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Abstract. We identify computability-theoretic properties enabling us to sep-
arate various statements about partial orders in reverse mathematics. We ob-
tain simpler proofs of existing separations, and deduce new compound ones.
This work is part of a larger program of unification of the separation proofs
of various Ramsey-type theorems in reverse mathematics in order to obtain a
better understanding of the combinatorics of Ramsey’s theorem and its con-
sequences. We also answer a question of Murakami, Yamazaki and Yokoyama
about pseudo Ramsey’s theorem for pairs.

1 Introduction

Many theorems of “ordinary” mathematics are of the form
(V)[e(X) —» AY)¥(X,Y)]

where ¢ and ¥ are arithmetic formulas. They can be seen as mathematical problems,
whose instances are sets X such that ®(X) holds, and whose solutions to X are sets Y
such that ¥(X,Y) holds. For example, Konig’s lemma asserts that every infinite,
finitely branching tree admits an infinite path through it.

There exist many ways to calibrate the strength of a mathematical problem.
Among them, reverse mathematics is a vast foundational program that seeks to deter-
mine the weakest axioms necessary to prove ordinary theorems. It uses the frame-
work of subsystems of second-order arithmetic, within the base theory RCA,, which
can be thought of as capturing computable mathematics. An w-structure is a struc-
ture whose first-order part consists of the standard integers. The w-models of RCA,
are those whose second-order part is a Turing ideal, that is, a collection of sets &
downward-closed under the Turing reduction and closed under the effective join.

In this setting, a w-model .# satisfies a mathematical problem P if every P-
instance in .# has a solution in .#. A standard way of proving that a problem P
does not imply another problem Q consists of creating an w-model .# satisfying
P but not Q. Such a model is usually constructed by taking a ground Turing ideal,
and extending it by iteratively adding solutions to its P-instances. However, while
taking the closure of the collection .# U {Y} to obtain a Turing ideal, one may add
solutions to Q-instances as well. The whole difficulty of this construction consists of
finding the right computability-theoretic notion preserved by P but not by Q.

We conduct a program of identification of the computability-theoretic properties
enabling us to distinguish various Ramsey-type theorems in reverse mathematics,



but also under computable and Weihrauch reducibilities. This program puts em-
phasis on the interplay between computability theory and reverse mathematics, the
former providing tools to separate theorems in reverse mathematics over standard
models, and the latter exhibiting new computability-theoretic properties.

Among the theorems studied in reverse mathematics, the ones coming from
Ramsey’s theory play a central role. Their strength are notoriously hard to gauge,
and required the development of involved computability-theoretic frameworks. Per-
haps the most well-known example is Ramsey’s theorem.

Definition 1 (Ramsey’s theorem). A subset H of w is homogeneous for a color-
ing f : [w]" — k (or f-homogeneous) if each n-tuples over H are given the same
color by f. RT| is the statement “Every coloring f : [w]" — k has an infinite f-
homogeneous set”.

Jockusch [11] conducted a computational analysis of Ramsey’s theorem. He
proved in particular that RT| implied the existence of the halting set whenever
n > 3. There has been a lot of literature around the strength of Ramsey’s theorem
for pairs [4,6,9,19] and its consequences [3,5,10]. We focus on some mathematical
statements about partial orders which are consequences of Ramsey’s theorem for
pairs.

Definition 2 (Chain-antichain). A chain in a partial order (P,<p) is a set S C P
such that (Vx,y € S)(x <p y Vy <p x). An antichain in P is a set S C P such that
(Vx,y € S)(x #y — x|py) (where x|py means that x £p y Ay £p x). CAC is the
statement “every infinite partial order has an infinite chain or an infinite antichain.”

The chain-antichain principle was introduced by Hirschfeldt and Shore [10] to-
gether with the ascending descending sequence (ADS). They studied extensively
cohesive and stable versions of the statements, and proved that CAC is compu-
tationally weak, in that it does not even imply the existence of a diagonally non-
computable function. However, their proof has an ad-hoc flavor, in that it is a direct
separation involving the two statements. Later, Lerman, Solomon and Towsner [13]
separated ADS from CAC over w-models by using an involved iterated forcing ar-
gument.

In this paper, we revisit the two proofs and emphasis on the combinatorial na-
ture of the principles by identifying the computability-theoretic properties separat-
ing them. Those properties happen to be very natural and coincide on co-c.e. sets to
some well-known computability-theoretic notions, namely, immunity and hyperim-
munity. The proof of the separation of ADS from CAC is significantly simpler and
more modular, as advocated by the author in [16].

1.1 Notation and definitions

Given two sets A and B, we denote by A < B the formula (Yx € A)(Vy € B)[x < y]
and by A €* B the formula (V*°x € A)[x € B], meaning that A is included in B
up to finitely many elements. A Mathias condition is a pair (F,X) where F is a finite
set, X is an infinite set and F < X. A condition (F;,X;) extends (F,X) (written
(F,X;) < (F,X))if FCF,X; CXand F; \F C X. A set G satisfies a Mathias
condition (F,X)if FCGand G\NF CX.



2 Preservation of Properties for Co-c.e. Sets

Ramsey’s theorem for k colors has a deeply disjunctive nature. One cannot know in
a finite amount of time whether a coloring will admit an infinite homogeneous set
for a fixed color, and one must therefore build multiple homogeneous sets simulta-
neously, namely, one for each color. This disjunction was exploited by the author to
show for example that ADS does not preserve 2 hyperimmunities simultaneously,
whereas the Erdés-Moser theorem does [16]. This idea was also used in the context
of computable reducibility to show that RTi 1 does not computably reduce to RTﬁ
whenever k > 1, by showing that RTi preserves 2 among k + 1 hyperimmunities
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simultaneously whereas RT: . does not [18]. In this section, we shall see that this

k+1
disjunctive flavor disappears whenever considering co-c.e. sets. In particular, RT%

admits preservation of countably many hyperimmune co-c.e. sets simultaneously.

Definition 3 (Hyperimmunity). An array is a sequence of mutually disjoint finitely
coded sets. A set Ais X-hyperimmune if for every X-c.e. array Fy, F, ..., there is some i
such that F;NA=0.

Equivalently, a set is X-hyperimmune if its principal function is not dominated
by any X -computable function, where the principal function p, of a set A = {x, <
x; <...}is defined by p,(i) = x;.

Definition 4 (Preservation of hyperimmunity for co-c.e. sets). A H; statement P
admits preservation of hyperimmunity for co-c.e. sets if for every set Z, every sequence
of Z-co-c.e. Z-hyperimmune sets Ay,A;, ... and every P-instance X <; Z, there is a
solution Y to X such that the A’s are Y & Z-hyperimmune.

Hirschfeldt and Shore [10] proved that CAC is equivalent to the existence of
homogeneous sets for semi-transitive colorings. A coloring f : [N]?> — 2 is semi-
transitive if whenever f(x,y)=1and f(y,z) =1, then f(x,z)=1forx <y < z.

Theorem 5. CAC admits preservation of hyperimmunity for co-c.e. sets.

Proof. Fix aset Z and a countable sequence of Z-co-c.e. Z-hyperimmune sets Ay, A, .. .
Let f : [w]? — 2 be a Z-computable semi-transitive coloring. We shall assume that
there is no infinite Z-computable f-homogeneous set for color 0, otherwise we are
done. We will build an infinite set G f-homogeneous for color 1 such that the A’s are
G & Z-hyperimmune. The construction is done by a Mathias forcing (F,X), where F
is a finite set, X is an infinite Z-computable set such that max(F) < min(X), and
for every x € X, F U {x} is f-homogeneous for color 1. The condition extension is
the usual Mathias extension. A set G satisfies (F,X) if it satisfies the Mathias condi-
tion (F,X) and is f -homogeneous for color 1. Lemma 6 shows that every sufficiently
generic filter for this notion of forcing yields an infinite set.

Lemma 6. Every condition ¢ = (F,X) has an extension (E,Y) such that |E| > |F|.

In what follows, we say that a condition c forces a formula property ¢(G) if ¢ (G)
holds for every set G satisfying c.
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Lemma 7. For every condition ¢ = (F,X) and every pair of indices e, i, there is an
extension forcing <I>eG@Z not to dominate p,.

Proof. Define the Z-partial computable function h which on input x, searches for
a finite set E, € X f-homogeneous for color 1 such that ‘I>£F VE)®Z(y) |. If found,
h(x) = ®¥VEI®Z(x), otherwise h(x) T. We have two cases.

— Case 1: h is total. By Z-hyperimmunity of p, , there are infinitely many x such
that h(x) < py (x). If there is such an x such that the set Y = {y € X : (Vz €
E,)f(z,y) = 1} is infinite, then the condition (F UE,,Y) is an extension of ¢
forcing CIJeG&BZ (x) < pa,(x). If there is no such x, then by semi-transitivity of f,
for every x such that h(x) < p4 (x), for almost every y € X, f(max(E,),y)=0.
Since A; is co-c.e., one can find a Z-computable infinite subset Y of {max(E,) :
h(x) < ps,(x)}. The set Y is Z-computable and limit-homogeneous for color 0,
and therefore computes an infinite f -homogeneous set for color 0, contradicting
our assumption.

— Case 2: there is some x such that h(x) 7. By definition of h, the condition ¢
already forces %% (x) 1. |

Corollary 8. RT% admits preservation of hyperimmunity for co-c.e. sets.

Proof. Bovykin and Weiermann [2] studied the reverse mathematics of the Erdés-
Moser theorem (EM) and proved that RCA, F RT% « [CAC A EM]. The author
proved in [16] that EM admits preservation of hyperimmunity. Together with Theo-
rem 5, we deduce that CACAEM, hence RT%, admits preservation of hyperimmunity
for co-c.e. sets.

3 CAC and Constant-Bound Immunity

Hirschfeldt and Shore [10] separated CAC from DNC in reverse mathematics by a
direct construction. DNC is the statement asserting, for every set X, the existence of
a function f such that f(e) # <I>f (e) for every e. In this section, we extract the core
of the combinatorics of their forcing argument to exhibit a computability-theoretic
property separating the two notions, namely, constant-bound immunity.

Definition 9 (Constant-bound immunity). A k-enumeration (k-enum) of a set A is
an infinite sequence of k-sets Fy < F; < ... such that for every i € w, F;NA # {.
A constant-bound enumeration (c.b-enum) of a set A is a k-enumeration of A for
some k € w. A set A is k-immune (c.b-immune) relative to X if it admits no X-
computable k-enumeration (c.b-enumeration).

In particular, 1-immunity coincides with the standard notion of immunity. Also
note that one can easily create a c.b-immune set computing no effectively immune
set. The following lemma shows that c.b-immunity and immunity coincide for co-c.e.
sets.

Lemma 10. An X-co-c.e. set A is c.b-immune relative to X iff it is X-immune.



Definition 11 (Preservation of c¢.b-immunity). A Hé statement P admits preserva-
tion of c.b-immunity if for every set Z, every set A which is c.b-immune relative to X,
and every P-instance X <y Z, there is a solution Y to X such that A is c.b-immune
relativeto Y © Z.

We can easily relate the notion of preservation of c.b-immunity with the existing
notion of constant-bound enumeration avoidance defined by Liu [14] to separate
RT3 from WWKL over RCA,.

Lemma 12. If P admits preservation of c.b-immunity, then it admits constant-bound
enumeration avoidance.

Theorem 13. CAC admits preservation of c.b-immunity.

Proof LetAbe a set c.b-immune relative to some set Z, and let f : [w]? — 2bea Z-
computable semi-transitive coloring. Assume that there is no infinite f -homogeneous
set H such that A is c.b-immune relative to H & Z, otherwise we are done. We will
build two infinite sets G, and G,, such that G; is f-homogeneous for color i for
each i < 2, and such that A is c.b-immune relative to G; ® Z for some i < 2.

The construction is done by a variant of Mathias forcing (F,, F;,X), where F,
and F; are finite sets, X is infinite set such that max(F,, F;) < min(X), and A is c.b-
immune relative to X ®Z. Moreover, we require that for everyi < 2 and every x € X,
F; U {x} is f-homogeneous for color i. A condition (E,,E;,Y) extends (F,, F;,X)
if (E;,Y) Mathias extends (F;,X) for each i < 2. A pair of sets G,, G, satisfies a
condition ¢ = (F,, F;,X) if G; is f -homogeneous for color i and satisfies the Mathias
condition (F;,X) for each i < 2.

Lemma 14. For every condition ¢ = (F,, F;,X) and every i < 2, there is an extension
(Ey, E1,Y) of ¢ such that |E;| > |F;|.

In what follows, we interpret ®,, ®,,... as Turing functionals outputting non-
empty finite sets such that if ¥ (x) and ¥ (x+1) both halt, max(®X (x)) < min(®¥ (x+
1)). We want to satisfy the following requirements for each ey, kg, e, k; € w:

Go vV R Gy

eo,ko.e1,ky eo,ko e,k

74
where %eGk is the requirement

(3x) (8994 (x) T VI®T®% (x)| > k V 39%4(x) NA =)
In other words, 22, asserts that $°®7 is not a k-enumeration of A. A condition ¢
forces a formula ¢(Gy, G1) if (G, G;) holds for every pair of infinite sets Gy, G;
satisfying c.

Lemma 15. For every condition ¢ and every vector of indices egy, kg, e;,k; € w, there

is an extension d of ¢ forcing R, e, k,-



Proof. Fix a condition ¢ = (F,,F;,X), and let Py,P;,... be an X & Z-computable
sequence of sets where P, = <I>£§°UE0)$Z (xo) U @gflUEl)“’Z(xl) for a pair of sets E; <
Ey € X and some x,,x; € w such that E; is f-homogeneous for color 0, E; U {y}
is f-homogeneous for color 1 for each y € E,, and for each i < 2, max(P,_;) <
min(nglUEi)“’Z(xi)) and |<I>giUE‘)@Z(Xi)| < k;. We have two cases.

— Case 1: the sequence of the P’s is finite and is defined, say to level n—1. If there is
a pair of infinite sets G, G; satisfying ¢ and some x; € w such that <I>eGll@Z (x) 4,
max(P,_;) < min(fbeGlleZ(xl)), and |<I>eG11$Z(x1)| < ky, then let E; € Gy be such
that F; U E; is an initial segment of G, for which <I>g WWED®Z(x ) |. The set Y =
{y € X : Eyu{y} is f-homogeneous for color 1 } is a superset of G;, hence is
infinite. The condition d = (Fy, F; U E;,Y) is an extension of ¢ forcing ‘%;(,)ko’

hence forcing %, ., k- If there is no such pair of infinite sets G, G;, then the
condition c¢ already forces ,%’gfkl, hence %, ke, ;-

— Case 2: the sequence of the P’s is infinite. By c.b-immunity of A relative to X ® Z,
P,NA={ for some n € w. Let E; < E; € X and x,, x; € w witness the existence
of P,. If Y, = {y € X : E,U{y} is f-homogeneous for color 1 } is infinite, then
the condition (Fy U Ey, F;,Y,) is an extension of ¢ forcing %i‘jko. If Y, is finite,
then for almost every y € X, there is some x,, € E, such that f(x,,y) =1, and
by transitivity of f for color 1, E; U {y} is f-homogeneous for color 1. Indeed,
E; is f-homogeneous for color 1 and for each x € Eq, f(x,x,) = f(x,,y)=1.
In this case, (F,, F; UE;, Y;) is an extension of ¢ forcing %iikl,

In both cases, there is an extension of ¢ forcing %, i, e, , -

for some Y; =* X.

This completes the proof of Theorem 13. O
Theorem 16. DNC does not admit preservation of c.b-immunity.

Proof (Proof sketch). Let uy be the modulus function of @, that is, such that ug (x)
is the minimum stage s at which (D; Ix =0x.

Computably split w into countably many columns X, X, ... of infinite size. For
example, set X; = {(i,n) : n € w} where (-,) is a bijective function from w? to w.
For each i, let F; be the set of the uy (i) first elements of X;. The sequence Fy, Fy, ...
is @’-computable. By a simple finite injury priority argument (see appendix), one can
construct a c.e. set W such that the A set A= J, F; \ W is c.b-immune, and such
that |X;NW| < i. We claim that every DNC function computes an infinite subset of A.

Let f be any DNC function. By a classical theorem about DNC functions (see
Bienvenu et al. [1] for a proof), f computes a function g(,-,-) such that when-
ever |W,| < n, then g(e,n,i) € X; \ W,. For each i, let ¢; be the index of the c.e.
set W, = WNX;, and let n; = g(e;,i,i). Since |X; N W| < i, |W, | < i, hence
n; = g(e;,i,i) € X; \ W, =X; \ W. We then have two cases.

— Case 1: n; € F; for infinitely many i’s. One can f-computably find infinitely
many of them since uy is left-c.e. and the sequence of the n’s is f-computable.
Therefore, one can f-computably find an infinite subset of | J, F; \ W = A.



— Case 2: n; € F; for only finitely many i’s. Then the sequence of the n;’s dominates
the modulus function ug, and therefore computes the halting set. Since the set A
is Ag, f computes an infinite subset of A. O

Corollary 17 (Hirschfeldt and Shore [10]). RCA; A CAC¥ DNC.

4 ADS and Dependent Hyperimmunity

Lerman, Solomon and Towsner [13] separated the ascending descending sequence
principle from a stable version of CAC by using a very involved iterated forcing
argument. According to our previous simplification of their general framework [16],
we reformulate their proof in terms of preservation of dependent hyperimmunity,
and extend it to pseudo Ramsey’s theorem for pairs.

Definition 18 (Ascending descending sequence). Given a linear order (L,<;), an
ascending (descending) sequence is a set S such that for every x <y Yy €S, x <, ¥
(x >, y). ADS is the statement “Every infinite linear order admits an infinite ascending
or descending sequence”.

Pseudo Ramsey’s theorem for pairs was introduced by Friedman [7] and later
studied by Friedman and Pelupessy [8], and Murakami, Yamazaki and Yokoyama
in [15] who proved that it is between the chain antichain principle and the ascend-
ing descending sequence principle over RCA,. Steila [20] and the author [17] in-
dependently proved that it is actually equivalent to ADS.

Definition 19 (Pseudo Ramsey’s theorem). A set H = {x, < x; < ...} is pseudo-
homogeneous for a coloring f : [N]" = k if f(x;,..., Xiyn—1) = f(Xj, ..., Xjyn) foOr
every i,j € N. psRT} is the statement “Every colorlng f : [N]* - k has an infinite
pseudo-homogeneous set”.

Definition 20 (Dependent hyperimmunity). A formula ¢(U,V) is essential if for
every X € w, there is a finite set R > x such that for every y € w, there is a finite set S >
Y such that ¢(R,S) holds. A pair of sets Ay,A; € w is dependently X-hyperimmune
if for every essential %3 OX formula ¢(U, V), ¢(R,S) holds for some R C A, and S C A,.

In particular, if the pair Ay,A; is dependently hyperimmune, then A, and A; are
both hyperimmune.

Definition 21 (Preservation of dependent hyperimmunity). A H; statement P ad-
mits preservation of dependent hyperimmunity if for every set Z, every pair of de-
pendently Z-hyperimmune sets Ay,A; € w and every P-instance X <; Z, there is a
solution Y to X such that Ay,A, are dependently Y & Z-hyperimmune.

A partial order (P, <,) is stable if either (Vi € P)(3s)[(Vj >s)(j € P - i <p
NDVj>s)GeP—ilpj)lor(VieP)3)N(Vj>s)jeP—izpj)V(Vj>
s)(j € P —1i|p j)]. SCAC is the restriction of CAC to stable partial orders. A simple
finite injury priority argument shows that SCAC does not admit preservation of
dependent hyperimmunity.



Theorem 22. There exists a computable, stable semi-transitive coloring f : [w]>—2
such that the pair Ay, A is dep. hyperimmune, where A; = {x : lim, f (x,s) =i}.

Corollary 23. SCAC does not admit preservation of dependent hyperimmunity.

Proof. Let f : [w]*> — 2 be the coloring of Theorem 22. By construction, the pair
Ay, A, is dependently hyperimmune, where A; = {x : lim, f (x,s) = i}. Let H be
an infinite f-homogeneous set. In particular, H € A, or H € A;. We claim that the
pair Ay, A, is not dependently H-hyperimmune. The Z?’H formula (U, V) defined
byU#BAV ZDAUUV C H is essential since H is infinite. However, if there is
some R C A; and S C A, such that ¢(R,S) holds, then HNAy # @ and HNA; # 0,
contradicting the choice of H. Therefore A, A; is not dependently H-hyperimmune.
Hirschfeldt and Shore [10] proved that SCAC is equivalent to stable semi-transitive
Ramsey’s theorem for pairs over RCA;. Therefore SCAC does not admit preservation
of dependent hyperimmunity. O

We will now prove the positive preservation result.
Theorem 24. For every k > 2, psRTi admits preservation of dep. hyperimmunity.

Proof. The proof is done by induction over k > 2. Fix a pair of sets Ayp,A; € w
dependently Z-hyperimmune for some set Z. Let f : [w]?> — k be a Z-computable
coloring and suppose that there is no infinite set H over which f avoids at least one
color, and such that the pair A;,A; is dependently H ® Z-hyperimmune, as otherwise,
we are done by induction hypothesis. We will build k infinite sets Gy, ..., Gx_; such
that G; is pseudo-homogeneous for f with color i for each i < k and such that Ay, A,
is dependently G; ® Z-hyperimmune for some i < k. The sets G, ..., G,_; are built
by a variant of Mathias forcing (F,, ..., Fi_;,X) such that

(1) F;U{x} is pseudo-homogeneous for f with color i for each x € X
(ii) X is an infinite set such that Ay, A, is dependently X & Z-hyperimmune

A condition d = (Hy,...,H_;,Y) extends ¢ = (Fy,...,F_1,X) (written d < ¢)
if (H;,Y) Mathias extends (F;,X) for each i < k. A tuple of sets Gy,...,G,_; sat-
isfies c if for every n € w, there is an extension d = (Hy,...,H;_;,Y) of ¢ such
that G;[n C H; for each i < k. Informally, G, ..., G,_; satisfy c if the sets are gener-
ated by a decreasing sequence of conditions extending c. In particular, G; is pseudo-
homogeneous for f with color i and satisfies the Mathias condition (F;,X). The first
lemma shows that every sufficiently generic filter yields a k-tuple of infinite sets.

Lemma 25. For every condition ¢ = (Fy,...,F_1,X) and every i < k, there is an
extension d = (Hy,...,H,_,,Y) of ¢ such that |H;| > |F;|.

Fix an enumeration ¢,(G,U,V), ¢,(G,U,V),... of all Z?’Z formulas. We want
to satisfy the following requirements for each e, ...,e;_; € w:

R RO vV ...V RO
e ey

€k—1

where %9 is the requirement “¢,(G, U, V) essential — ¢,(G,R,S) for some R C A,
and S CA,”. We say that a condition c forces %; if %5 holds for every k-tuple of sets
satisfying c. Note that the notion of satisfaction has a precise meaning given above.



Lemma 26. For every condition c and every k-tuple of indices ey, ...,e,_; € w, there
is an extension d of ¢ forcing %;.

Proof. Fix a condition ¢ = (F,..., Fi_1,X). Lety(U, V) be the Zl(l)’X@Z formula which
holds if there is a k-tuple of sets Ej, ..., E;_; € X and az € X such that foreachi <k,
(1) z> max(E;)

(ii) F; UE;U{z} is pseudo-homogeneous for color i.

(iii) ., (F; UE;, U, V;) holds for some U; C U and V; €V

Suppose that ¢ does not force %;, otherwise we are done.

We claim that v is essential. Since ¢ does not force %3, there is a k-tuple of infi-
nite sets G, . .., Gy satisfying c and such that ¢, (G;, U, V) is essential for each i <
k. Fix some x € w. By definition of being essential, there are some finite sets
Ry,...,Rx_; > x such that for every y € w, there are finite sets S;,...,Sk_; > ¥
such that ¢, (G;,R;,S;) holds for each i < k. Let R = | JR; and fix some y € w.
There are finite sets Sy, ...,S_; > ¥ such that ¢, (G;,R;,S;) holds for each i < k.
Let S = | JS;. By continuity, there are finite sets E,, ..., E;_; such that G;lmax(E;) =
F;UE; and ¢, (F;UE;,R;,S;) holds for each i < k. By our precise definition of satisfac-
tion, we can even assume without loss of generality that (FyUE,,...,F_ UE;_;,Y)
is a valid extension of ¢ for some infinite set Y C X. Let z € Y. In particular, by
the definition of being a condition extending c, z € X, z > max(E,,...,E;_;) and
F; UE; U{z} is pseudo-homogeneous for color i for each i < k. Therefore y(R,S)
holds, as witnessed by E,, ..., E;_; and z. Thus ¢/(R, S) is essential.

Since Ay, A; is dependently X & Z-hyperimmune, then ¢(R, S) holds for some R C
Ay and some S C A;. Let E,,...,E_; C X be the k-tuple of sets and z € X be the
integer witnessing 1(R, S). Let i < k be such that the set Y = {w € X\ [0, max(E;)] :
f(z,w) =i} is infinite. The condition d = (F,, ..., F;_1, F;UE;U{2},Fi1,..., Fx_1,Y)
is a valid extension of ¢ forcing %;. O

Theorem 27. Fix some set Z and a pair of sets Ay,A, dependently Z-hyperimmune.
If Y is sufficiently random relative to Z, then the pair A,,A, is dependently Y & Z-
hyperimmune.

Corollary 28. WWKL admits preservation of dependent hyperimmunity.

Proof. Let Z be a set and A, A, be a pair of dependently Z-hyperimmune sets. Fix a
Z-computable tree of positive measure T C 2<%, By Theorem 27, the pair Ay, A; is
dependently Y @ Z-hyperimmune for some Martin-L6f random Y relative to Z. By
Kucera [12], Y is, up to finite prefix, a path through T. O

Corollary 29. For every k > 2, RCAy A psRTi ANWWKL K SCAC.

Whenever requiring the sets A, and A; to be co-c.e., we recover the standard
notion of hyperimmunity. Therefore, the restriction of the preservation of depen-
dent hyperimmunity to co-c.e. sets is not a good computability-theoretic property to
distinguish consequences of Ramsey’s theorem for pairs.

Lemma 30. Fix two sets Ay, A; such that A, is X-co-c.e. The pair Ay, A; is dependently
X-hyperimmune iff A, and A, are X-hyperimmune.

Corollary 31. RT% admits preservation of dependent hyperimmunity for co-c.e. sets.
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A Preservation of Properties for Co-c.e. Sets

Proof. Take any x € X such that the set Y = {y € X : f(x,y) = 1} is infinite. Such
an x must exist, otherwise the set X is limit-homogeneous for color 0 and one can X-
compute, hence Z-compute, an infinite f-homogeneous set for color 0, contradicting
our hypothesis. Take (F U {x},Y) as the desired extension.

B CAC and Constant-Bound Immunity

Proof (Proof of Lemma 12). Fix anon-empty class ¢ C 2°,andletA={o : ¥N[c] #
(}. We claim that the degrees of the c.b-enums of A and of € coincide. Any c.b-enum
of € is a c.b-enum of A. Conversely, let F, < F; < ... be a c.b-enum of 6. We can
computably thin it out and normalize it into an enumeration E, < E; < ... such that
|o| =i for every o € E;. O

Proof (Proof of Lemma 10). We first prove that if A is not X-immune, then it is not
c.b-immune relative to X. Let W be an infinite X-computable infinite subset of A.
Let ¢ (U) be the ©%* formula which holds if UNW # . The formula ¢(U) is essen-
tial, but there is no set R C A such that ¢(R) holds. Therefore, A is not c.b-immune
relative to X.

We now show by induction over k if A is X-co-c.e. and has an X-computable k-
enumeration F,, F;,... then it has an infinite X-computable subset. If k = 1, then
it is already an infinite subset of A. Suppose now that k > 2. If there are infinitely
many i € w such that min(F;) € A # @, then since A is X-co-c.e., one can find
an X-computable infinite set S of such i’s. The sequence {F; \ min(F;) : i € S}
is an X-computable (k — 1)-enumeration of A, and by induction hypothesis, there
is an X-computable subset of A. If there are only finitely many such i’s, then the
sequence {min(F;) : i € w)} is, up to finite changes, an infinite X-computable subset
of X. O

Proof. Take any x € X such that the set Y = {y € X : f(x,y) = i} is infinite.
Such an x must exist, otherwise the set X is limit-homogeneous for color 1 —i and
one can X-compute an infinite f-homogeneous set, contradicting our hypothesis.
Let E; = F; U {x} and E,_; = F,_;, and take (Ey, E;,Y) as the desired extension.

Proof (Proof of Theorem 16). Let ug be the modulus function of #, that is, such
that g (x) is the minimum stage s at which (2); Ix = @' x. The sketch of the proof is
the following:

Computably split w into countably many columns X, X1, ... of infinite size. For
example, set X; = {{i,n) : n € w} where (-,-) is a bijective function from w? to w.
For each i, let F; be the set of the g (i) first elements of X;. The sequence Fy, Fy,. ..
is ’-computable. Assume for now that we have defined a c.e. set W such that the
Ag set A=|_J; F;\ W is c.b-immune, and such that |X; "\W| < i. We claim that every
DNC function computes an infinite subset of A.

Let f be any DNC function. By a classical theorem about DNC functions (see
Bienvenu et al. [1] for a proof), f computes a function g(-,-,-) such that when-
ever |W,| < n, then g(e,n,i) € X; \ W,. For each i, let ¢; be the index of the c.e.
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set W,, = W NXj, and let n; = g(e;,i,i). Since |X; nW| < i, [W, | < i, hence
n; = g(e;,i,i) € W, = X; \ W. We then have two cases.

— Case 1: n; € F; for infinitely many i’s. One can f-computably find infinitely
many of them since uy is left-c.e. and the sequence of the n’s is f-computable.
Therefore, one can f-computably find an infinite subset of | J, F; \ W = A.

— Case 2: n; € F, for only finitely many i’s. Then the sequence of the n;’s dominates
the modulus function ug, and therefore computes the halting set. Since the set A
is Ag, f computes an infinite subset of A.

We now detail the construction of the c.e. set W. In what follows, interpret ®, as
a partial computable sequence of finite sets such that if ®,(x) and ®,(x+1) both halt,
then max(®,(x)) < min(®,(x + 1)). We need to satisfy the following requirements
for each e, k € w:

Ry [P, total AV(VTx)(@(x)NX; =B)] - (Ix)[|8.(x)] >k V&, (x) S W]

We furthermore want to ensure that |X; N W| < i for each i. We can prove by induc-
tion over k that if %, , is satisfied for each ¢ < k, then the set A= J; F; \ W admits
no computable k-enumeration. The case k = 1 is trivial, since if ¢, is total and has
an infinite intersection with X; for some i € w, then it intersects X; \. F;, hence inter-
sects A. For the case k > 1, if ®, is total, and intersects infinitely many times X; for
some i € w, then by a finite modification, one can compute a (k — 1)-enumeration
Ey <E; <...of Aby setting E,, = ®,(n) \ X;, and apply the induction hypothesis.

We now explain how to satisfy %, ; for each e,k € w. For each pair of in-
dices e,k € w, let i, = Z@,’k,)ﬂe’k) k'. A strategy for &, requires attention at
stage s > (e, k) if ®,(x) |, |®,,(x)| < k, and &, (x) C szl.e’k X;. Then, the strategy
enumerates all the elements of &, in W, and is declared satisfied, and will never
require attention again. First, notice that if ®, is total, outputs k-sets, and meets
finitely many times each X;, then it will require attention at some stage s and will be
declared satisfied. Therefore each requirement %,y is satisfied. Second, suppose for
the sake of contradiction that |X; NW;| > i for some i. Let s be the a stage at which it
happens, and let (e, k) < s be the maximal pair such that Z, ; has enumerated some
element of X; in W. In particular, i, < i. Since the strategy for %, ,, enumerates at
most k' elements in W,

D KXW >izig= >, K
(e’,k’)<(e,k) (e’,k’)<(e,k)

Contradiction. O

C ADS and Dependent Hyperimmunity

Proof (Proof of Lemma 30). We first show that if A; and A; are dependently X-
hyperimmune then both A, and A; are X-hyperimmune. Let Fy, Fy,... be a X-c.e.
array. Let ¢(U, V) be the Z(l)’X formula which holds if U = F; for some i € w. The
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formula (U, V) is essential, therefore there ¢ (R, S) holds for some finite set R C 7\0
and S C A,. In particular, R = F,; for some i € w, therefore F; C A, and A, is
hyperimmune. Similarly, the Z(l)’X formula (U, V) which holds if V = F; for some i €
w witnesses that A; is hyperimmune.

We now prove that if A; and A, are X-co-c.e. and X-hyperimmune, then the pair
Ay,A; is dependently X-hyperimmune. Let ¢(U,V) be an essential 2(1))( formula.
Define an X-c.e. sequence of sets F, < F; < ... such that for every i € w, there is
some R < F; such that ¢(R, F;) holds and R C A,. First, notice that the sequence is
X-c.e. since A, is X-co-c.e. Second, we claim that the sequence is infinite. To see this,
define an X-c.e. array E, < F; < ... such that for every i € w, there is some finite
set S > E; such that ¢(E;,S) holds. The array is infinite since (U, V) is essential.
Since A, is X-hyperimmune, there are infinitely many i’s such that E; C A,. Last, by
X-hyperimmunity of A;, there is some i € w such that F; C A,. By definition of F;,
there is some R C A, such that ¢ (R, F;) holds. O

Proof (Proof of Theorem 22). Fix an enumeration (U, V), p,(U,V),... of all 2(1’
formulas. The construction of the function f is done by a finite injury priority argu-
ment with a movable marker procedure. We want to satisfy the following scheme of
requirements for each e, where A; = {x : lim, f (x,s) =i}:

R, . p.(U,V) essential > (IR Sy, Ag)(IS Srin A1) (R,S)

The requirements are given the usual priority ordering. We proceed by stages,
maintaining two sets Ay,A; which represent the limit of the function f. At stage 0,
Apo =A;o=0and f is nowhere defined. Moreover, each requirement 2, is given
a movable marker m, initialized to 0.

A strategy for &, requires attention at stage s + 1 if ¢,(R,S) holds for some R <
S € (m,,s]. The strategy sets Ay .1 = (Ag s\ (m,, min(S))U[min(S),s]and A; ;; =
(A1 s\[min(S),s])u(m,, min(S)). Note that (m,, min(S))N[min(S),s] = @ sinceR <
S. Then it is declared satisfied and does not act until some strategy of higher priority
changes its marker. Each marker m,, of strategies of lower priorities is assigned the
value s + 1.

At stage s + 1, assume that Ay ; UA; ; = [0,s) and that f is defined for each pair
over [0,s). For each x € [0,s), set f(x,s) =i for the unique i such that x € A; ;. I
some strategy requires attention at stage s + 1, take the least one and satisfy it. If no
such requirement is found, set Ay,; = Ay U {s} and A;;; = A;;. Then go to the
next stage. This ends the construction.

Each time a strategy acts, it changes the markers of strategies of lower priority,
and is declared satisfied. Once a strategy is satisfied, only a strategy of higher priority
can injure it. Therefore, each strategy acts finitely often and the markers stabilize.
It follows that the A’s also stabilize and that f is a stable function.

Claim. Forevery x <y <z, f(x,y)=1Af(y,2)=1-> f(x,2)=1

Proof. Suppose that f(x,y) =1 and f(y,2z) = 1 but f(x,z) = 0. By construction
of f,x €Ay,, x €Ay, and y €A, ,. Let s < z be the last stage such that x € A, ;.
Then at stage s + 1, some strategy %, receives attention and moves x to Ay, and
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therefore moves [x,s] to Ay, ;. In particular y € Ay, since y € [x,s]. Moreover,
the strategies of lower priority have had their marker moved to s + 1 and therefore
will never move any element below s. Since f(y,z) =1, then y €A, ,. In particular,
some strategy %; of higher priority moved y to A ., at stage t+1 for some t € (s, 2).
Since #; has a higher priority, m; < m,, and since y is moved to A, ,,;, then so
is [m;, y], and in particular x € A, ,,, since m; < m, < x < y. This contradicts the
maximality of s.

Claim. For every e € w, %, is satisfied.

Proof. By induction over the priority order. Let s, be a stage after which no strategy
of higher priority will ever act. By construction, m, will not change after stage s.
If ¢,(U,V) is essential, then ¢,(R,S) holds for two sets m, <R < S.Lets =1+
max(sy,S). The strategy 2, will require attention at some stage before s, will receive
attention, be satisfied and never be injured.

This last claim finishes the proof. O

Proof. If for every x € X and almost every y € X, f(x,y) # i, then we can X & Z-
compute an infinite f-thin subset ¥ C X, contradicting our assumption. Let x € X
be such that the X @ Z-computable set Y = {y € X : f(x,y) = i} is infinite. The
condition d = (F,,...,F;_1, F; U{x},Fii1,...,Fr_,Y) is the desired extension.

Proof (Proof of Theorem 27). It suffices to prove that for every Z?’Z formula ¢(G,U,V)
and every i € w, the following class is Lebesgue null.

& ={X :[p(X,U,V) is essential ]A(VR,S C,,, w)9(X,R,S) >RZA,VS LA}
Suppose it is not the case. There exists o € 2<* such that
uXes ::0<x}>0.8-27°
Define
YU, V) =[u{X > o : (AU CU)@AV S V)p(X,U,V)} > 0.6-27191
By compactness, the formula (U, V) is Z(l)’z.

Lemma 32. (U, V) is essential.

Proof. Suppose it is not. Then, there exists some x € w, such that for every n € w,
there is some y, € w such that ¥ ([x,n], [y,, +©°)) does not hold. Let Z(X,n, y,)
be the formula

(YO S [, n(VV S [y, +00))=0(X, U, V)
Unfolding the definition of ~)([x,n], [y,, +©2)),

wX = o:@X,n,y,)}>0.4-27°
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Then, by Fatou’s lemma,
wiX = o :(3%°n)@(X,n,y,)} >0.2-27
Since whenever 2 (X, n, y,,) holds, so does Z(X,n—1,y,),
uiX > o : (Yn)@y)®2(X,n,y)} >0.2-271

Therefore
u{X > o : (X,U,V) is essential } < 0.8-271!

Contradicting our assumption. This finishes the lemma.

By Lemma 32 and by dependent Z-hyperimmunity of Ay, A,, there exists some
finite sets R C Ay and S C A, such that (R, S) holds. For every R, S such that 1(R, S)
holds, there exists some X € & and some R € R and § C S such that pX ,R.$)
holds. By definition of X € %, R € Ay or S € A, and therefore either R € A, or
S ¢ A,. Contradiction. O
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