2 + 1.

Let hn : [N]n+1 → n be the computable instance of TSn+1
n obtained in

Lemma 4.5 such that every infinite hn-thin set computes ∅′. Consider also the
computable bijection k : N → {(y, x) ∈ N2 : y > x} that list all such pairs
lexicographically (the order type of that set is ω).

Let f : B → N be defined as follows: for every x · y · s ∈ B, if k(h|s|−1(s)) =
(z−x, y−x) for some y < z < min s, then let f(x, y, s) = f(x, z, s) and otherwise
give a fresh new color for f(x, y, s).

LetH be an infinite rainbow for f . For every x ∈ H, there exists some bound
bx > g(x) such that gbx(x) = g(x). For every s ⊆ H \ [0, bx] of cardinality g(x)2,
we have hg(x)2−1(s) ∈ [0, g(x)2 − 2). There are two cases:
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Case 1: H\[0, bx] is hg(x)2−1-thin for some x ∈ H, in that case, by definition
of hg(x)2−1, H ≥T ∅′.

Case 2: H \ [0, bx] is not hg(x)2−1-thin for every x ∈ H, in that case, for
every x ∈ H and every pair y < z ∈ (x, x+g(x)), there exists some s ⊆ H\[0, bx]
such that k(hg(x)2−1(s)) = (z − x, y − x). Indeed, hg(x)2−1(s) takes every value
in [0, g(x)2 − 2), so every such couple (z − x, y − x) is reached and therefore
f(x, y, s) = f(x, z, s). Since H is an f -rainbow, y and z cannot be both in H.
So H ≥ ∅′ as for every x < y < z ∈ H, z is bigger than g(x), so H computes a
function dominating g.

We shall however see that for every computable, computably ω-bounded
barrier B ⊆ [N]<ω and every k ∈ N+, RRTB

k admits strong cone avoidance
(see below). Note that the Schreier barrier is an example of a computable,
computably ω-bounded barrier.

Because of this, Proposition 5.10 cannot be improved to code more than ∅′.
Indeed, every computable barrier of order type ωω is ∅′-computably ω-bounded,
so for any non-∅′-computable set D, every computable barrier of order type ωω,
and every computable k-bounded function f : B → N, there exists an infinite
f -rainbow which does not compute D.

6 Large Rainbow Ramsey Theorem avoids cones

In this section, we prove that the Rainbow Ramsey theorem for computably
ω-bounded barriers admits strong cone avoidance. In particular, this is the case
for the Large Rainbow Ramsey theorem since the Schreier barrier is ω-bounded
by the computable function x 7→ x+ 1.

Definition 6.1. A problem P admits strong cone avoidance if for every set Z,
every non-Z-computable set C and every P-instance X, there exists a P-solution Y
to X such that C ̸≤T Y ⊕ Z.

Note that in the previous definition, no computability constraint is given
on the P-instance X. Thus, strong cone avoidance reflects the combinatorial
weakness of P, in the sense that no matter how complex the instance is, it cannot
code in its solutions an infinite binary sequence. We shall use the following two
theorems:

Theorem 6.2 (Wang [34]). For every n ∈ N, FSn, TSn and RRTn admit strong
cone avoidance.

Wang [34] introduced and studied the following formal theorem, which is
strictly related to the Thin Set theorem.

Definition 6.3 (Achromatic Ramsey Theorem). Let n, k, ℓ ∈ N+. For all
f : [N]n → k, there exists an infinite H ⊆ N such that |f([H]n)| ≤ ℓ. We denote
this statement RTn

k,ℓ. We write RTn
<∞,ℓ for ∀kRTn

k,ℓ.
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Note that RTn
k,k−1 is the same as TSnk from Definition 4.2.

The following sequence of numbers, known as Catalan numbers, is om-
nipresent in Combinatorics. It is inductively defined as follows:

C0 = 1 Cn+1 =

n∑
i=0

CiCn−i

This sequence starts with 1, 1, 2, 5, 14, 42, . . . (see sequence A000108 in the
OEIS). The number Cn admits many characterizations, such as the number
of ways of associating n applications of a binary operator. In computability
theory, the nth Catalan number Cn surprisingly arose as the exact threshold ℓ
at which RTn

<∞,ℓ admits strong cone avoidance.

Theorem 6.4 (Cholak and Patey [3]). For every n ∈ N+, RTn
<∞,Cn

admits
strong cone avoidance.

In the remaining part of this section we show that the Rainbow Ramsey
Theorem for computable, computably ω-bounded barriers admits strong cone
avoidance and therefore does not code the jump. To obtain this result, we
introduce some variants of the Free Set Theorem for large sets which are of
interest in their own right. We first introduce the needed terminology.

Definition 6.5. Let B ⊆ [N]<ω be a set and f : B → [N]<ω be a coloring. A
set H ⊆ base(B) is f -free if for every s ∈ B ∩ [H]<ω, f(s) ∩H ⊆ s.

For example, given a coloring f : [N]n → N, one can let B = [N]n and
g : [N]n → [N]<ω be defined by g(s) = {f(s)}. Then a set is f -free if and only if
it is g-free. Of course, even with B = [N]n, infinite free sets do not necessarily
exist for arbitrary colorings. We need to impose some constraints on the size of
the sets in the image of f .

Definition 6.6. Fix B ⊆ [N]<ω. A coloring f : B → [N]<ω is b-constrained
for a bounding function b : N → N if for every s ∈ B, |f(s)| ≤ b(min s). If b is
the constant function x 7→ k, then we say that f is k-constrained.

Definition 6.7 (k-Constrained Free Set theorem). Fix B ⊆ [N]<ω and k ∈ N
FSBk is the statement “For every coloring f : B → [N]≤k, there is an infinite
f -free set”.

Given n ∈ N and a function h : N → N, we write FS≤n
k , FS≤!ω

k and FS
≤h(·)
k

for FSBk when B is [N]≤n, [N]≤!ω and [N]≤h(·), respectively. In the extreme
case where B = {∅}, FSBk is nothing but the statement “For every finite set
F ∈ [N]≤k, there is an infinite set H ⊆ N such that H ∩ F = ∅”. We have seen

in Corollary 4.7 that there exists a computable instance f of FS≤!ω
1 such that

every infinite f -free set computes ∅(ω). The case α < ω is different.

Proposition 6.8. For every k, n ∈ N, FS≤n
k admits strong cone avoidance.
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Proof. Fix some set Z, some non-Z-computable set C, and some coloring f :
[N]≤n → [N]≤k. For every m ≤ n and j < k, let fm,j : [N]m → N be the coloring
defined for every s ∈ [N]m by letting fm,j(s) be the jth element of f(s), if it
exists, and fm,j(s) = 0 otherwise. By finitely many successive applications of
strong cone avoidance of FSm for m ≤ n (see Wang [34]), there is an infinite
set H ⊆ N which is simultaneously fm,j-free for every m ≤ n and j < k, and
such that C ̸≤T H ⊕ Z.

We claim that H is f -free. Suppose for the contradiction that there is
some s ∈ [H]≤n and some c ∈ (f(s) ∩ H) \ s. Note that s is necessarily non-
empty. Let j be such that c is the jth element of f(s), and let m = |s|. Then
fm,j(s) = c, contradicting fm,j-freeness of H.

Note that the k-constraint cannot be released, even in the case of colorings
of singletons, as it would yield a combinatorially false statement:

Proposition 6.9. There exists a computable function f : N → [N]<ω such that
for every x ∈ N, |f(x)| ≤ x, and with no f -free set of size 2.

Proof. Let f(x) = [0, x). Let {x, y} be an f -free set, with x < y. Then x ∈
f(y) \ {y}, contradicting f -freeness of {x, y}.

One can however replace the constant constraint by a function when consid-
ering a natural sub-class of instances.

Definition 6.10. Fix B ⊆ [N]<ω. A function f : B → [N]<ω is progressive if
for every s ∈ B, either f(s) = ∅, or min f(s) ≥ min s.

An easy combinatorial argument shows that the following statement is clas-
sically true.

Definition 6.11 (Progressive Free Set theorem). Fix a set B ⊆ [N]<ω and a
bounding function b : N → N. PFSBb is the statement “For every b-constrained
progressive coloring f : B → [N]<ω, there is an infinite f -free set”.

Here again, given n ∈ N and a function h : N → N, we write PFS≤n
b , PFS≤!ω

b

and PFS
≤h(·)
b for FSBb when B is [N]≤n, [N]≤!ω and [N]≤h(·), respectively. We

now show how the above principle relates to the Rainbow Ramsey Theorem.

Proposition 6.12. Fix a set B ⊆ [N]<ω and some k ∈ N. For every k-bounded
coloring f : B → N, there is an f ′-computable k-constrained progressive coloring
g : B → [N]<ω such that every infinite g-free set is an f -rainbow.

Proof. Let ≤lex be the lexicographic ordering on B, that is, s <lex t (seen as
finite increasing sequences over N<ω) if there is some x < min(|s|, |t|) such
that s(x) < t(x), or s ≺ t. In particular, if s <lex t, then min s ≤ min t, so
min(t \ s) ≥ min s. Let g(s) = {min(t \ s) : f(t) = f(s)∧ s <lex t}. The coloring
g is progressive and k-constrained.

We claim that every infinite g-free set H is an f -rainbow. Suppose for the
contradiction that there are some distinct s, t ∈ [H]<ω∩B such that f(s) = f(t).
One can suppose without loss of generality that s <lex t. Then min(t \ s) ∈
(g(s) ∩H) \ s, contradicting g-freeness of H.
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The following proposition shows the existence of a computable barrier of
order type ωω for which the Progressive Free Set theorem does not admit cone
avoidance. In particular, this barrier is not computably ω-bounded, as we shall
prove that the Progressive Free Set theorem for computable barriers which are
computably ω-bounded admits strong cone avoidance.

Proposition 6.13. There exists a computable barrier B of order type ωω and
a computable progressive coloring f : B → N such that every f -free set com-
putes ∅′.

Proof. Let g : N → N be the modulus of ∅′ and let (gn)n∈N be a left-c.e.
approximation of g. Without loss of generality, it can be assumed that gn(x) ≥ 1
for every x, n ∈ N and that gn is non-decreasing for each n ∈ N.

Let B be defined as follows: for x ∈ N and s ⊆ N with x < min s, let x·s ∈ B
if and only if |s| = gmin s(x).

We claim that B is a barrier with base N: for any infinite subset X =
{x0, x1, . . . } of N, we have {x0, x1, . . . , xgx1

(x0)} ∈ B (since gx1
(x0) ≥ 1). Let

x · s, y · t be in B and suppose x · s ⊆ y · t. Then x ≥ y and min s ≥ min t.
Moreover |s| = gmin s(x) ≥ gmin s(y) ≥ gmin t(y) = |t|. Thus s = t and x = y.
By Lemma 5.7, the order type of B is ωω.

Let f : B → N be defined by f(x, s) = x+h|s|−1(s)+1 where hn : [N]n+1 → n

is the computable instance of TSn+1
n obtained in Lemma 4.5 such that every in-

finite hn-thin set computes ∅′.

Let H be an infinite f -free set. For every x ∈ H, there exists some bound
bx > g(x) such that gbx(x) = g(x). For every s ⊆ H \ [0, bx] of cardinality g(x),
we have f(x, s) = x+ hg(x)−1(s) + 1. There are two cases:

Case 1: H \ [0, bx] is hg(x)−1-thin for some x ∈ H, in that case, by definition
of hg(x)−1, H ≥T ∅′.

Case 2: H \ [0, bx] is not hg(x)-thin for every x ∈ H, in that case, for every
x ∈ H and every y ∈ (x, x + g(x)), there exists some s ⊆ H \ [0, bx] such that
f(x, s) = y and therefore, since H is f -free, y is not in H. So H ≥T ∅′ as the
principal function of H dominates g.

We now proceed to establish that the PFS
≤h(·)
h admits strong cone avoidance

for every computable function h : N → N.
Fix a function h : N → N. Let P be the collection of all progressive colorings

of type [N]≤h(·) → [N]<ω. For a function b : N → N we write Pb for the class of
all b-constrained colorings in P.

Given two colorings f, g ∈ P, we write g ≤ f if for every s ∈ [N]≤h(·),
g(s) ⊇ f(s). Note that if H is g-free and g ≤ f , then H is f -free. Given two
colorings f, g ∈ P, let f ∪ g be the coloring defined by (f ∪ g)(s) = f(s) ∪ g(s).
The coloring f ∪ g is the greatest lower bound of f and g with respect to ≤.

Theorem 6.14. Fix a set Z, a non-Z-computable set D and a Z-computable
function h : N → N. For every h-constrained progressive coloring f : [N]≤h(·) →
[N]<ω, there exists an infinite f -free set G ⊆ N such that D ̸≤T G⊕ Z.
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Proof. For the simplicity, we prove the theorem in a non-relativized form. Rel-
ativization is straightforward. Fix a non-computable set D. Consider the fol-
lowing notion of forcing:

Definition 6.15. A condition is a triple (f, σ,X) such that f ∈ P is bf -
constrained, for some computable function bf : N → N, σ ∈ [N]<ω, X ⊆ N
is an infinite set such that maxσ < minX, and

(a) for every s ∈ [σ ∪X]≤h(·) with min s ∈ σ, f(s) ∩X ⊆ s.

(b) for every s ∈ [σ ∪X]≤h(·), f(s) ∩ σ ⊆ s.

(c) D ̸≤T X.

A condition d = (g, τ, Y ) extends c = (f, σ,X) (written d ≤ c) if g ≤ f , τ ⪰ σ,
Y ⊆ X and τ \ σ ⊆ X.

The following lemma states that property (a) can be obtained “for free”, that
is, by restricting the reservoir, and therefore does not impose any constraint on
the stem. In what follows, fix a coloring f ∈ P which is bf -constrained, for some
computable function bf : N → N.

Lemma 6.16. For every σ ∈ [N]<ω and every infinite set X such that D ̸≤T X,
there is an infinite set Y ⊆ X such that D ̸≤T Y and for every s ∈ [σ ∪ Y ]≤h(·)

with min s ∈ σ, f(s) ∩ Y ⊆ s.

Proof. For every t ∈ [σ]≤h(·) with t ̸= ∅, let ft : [X]≤h(min t)−|t| → [N]≤bf (min t)

be defined for every u by ft(u) = f(t, u). By finitely many successive applica-
tions of Proposition 6.8, there exists an infinite subset Y ⊆ X such that D ̸≤T Y
and such that Y is simultaneously ft-free for every t ∈ [σ]≤h(·) with t ̸= ∅.

We claim that Y is our desired set. Indeed, for every s ∈ [σ ∪ Y ]≤h(·) with
min s ∈ σ, letting t = s∩σ and u = s∩Y , we have f(s) = ft(u), so by ft-freeness
of Y , f(s) = ft(u) ∩ Y ⊆ u ⊆ s.

In what follows, recall that Cn stands for the nth Catalan number.

Definition 6.17. A set X stabilizes σ if for every t ∈ [σ]≤h(·) with t ̸= ∅ and
every n ≤ h(min t) − |t|, there is a set It,n ⊆ [σ]≤bf (min t)×Cn such that for
every u ∈ [X]n, f(t, u) ∩ σ ⊆ It,n.

Lemma 6.18. For every σ ∈ [N]<ω and every infinite set X such that D ̸≤T X,
there is an infinite set Y ⊆ X stabilizing σ and such that D ̸≤T Y .

Proof. For every t ∈ [σ]≤h(·) with t ̸= ∅ and every n ≤ h(min t) − |t|, let
gt,n : [X]n → [σ]≤bf (min t) be defined by gt,n(u) = f(t, u) ∩ σ. By finitely
many successive applications of strong cone avoidance of RTn

<∞,Cn
(see Cholak

and Patey [3]), there is an infinite subset Y ⊆ X such that D ̸≤T Y and for
every t ∈ [σ]≤h(·) with t ̸= ∅ and every n ≤ h(min t)− |t|, |gt,n[Y ]n| ≤ Cn. Note
that here, a color is an element of [σ]≤bf (min t) instead of a natural number. Let
It,n =

⋃
gt,n[Y ]n. Then |It,n| ≤ bf (min t) × Cn. By definition, for every u ∈

[Y ]n, f(t, u) ∩ σ = gt,n(u) ⊆ It,n.
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Given a computable function b : N → N, let b+ : N → N be the computable
function defined by b+(m) =

∑
n≤h(m) b(m)× Cn.

Definition 6.19. Let X be a reservoir stabilizing [0, k]. The limit coloring
is the function gk,X : [k]≤h(·) → [k]<ω defined by gk,X(∅) = ∅ and gk,X(t) =⋃

n≤h(t)−|t| It,n otherwise.

The limit function gk,X is b+f -constrained. Note that if ρ ⊆ [0, k] is gk,X -free,

then it is f -free. Indeed, for every t ∈ [0, k]≤h(·), gk,X(t) = It,0 and by definition
of stability for n = 0, f(t) ∩ [0, k] ⊆ It,0.

The following lemma is the core combinatorial lemma which specifies the
conditions under which a block of elements ρ can be added to the stem while
preserving the property (b).

Lemma 6.20. Let (f, σ,X) be a condition and Y ⊆ X be an infinite set stabi-
lizing [0, k] for some k ∈ N and let gk,Y : [k]≤h(·) → [k]<ω be the limit coloring.
Let ρ ⊆ X ↾k be a finite gk,Y -free set. Then (f, σ ∪ ρ, Y ) satisfies property (b).

Proof. Fix some s ∈ [σ ∪ ρ ∪ Y ]≤h(·). We have multiple cases.

• Case 1: s∩σ ̸= ∅. Then by properties (a) and (b) of (f, σ,X), f(s)∩ (σ ∪
X) ⊆ s. Since (σ ∪ ρ) ⊆ (σ ∪X), then f(s) ∩ (σ ∪ ρ) ⊆ s.

• Case 2: s∩σ = ∅ but s∩ρ ̸= ∅. By property (b) of (f, σ,X), f(s)∩σ ⊆ s.
Let t = s ∩ ρ and u = s ∩ Y . Since ρ is gk,Y -free, gk,Y (t) ∩ ρ ⊆ t.
By definition of gk,Y (t), It,|u| ⊆ gk,Y (t), so It,|u| ∩ ρ ⊆ t. In particular,
f(s) = f(t, u) ∈ It,|u|, so f(s) ∩ ρ ⊆ t ⊆ s. Thus, f(s) ∩ (σ ∪ ρ) ⊆ s.

• Case 3: s ∩ (σ ∪ ρ) = ∅. Then s ⊆ Y . Since minY > max(σ ∪ ρ), then by
progressiveness of f , f(s) ∩ (σ ∪ ρ) = ∅.

One can combine Lemmas 6.16, 6.18 and 6.20 to obtain an extensibility
lemma, saying that every sufficiently generic filter induces an infinite set.

Lemma 6.21. Let (f, σ,X) be a condition. There is an extension (f, τ, Y ) ≤
(f, σ,X) such that |τ | > |σ|.

Proof. Let x = minX. By Lemma 6.18, there is an infinite subset Y0 ⊆ X
stabilizing [0, x] such thatD ̸≤T Y0. Let g be the limit function. By Lemma 6.16,
there is an infinite subset Y ⊆ Y0 such that (f, σ∪{x}, Y ) satisfies property (a).
By Lemma 6.20, {x} being vacuously g-free, (f, σ ∪ {x}, Y ) satisfies property
(b). Thus, (f, σ ∪ {x}, Y ) is a valid extension.

Given a computable function b : N → N, the space Pb is not compact.
However, Pb is in one-to-one correspondence with the effectively compact space
Rb of all relations R ⊆ [N]≤h(·)×N such that for every s ∈ [N]≤h(·), |{y : (ν, y) ∈
R}| ≤ b(min s) and for every (s, y) ∈ R, y ≥ min s. Indeed, given a function
g ∈ Pb, one can define the relation Rg ∈ Rb defined by Rg = {(s, y) : y ∈ g(s)}
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and given a relation R ∈ Rb, the function gR ∈ Pb is defined by gR(s) = {y :
(s, y) ∈ R}.

Note that the map g 7→ Rg is computable, but the map R 7→ gR is not even
continuous. Thankfully, there is a Turing functional which, given R and a finite
set ρ, decides whether ρ is gR-free or not. Indeed, to decide whether ρ is gR-free,
one does not need to know gR restricted to [ρ]≤h(·), only to know R restricted
to [ρ]≤h(·) × ρ.

We are now ready to define the forcing question:

Definition 6.22. Let (f, σ,X) be a condition and φ(G) be a Σ0
1-formula. Let

(f, σ,X) ?⊢φ(G) hold if and only if for every relation R ∈ Rb+f
, there is a finite

gR-free set ρ ⊆ X such that φ(σ ∪ ρ) holds.

The previous formulation of the forcing question is Π1
1(X) as it starts with

a second-order universal quantification. However, thanks to the effective com-
pactness of the space Rb+f

, it is equivalent to a Σ0
1(X)-formula:

Lemma 6.23. Let (f, σ,X) be a condition and φ(G) be a Σ0
1-formula. Then

(f, σ,X) ?⊢φ(G) if and only if there is some k ∈ ω such that for every b+f -

constrained progressive function g : [0, k]≤h(·) → [0, k]<ω, there is a finite g-free
set ρ ⊆ X ↾k such that φ(σ ∪ ρ) holds.

Proof. Suppose first that there is some k ∈ N such that for every b+f -constrained

progressive function g : [0, k]≤h(·) → [0, k]<ω, there is a finite g-free set ρ ⊆ X ↾k
such that φ(σ ∪ ρ) holds. Let R ∈ Rb+f

be a relation, and let gR ∈ Pb+f
be the

corresponding function. Then, letting g : [0, k]≤h(·) → [0, k]<ω be defined by
g(s) = gR(s) ∩ [0, k], the function g is b+f -constrained and progressive, so there
is some finite g-free set ρ ⊆ X ↾k such that φ(σ ∪ ρ) holds. In particular, ρ is
gR-free. Since there is such a ρ for every R ∈ Rb+f

, then (f, σ,X) ?⊢φ(G) holds.
Suppose now that for every k ∈ N, there is a b+f -constrained progressive

function gk : [0, k]≤h(·) → [0, k]<ω such that for every gk-free set ρ ⊆ X ↾k,
φ(σ ∪ ρ) does not hold. Let T be the tree which, at level k, contains all such
functions gk, and which is ordered by the function extension relation. The tree
T is finitely branching, so by König’s lemma, there is an infinite path g ∈ T .
This path is a function g ∈ Pb+f

such that for every finite g-free set ρ ⊆ X,

φ(σ ∪ ρ) does not hold. Then the relation Rg witnesses that (f, σ,X) ?⊢φ(G)
does not hold.

The following lemma states that the forcing question meets its specification.

Lemma 6.24. Let p = (f, σ,X) be a condition and φ(G) be a Σ0
1-formula.

1. If p ?⊢φ(G), then there is an extension of p forcing φ(G).

2. If p ?⊬φ(G), then there is an extension of p forcing ¬φ(G).
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Proof. Suppose first p ?⊢φ(G) holds. By Lemma 6.23, there is some k ∈ N such
that for every b+f -constrained progressive function g : [0, k]≤h(·) → [0, k]<ω,
there is a finite g-free set ρ ⊆ X such that φ(σ ∪ ρ) holds. By Lemma 6.18,
there is an infinite subset Y0 ⊆ X stabilizing [0, k] and such that D ̸≤T Y0.
Let gk,Y0

: [0, k]≤h(·) → [0, k]<ω be the limit function. Note that gk,Y0
is b+f -

constrained and progressive, so there is a finite gk,Y0-free set ρ ⊆ X such that
φ(σ∪ρ) holds. By Lemma 6.20, (f, σ∪ρ, Y0) satisfies (b). By Lemma 6.16, there
is an infinite subset Y ⊆ Y0 such that (f, σ ∪ ρ, Y ) satisfies (a) and D ̸≤T Y .
Thus (f, σ ∪ ρ, Y ) is a valid extension of p. By choice of ρ, it forces φ(G).

Suppose p ?⊬φ(G) holds. Then there is a relation R ∈ Rb+f
such that for

every finite gR-free set ρ ⊆ X, φ(σ ∪ ρ) does not hold. Let gR ∈ Pb+f
be

the corresponding function. Let f̂ : [N]≤h(·) → [N]<ω be defined by f̂(s) =

f(s) ∪ (gR(s) \ σ). Note that f̂ ≤ f , and every f̂ -free subset ρ ⊆ X is gR-free.

Moreover, f̂ is (bf + b+f )-constrained and progressive. Since (f, σ,X) satisfies

(b) and f̂ does not contain any element of σ, then (f̂ , σ,X) satisfies (b). By

Lemma 6.16, there is an infinite subset Y ⊆ X such that D ̸≤T Y and (f̂ , σ, Y )

satisfies (a). Thus q = (f̂ , σ, Y ) is a valid extension of p.
We claim that q forces ¬φ(G). Indeed, suppose there is an extension (f̃ , τ, Z) ≤

q such that φ(τ) holds. Then by property (b) of (f̃ , τ, Z), τ is f̃ -free, and since

f̃ ≤ f̂ , τ is f̂ -free. Let ρ = τ \ σ. By definition of f̂ , ρ is a gR-free subset of X,
contradicting our choice of gR.

We can now prove our diagonalization lemma.

Lemma 6.25. Let p = (f, σ,X) be a condition and Φe be a Turing functional.
There is an extension of p forcing ΦG

e ̸= D.

Proof. Let U = {(x, v) ∈ N× 2 : p ?⊢ΦG
e (x) ↓= v}. We have three cases:

• Case 1: (x, 1 − D(x)) ∈ U for some x ∈ N. By Lemma 6.24, there is an
extension of p forcing ΦG

e (x) ↓= 1−D(x), hence forcing ΦG
e ̸= D.

• Case 2: (x,D(x)) ̸∈ U for some x ∈ N. By Lemma 6.24, there is an
extension of p forcing ¬(ΦG

e (x) ↓= D(x)), hence forcing ΦG
e ̸= D.

• Case 3: U is the graph of the characteristic function ofD. By Lemma 6.23,
the set U is Σ0

1(X), so D ≤T X, contradiction.

We are now ready to prove Theorem 6.14. Let f : [N]≤h(·) → [N]<ω be an
h-constrained, progressive coloring, for a computable function h : N → N. Let F
be a sufficiently generic filter containing (f, ∅,N), and letGF =

⋃
{σ : (g, σ,X) ∈

F}. By definition of a forcing condition, GF is f -free. By Lemma 6.21, GF
is infinite, and by Lemma 6.25, D ̸≤T GF . This completes the proof of Theo-
rem 6.14.
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Note that the previous theorem is tight in many senses. First, if h is non-

computable, then by Proposition 6.13, PFS
≤h(·)
1 does not admit cone avoidance.

The following proposition shows that if b is allowed to be non-computable, then
PFS≤1

b does not admit strong cone avoidance in general.

Proposition 6.26. There exists a ∅′-computable function b : N → N and a
∅′-computable b-constrained progressive function f : N → [N]<ω such that every
infinite f -free set computes ∅′.

Proof. Let b : N → N be the modulus of ∅′, and let f(x) = [x + 1, . . . , b(x)].
Let H be an infinite f -free set. Then given x < y ∈ H, y > b(x), so one can
H-compute a function dominating b, hence H-compute ∅′.

Remark 6.27. The proof of Theorem 6.14 can be adapted to prove many other
notions of avoidance or preservation. For instance, one can prove that for

every computable function h : N → N, PFS
≤h(·)
h admits strong PA avoidance

(see Liu [19]), strong constant-bound enumeration avoidance (see Liu [20]) or
strong preservation for k hyperimmunities for every k ∈ N (see Patey [28]). In

particular, for every computable function h : N → N and k ∈ N, PFS≤h(·)
h does

not imply any of WKL0, WWKL0, RT
2
2, RT

2
<∞,k over ω-models.

Corollary 6.28. For every k ≥ 1, RRT≤!ω
k admits strong cone avoidance.

Proof. Immediate by Proposition 6.12 and Theorem 6.14.

7 Conclusions and perspectives

The analysis of the exactly ω-large counterparts to the Ramsey, Free Set and
Thin Set theorems from a computable perspective, gave the exact same tight
bound, namely, ∅(ω), translating in reverse mathematical terms by an equiv-
alence with ACA+

0 . This equivalence is to be put in contrast with the finite-
dimensional cases, where RTn

2 coincides with ACA0 for n ≥ 3, while FSn and
TSn both admit strong cone avoidance. On the other hand, the Rainbow Ram-
sey theorem for exactly ω-large sets (RRT!ω

k ) still has no coding power, and
admits strong cone avoidance. Figure 1 and Figure 2 summarize the relation-
ship between the studied statements, in Reverse Mathematics and over strong
Weihrauch reducibility, respectively.

Many questions remain open around the generalization of combinatorial
statements to exactly ω-large sets and barriers.

By Theorem 3.10, RRT!ω
k ≤sW RT!ω

k , so every computable instance of RRT!ω
k

admits a ∅(ω)-computable solution. By Corollary 4.7, here exists a computable
instance of FS!ω such that every solution computes ∅(ω). It follows that RRT!ω

k

is computably reducible to FS!ω in the sense of Dzhafarov [9]. We gave a direct
combinatorial reduction in Proposition 3.11 in the case k = 2, and leave the
general case open.
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Figure 1: Studied statements from the perspectives of Computability Theory
and Reverse Mathematics. A simple (double) arrow represents a (strict) impli-
cation over RCA0.
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Figure 2: Studied statements from the perspective of Weihrauch analysis. A
simple (double) arrow represents a (strict) strong Weihrauch reduction.

Question 7.1. Does RRT!ω
k ≤sW FS!ω for every k ∈ N+?

While RT!ω,FS!ω and TS!ω code ∅(ω) and are all equivalent to ACA+
0 , we

don’t know of a direct proof of RT!ω
2 from either TS!ω or FS!ω. More precisely,

we don’t know if RT!ω
2 is reducible to either TS!ω or FS!ω.

Question 7.2. Does RT!ω
2 ≤sW TS!ω? Does RT!ω

2 ≤sW FS!ω?

A natural continuation of the line of research of the present paper is to
consider the Free Set, Thin Set and Rainbow Ramsey theorems for arbitrary
barriers and to inquire into their effective and logical strength. We plan to give
in future work a complete layered analysis of the strength of these principles
based on the complexity of the barrier. While weak anti-basis results relative
to the hyperarithmetical hierarchy can be obtained along the lines of Clote’s [5]
results for Ramsey’s Theorem, several questions remain to be answered to get
a full picture.

In particular, the analysis of the Rainbow Ramsey theorem for barriers re-
vealed a subtlety in the correspondence between the order type of a barrier
and the computability-theoretic analysis of the corresponding theorem. Indeed,
RRTB

k admits strong cone avoidance when B is a computably ω-bounded, com-
putable barrier, while it does not in general when B is a computable barrier of
order type ωω (or equivalently an ω-bounded barrier). This subtle distinction
does not arise in the analysis of Ramsey’s theorem for barriers.

Barriers or order type ωω admit a simple combinatorial characterization as
the ω-bounded barriers. Then, computable ω-bounded barriers can be consid-
ered as barriers of effective order type ωω. Is there an appropriate counterpart
to the notion of “effective order type” for larger ordinals?

Clote [5] proved lower bounds on the Barrier Ramsey Theorem by defining
his own notion of canonical barrier for every order type. This notion was also
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used in [6] to prove a generalization of Shoenfield’s limit lemma to the hyper-
arithmetic hierarchy. On the other hand, Carlucci and Zdanowski [2] showed
that in the case of barriers of order type ωω, the lower bounds could be wit-
nessed by the Schreier barrier, that is, the barrier of exactly ω-large sets. The
notion of ω-large set admits a natural generalization to any computable ordinal
(see Hájek and Pudlák [15]). It is thus natural to ask whether exact α-largeness
can be used instead of Clote’s canonical barriers to witness his lower bounds
for the Barrier Ramsey Theorem and to give a layered analysis of the Free Set,
Thin Set and Rainbow Ramsey Theorem for barriers. We plan to address these
questions in future work.
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