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Abstract. We identify computability-theoretic properties enabling us to sep-
arate various statements about partial orders in reverse mathematics. We ob-
tain simpler proofs of existing separations, and deduce new compound ones.
This work is part of a larger program of unification of the separation proofs
of various Ramsey-type theorems in reverse mathematics in order to obtain a
better understanding of the combinatorics of Ramsey’s theorem and its con-
sequences. We also answer a question of Murakami, Yamazaki and Yokoyama
about pseudo Ramsey’s theorem for pairs.

1 Introduction

Many theorems of “ordinary” mathematics are of the form

(∀X )[Φ(X )→ (∃Y )Ψ(X , Y )]

where Φ and Ψ are arithmetic formulas. They can be seen as mathematical problems,
whose instances are sets X such that Φ(X ) holds, and whose solutions to X are sets Y
such that Ψ(X , Y ) holds. For example, König’s lemma asserts that every infinite,
finitely branching tree admits an infinite path through it.

There exist many ways to calibrate the strength of a mathematical problem.
Among them, reverse mathematics is a vast foundational program that seeks to deter-
mine the weakest axioms necessary to prove ordinary theorems. It uses the frame-
work of subsystems of second-order arithmetic, within the base theory RCA0, which
can be thought of as capturing computable mathematics. An ω-structure is a struc-
ture whose first-order part consists of the standard integers. Theω-models of RCA0

are those whose second-order part is a Turing ideal, that is, a collection of sets S
downward-closed under the Turing reduction and closed under the effective join.

In this setting, a ω-model M satisfies a mathematical problem P if every P-
instance in M has a solution in M . A standard way of proving that a problem P
does not imply another problem Q consists of creating an ω-model M satisfying
P but not Q. Such a model is usually constructed by taking a ground Turing ideal,
and extending it by iteratively adding solutions to its P-instances. However, while
taking the closure of the collectionM ∪{Y } to obtain a Turing ideal, one may add
solutions to Q-instances as well. The whole difficulty of this construction consists of
finding the right computability-theoretic notion preserved by P but not by Q.

We conduct a program of identification of the computability-theoretic properties
enabling us to distinguish various Ramsey-type theorems in reverse mathematics,
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but also under computable and Weihrauch reducibilities. This program puts em-
phasis on the interplay between computability theory and reverse mathematics, the
former providing tools to separate theorems in reverse mathematics over standard
models, and the latter exhibiting new computability-theoretic properties.

Among the theorems studied in reverse mathematics, the ones coming from
Ramsey’s theory play a central role. Their strength are notoriously hard to gauge,
and required the development of involved computability-theoretic frameworks. Per-
haps the most well-known example is Ramsey’s theorem.

Definition 1 (Ramsey’s theorem). A subset H of ω is homogeneous for a color-
ing f : [ω]n → k (or f -homogeneous) if each n-tuples over H are given the same
color by f . RTn

k is the statement “Every coloring f : [ω]n → k has an infinite f -
homogeneous set”.

Jockusch [11] conducted a computational analysis of Ramsey’s theorem. He
proved in particular that RTn

k implied the existence of the halting set whenever
n ≥ 3. There has been a lot of literature around the strength of Ramsey’s theorem
for pairs [4,6,9,19] and its consequences [3,5,10]. We focus on some mathematical
statements about partial orders which are consequences of Ramsey’s theorem for
pairs.

Definition 2 (Chain-antichain). A chain in a partial order (P,≤P) is a set S ⊆ P
such that (∀x , y ∈ S)(x ≤P y ∨ y ≤P x). An antichain in P is a set S ⊆ P such that
(∀x , y ∈ S)(x 6= y → x |P y) (where x |P y means that x �P y ∧ y �P x). CAC is the
statement “every infinite partial order has an infinite chain or an infinite antichain.”

The chain-antichain principle was introduced by Hirschfeldt and Shore [10] to-
gether with the ascending descending sequence (ADS). They studied extensively
cohesive and stable versions of the statements, and proved that CAC is compu-
tationally weak, in that it does not even imply the existence of a diagonally non-
computable function. However, their proof has an ad-hoc flavor, in that it is a direct
separation involving the two statements. Later, Lerman, Solomon and Towsner [13]
separated ADS from CAC over ω-models by using an involved iterated forcing ar-
gument.

In this paper, we revisit the two proofs and emphasis on the combinatorial na-
ture of the principles by identifying the computability-theoretic properties separat-
ing them. Those properties happen to be very natural and coincide on co-c.e. sets to
some well-known computability-theoretic notions, namely, immunity and hyperim-
munity. The proof of the separation of ADS from CAC is significantly simpler and
more modular, as advocated by the author in [16].

1.1 Notation and definitions

Given two sets A and B, we denote by A< B the formula (∀x ∈ A)(∀y ∈ B)[x < y]
and by A ⊆∗ B the formula (∀∞x ∈ A)[x ∈ B], meaning that A is included in B
up to finitely many elements. A Mathias condition is a pair (F, X ) where F is a finite
set, X is an infinite set and F < X . A condition (F1, X1) extends (F, X ) (written
(F1, X1) ≤ (F, X )) if F ⊆ F1, X1 ⊆ X and F1 r F ⊂ X . A set G satisfies a Mathias
condition (F, X ) if F ⊂ G and Gr F ⊆ X .
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2 Preservation of Properties for Co-c.e. Sets

Ramsey’s theorem for k colors has a deeply disjunctive nature. One cannot know in
a finite amount of time whether a coloring will admit an infinite homogeneous set
for a fixed color, and one must therefore build multiple homogeneous sets simulta-
neously, namely, one for each color. This disjunction was exploited by the author to
show for example that ADS does not preserve 2 hyperimmunities simultaneously,
whereas the Erdős-Moser theorem does [16]. This idea was also used in the context
of computable reducibility to show that RT2

k+1 does not computably reduce to RT2
k

whenever k ≥ 1, by showing that RT2
k preserves 2 among k + 1 hyperimmunities

simultaneously whereas RT2
k+1 does not [18]. In this section, we shall see that this

disjunctive flavor disappears whenever considering co-c.e. sets. In particular, RT2
2

admits preservation of countably many hyperimmune co-c.e. sets simultaneously.

Definition 3 (Hyperimmunity). An array is a sequence of mutually disjoint finitely
coded sets. A set A is X -hyperimmune if for every X -c.e. array F0, F1, . . ., there is some i
such that Fi ∩ A= ;.

Equivalently, a set is X -hyperimmune if its principal function is not dominated
by any X -computable function, where the principal function pA of a set A = {x0 <
x1 < . . .} is defined by pA(i) = x i .

Definition 4 (Preservation of hyperimmunity for co-c.e. sets). A Π1
2 statement P

admits preservation of hyperimmunity for co-c.e. sets if for every set Z, every sequence
of Z-co-c.e. Z-hyperimmune sets A0, A1, . . . and every P-instance X ≤T Z, there is a
solution Y to X such that the A’s are Y ⊕ Z-hyperimmune.

Hirschfeldt and Shore [10] proved that CAC is equivalent to the existence of
homogeneous sets for semi-transitive colorings. A coloring f : [N]2 → 2 is semi-
transitive if whenever f (x , y) = 1 and f (y, z) = 1, then f (x , z) = 1 for x < y < z.

Theorem 5. CAC admits preservation of hyperimmunity for co-c.e. sets.

Proof. Fix a set Z and a countable sequence of Z-co-c.e. Z-hyperimmune sets A0, A1, . . .
Let f : [ω]2 → 2 be a Z-computable semi-transitive coloring. We shall assume that
there is no infinite Z-computable f -homogeneous set for color 0, otherwise we are
done. We will build an infinite set G f -homogeneous for color 1 such that the A’s are
G⊕ Z-hyperimmune. The construction is done by a Mathias forcing (F, X ), where F
is a finite set, X is an infinite Z-computable set such that max(F) < min(X ), and
for every x ∈ X , F ∪ {x} is f -homogeneous for color 1. The condition extension is
the usual Mathias extension. A set G satisfies (F, X ) if it satisfies the Mathias condi-
tion (F, X ) and is f -homogeneous for color 1. Lemma 6 shows that every sufficiently
generic filter for this notion of forcing yields an infinite set.

Lemma 6. Every condition c = (F, X ) has an extension (E, Y ) such that |E|> |F |.

In what follows, we say that a condition c forces a formula property ϕ(G) if ϕ(G)
holds for every set G satisfying c.
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Lemma 7. For every condition c = (F, X ) and every pair of indices e, i, there is an
extension forcing ΦG⊕Z

e not to dominate pAi
.

Proof. Define the Z-partial computable function h which on input x , searches for
a finite set Ex ⊆ X f -homogeneous for color 1 such that Φ(F∪Ex )⊕Z

e (x) ↓. If found,
h(x) = Φ(F∪Ex )⊕Z

e (x), otherwise h(x) ↑. We have two cases.

– Case 1: h is total. By Z-hyperimmunity of pAi
, there are infinitely many x such

that h(x) < pAi
(x). If there is such an x such that the set Y = {y ∈ X : (∀z ∈

Ex) f (z, y) = 1} is infinite, then the condition (F ∪ Ex , Y ) is an extension of c
forcing ΦG⊕Z

e (x) < pAi
(x). If there is no such x , then by semi-transitivity of f ,

for every x such that h(x)< pAi
(x), for almost every y ∈ X , f (max(Ex), y) = 0.

Since Ai is co-c.e., one can find a Z-computable infinite subset Y of {max(Ex) :
h(x) < pAi

(x)}. The set Y is Z-computable and limit-homogeneous for color 0,
and therefore computes an infinite f -homogeneous set for color 0, contradicting
our assumption.

– Case 2: there is some x such that h(x) ↑. By definition of h, the condition c
already forces ΦG⊕Z

e (x) ↑. ut

Corollary 8. RT2
2 admits preservation of hyperimmunity for co-c.e. sets.

Proof. Bovykin and Weiermann [2] studied the reverse mathematics of the Erdős-
Moser theorem (EM) and proved that RCA0 ` RT2

2 ↔ [CAC ∧ EM]. The author
proved in [16] that EM admits preservation of hyperimmunity. Together with Theo-
rem 5, we deduce thatCAC∧EM, henceRT2

2, admits preservation of hyperimmunity
for co-c.e. sets.

3 CAC and Constant-Bound Immunity

Hirschfeldt and Shore [10] separated CAC from DNC in reverse mathematics by a
direct construction. DNC is the statement asserting, for every set X , the existence of
a function f such that f (e) 6= ΦX

e (e) for every e. In this section, we extract the core
of the combinatorics of their forcing argument to exhibit a computability-theoretic
property separating the two notions, namely, constant-bound immunity.

Definition 9 (Constant-bound immunity). A k-enumeration (k-enum) of a set A is
an infinite sequence of k-sets F0 < F1 < . . . such that for every i ∈ ω, Fi ∩ A 6= ;.
A constant-bound enumeration (c.b-enum) of a set A is a k-enumeration of A for
some k ∈ ω. A set A is k-immune (c.b-immune) relative to X if it admits no X -
computable k-enumeration (c.b-enumeration).

In particular, 1-immunity coincides with the standard notion of immunity. Also
note that one can easily create a c.b-immune set computing no effectively immune
set. The following lemma shows that c.b-immunity and immunity coincide for co-c.e.
sets.

Lemma 10. An X -co-c.e. set A is c.b-immune relative to X iff it is X -immune.
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Definition 11 (Preservation of c.b-immunity). A Π1
2 statement P admits preserva-

tion of c.b-immunity if for every set Z, every set A which is c.b-immune relative to X ,
and every P-instance X ≤T Z, there is a solution Y to X such that A is c.b-immune
relative to Y ⊕ Z.

We can easily relate the notion of preservation of c.b-immunity with the existing
notion of constant-bound enumeration avoidance defined by Liu [14] to separate
RT2

2 from WWKL over RCA0.

Lemma 12. If P admits preservation of c.b-immunity, then it admits constant-bound
enumeration avoidance.

Theorem 13. CAC admits preservation of c.b-immunity.

Proof. Let A be a set c.b-immune relative to some set Z , and let f : [ω]2→ 2 be a Z-
computable semi-transitive coloring. Assume that there is no infinite f -homogeneous
set H such that A is c.b-immune relative to H ⊕ Z , otherwise we are done. We will
build two infinite sets G0 and G1, such that Gi is f -homogeneous for color i for
each i < 2, and such that A is c.b-immune relative to Gi ⊕ Z for some i < 2.

The construction is done by a variant of Mathias forcing (F0, F1, X ), where F0
and F1 are finite sets, X is infinite set such that max(F0, F1)< min(X ), and A is c.b-
immune relative to X⊕Z . Moreover, we require that for every i < 2 and every x ∈ X ,
Fi ∪ {x} is f -homogeneous for color i. A condition (E0, E1, Y ) extends (F0, F1, X )
if (Ei , Y ) Mathias extends (Fi , X ) for each i < 2. A pair of sets G0, G1 satisfies a
condition c = (F0, F1, X ) if Gi is f -homogeneous for color i and satisfies the Mathias
condition (Fi , X ) for each i < 2.

Lemma 14. For every condition c = (F0, F1, X ) and every i < 2, there is an extension
(E0, E1, Y ) of c such that |Ei |> |Fi |.

In what follows, we interpret Φ0,Φ1, . . . as Turing functionals outputting non-
empty finite sets such that ifΦX

e (x) andΦX
e (x+1) both halt, max(ΦX

e (x))< min(ΦX
e (x+

1)). We want to satisfy the following requirements for each e0, k0, e1, k1 ∈ω:

Re0,k0,e1,k1
: RG0

e0,k0
∨ RG1

e1,k1

where RG
e,k is the requirement

(∃x)
�

ΦG⊕Z
e (x) ↑ ∨|ΦG⊕Z

e (x)|> k ∨ΦG⊕Z
e (x)∩ A= ;

�

In other words, RG
e,k asserts that ΦG⊕Z

e is not a k-enumeration of A. A condition c
forces a formula ϕ(G0, G1) if ϕ(G0, G1) holds for every pair of infinite sets G0, G1
satisfying c.

Lemma 15. For every condition c and every vector of indices e0, k0, e1, k1 ∈ ω, there
is an extension d of c forcing Re0,k0,e1,k1

.
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Proof. Fix a condition c = (F0, F1, X ), and let P0, P1, . . . be an X ⊕ Z-computable
sequence of sets where Pn = Φ(F0∪E0)⊕Z

e0
(x0) ∪ Φ(F1∪E1)⊕Z

e1
(x1) for a pair of sets E1 <

E0 ⊆ X and some x0, x1 ∈ ω such that E0 is f -homogeneous for color 0, E1 ∪ {y}
is f -homogeneous for color 1 for each y ∈ E0, and for each i < 2, max(Pn−1) <
min(Φ(Fi∪Ei)⊕Z

ei
(x i)) and |Φ(Fi∪Ei)⊕Z

ei
(x i)| ≤ ki . We have two cases.

– Case 1: the sequence of the P ’s is finite and is defined, say to level n−1. If there is
a pair of infinite sets G0, G1 satisfying c and some x1 ∈ω such that ΦG1⊕Z

e1
(x1) ↓,

max(Pn−1) < min(ΦG1⊕Z
e1
(x1)), and |ΦG1⊕Z

e1
(x1)| ≤ k1, then let E1 ⊆ G1 be such

that F1 ∪ E1 is an initial segment of G1 for which Φ(F1∪E1)⊕Z
e1

(x1) ↓. The set Y =
{y ∈ X : E1 ∪ {y} is f -homogeneous for color 1 } is a superset of G1, hence is
infinite. The condition d = (F0, F1 ∪ E1, Y ) is an extension of c forcing RG0

e0,k0
,

hence forcing Re0,k0,e1,k1
. If there is no such pair of infinite sets G0, G1, then the

condition c already forces RG1

e1,k1
, hence Re0,k0,e1,k1

.
– Case 2: the sequence of the P ’s is infinite. By c.b-immunity of A relative to X ⊕Z ,

Pn∩A= ; for some n ∈ω. Let E1 < E0 ⊆ X and x0, x1 ∈ω witness the existence
of Pn. If Y0 = {y ∈ X : E0 ∪ {y} is f -homogeneous for color 1 } is infinite, then
the condition (F0 ∪ E0, F1, Y0) is an extension of c forcing RG0

e0,k0
. If Y0 is finite,

then for almost every y ∈ X , there is some x y ∈ E0 such that f (x y , y) = 1, and
by transitivity of f for color 1, E1 ∪ {y} is f -homogeneous for color 1. Indeed,
E1 is f -homogeneous for color 1 and for each x ∈ E1, f (x , x y) = f (x y , y) = 1.

In this case, (F0, F1∪E1, Y1) is an extension of c forcingRG1

e1,k1
, for some Y1 =∗ X .

In both cases, there is an extension of c forcing Re0,k0,e1,k1
.

This completes the proof of Theorem 13. ut

Theorem 16. DNC does not admit preservation of c.b-immunity.

Proof (Proof sketch). Let µ;′ be the modulus function of ;′, that is, such that µ;′(x)
is the minimum stage s at which ;

′

s�x = ;
′�x .

Computably split ω into countably many columns X0, X1, . . . of infinite size. For
example, set X i = {〈i, n〉 : n ∈ ω} where 〈·, ·〉 is a bijective function from ω2 to ω.
For each i, let Fi be the set of the µ;′(i) first elements of X i . The sequence F0, F1, . . .
is ;′-computable. By a simple finite injury priority argument (see appendix), one can
construct a c.e. set W such that the ∆0

2 set A=
⋃

i Fi rW is c.b-immune, and such
that |X i∩W | ≤ i. We claim that every DNC function computes an infinite subset of A.

Let f be any DNC function. By a classical theorem about DNC functions (see
Bienvenu et al. [1] for a proof), f computes a function g(·, ·, ·) such that when-
ever |We| ≤ n, then g(e, n, i) ∈ X i rWe. For each i, let ei be the index of the c.e.
set Wei

= W ∩ X i , and let ni = g(ei , i, i). Since |X i ∩ W | ≤ i, |Wei
| ≤ i, hence

ni = g(ei , i, i) ∈ X i rWei
= X i rW . We then have two cases.

– Case 1: ni ∈ Fi for infinitely many i’s. One can f -computably find infinitely
many of them since µ;′ is left-c.e. and the sequence of the n’s is f -computable.
Therefore, one can f -computably find an infinite subset of

⋃

i Fi rW = A.
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– Case 2: ni ∈ Fi for only finitely many i’s. Then the sequence of the ni ’s dominates
the modulus function µ;′ , and therefore computes the halting set. Since the set A
is ∆0

2, f computes an infinite subset of A. ut

Corollary 17 (Hirschfeldt and Shore [10]). RCA0 ∧CAC 0DNC.

4 ADS and Dependent Hyperimmunity

Lerman, Solomon and Towsner [13] separated the ascending descending sequence
principle from a stable version of CAC by using a very involved iterated forcing
argument. According to our previous simplification of their general framework [16],
we reformulate their proof in terms of preservation of dependent hyperimmunity,
and extend it to pseudo Ramsey’s theorem for pairs.

Definition 18 (Ascending descending sequence). Given a linear order (L,<L), an
ascending (descending) sequence is a set S such that for every x <N y ∈ S, x <L y
(x >L y).ADS is the statement “Every infinite linear order admits an infinite ascending
or descending sequence”.

Pseudo Ramsey’s theorem for pairs was introduced by Friedman [7] and later
studied by Friedman and Pelupessy [8], and Murakami, Yamazaki and Yokoyama
in [15] who proved that it is between the chain antichain principle and the ascend-
ing descending sequence principle over RCA0. Steila [20] and the author [17] in-
dependently proved that it is actually equivalent to ADS.

Definition 19 (Pseudo Ramsey’s theorem). A set H = {x0 < x1 < . . .} is pseudo-
homogeneous for a coloring f : [N]n→ k if f (x i , . . . , x i+n−1) = f (x j , . . . , x j+n−1) for
every i, j ∈ N. psRTn

k is the statement “Every coloring f : [N]n → k has an infinite
pseudo-homogeneous set”.

Definition 20 (Dependent hyperimmunity). A formula ϕ(U , V ) is essential if for
every x ∈ω, there is a finite set R> x such that for every y ∈ω, there is a finite set S >
y such that ϕ(R, S) holds. A pair of sets A0, A1 ⊆ ω is dependently X -hyperimmune
if for every essential Σ0,X

1 formula ϕ(U , V ), ϕ(R, S) holds for some R ⊆ A0 and S ⊆ A1.

In particular, if the pair A0, A1 is dependently hyperimmune, then A0 and A1 are
both hyperimmune.

Definition 21 (Preservation of dependent hyperimmunity). AΠ1
2 statementP ad-

mits preservation of dependent hyperimmunity if for every set Z, every pair of de-
pendently Z-hyperimmune sets A0, A1 ⊆ ω and every P-instance X ≤T Z, there is a
solution Y to X such that A0, A1 are dependently Y ⊕ Z-hyperimmune.

A partial order (P,≤P) is stable if either (∀i ∈ P)(∃s)[(∀ j > s)( j ∈ P → i ≤P
j) ∨ (∀ j > s)( j ∈ P → i |P j)] or (∀i ∈ P)(∃s)[(∀ j > s)( j ∈ P → i ≥P j) ∨ (∀ j >
s)( j ∈ P → i |P j)]. SCAC is the restriction of CAC to stable partial orders. A simple
finite injury priority argument shows that SCAC does not admit preservation of
dependent hyperimmunity.
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Theorem 22. There exists a computable, stable semi-transitive coloring f : [ω]2→ 2
such that the pair A0, A1 is dep. hyperimmune, where Ai = {x : lims f (x , s) = i}.

Corollary 23. SCAC does not admit preservation of dependent hyperimmunity.

Proof. Let f : [ω]2 → 2 be the coloring of Theorem 22. By construction, the pair
A0, A1 is dependently hyperimmune, where Ai = {x : lims f (x , s) = i}. Let H be
an infinite f -homogeneous set. In particular, H ⊆ A0 or H ⊆ A1. We claim that the
pair A0, A1 is not dependently H-hyperimmune. The Σ0,H

1 formula ϕ(U , V ) defined
by U 6= ; ∧ V 6= ; ∧ U ∪ V ⊆ H is essential since H is infinite. However, if there is
some R ⊆ A1 and S ⊆ A0 such that ϕ(R, S) holds, then H ∩ A0 6= ; and H ∩ A1 6= ;,
contradicting the choice of H. Therefore A0, A1 is not dependently H-hyperimmune.
Hirschfeldt and Shore [10] proved that SCAC is equivalent to stable semi-transitive
Ramsey’s theorem for pairs overRCA0. Therefore SCAC does not admit preservation
of dependent hyperimmunity. ut

We will now prove the positive preservation result.

Theorem 24. For every k ≥ 2, psRT2
k admits preservation of dep. hyperimmunity.

Proof. The proof is done by induction over k ≥ 2. Fix a pair of sets A0, A1 ⊆ ω
dependently Z-hyperimmune for some set Z . Let f : [ω]2 → k be a Z-computable
coloring and suppose that there is no infinite set H over which f avoids at least one
color, and such that the pair A0, A1 is dependently H⊕Z-hyperimmune, as otherwise,
we are done by induction hypothesis. We will build k infinite sets G0, . . . , Gk−1 such
that Gi is pseudo-homogeneous for f with color i for each i < k and such that A0, A1
is dependently Gi ⊕ Z-hyperimmune for some i < k. The sets G0, . . . , Gk−1 are built
by a variant of Mathias forcing (F0, . . . , Fk−1, X ) such that

(i) Fi ∪ {x} is pseudo-homogeneous for f with color i for each x ∈ X
(ii) X is an infinite set such that A0, A1 is dependently X ⊕ Z-hyperimmune

A condition d = (H0, . . . , Hk−1, Y ) extends c = (F0, . . . , Fk−1, X ) (written d ≤ c)
if (Hi , Y ) Mathias extends (Fi , X ) for each i < k. A tuple of sets G0, . . . , Gk−1 sat-
isfies c if for every n ∈ ω, there is an extension d = (H0, . . . , Hk−1, Y ) of c such
that Gi�n ⊆ Hi for each i < k. Informally, G0, . . . , Gk−1 satisfy c if the sets are gener-
ated by a decreasing sequence of conditions extending c. In particular, Gi is pseudo-
homogeneous for f with color i and satisfies the Mathias condition (Fi , X ). The first
lemma shows that every sufficiently generic filter yields a k-tuple of infinite sets.

Lemma 25. For every condition c = (F0, . . . , Fk−1, X ) and every i < k, there is an
extension d = (H0, . . . , Hk−1, Y ) of c such that |Hi |> |Fi |.

Fix an enumeration ϕ0(G, U , V ),ϕ1(G, U , V ), . . . of all Σ0,Z
1 formulas. We want

to satisfy the following requirements for each e0, . . . , ek−1 ∈ω:

R~e : RG0
e0

∨ . . . ∨ RGk−1
ek−1

where RG
e is the requirement “ϕe(G, U , V ) essential→ ϕe(G, R, S) for some R ⊆ A0

and S ⊆ A1”. We say that a condition c forcesR~e ifR~e holds for every k-tuple of sets
satisfying c. Note that the notion of satisfaction has a precise meaning given above.
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Lemma 26. For every condition c and every k-tuple of indices e0, . . . , ek−1 ∈ ω, there
is an extension d of c forcing R~e.

Proof. Fix a condition c = (F0, . . . , Fk−1, X ). Letψ(U , V ) be theΣ0,X⊕Z
1 formula which

holds if there is a k-tuple of sets E0, . . . , Ek−1 ⊆ X and a z ∈ X such that for each i < k,

(i) z > max(Ei)
(ii) Fi ∪ Ei ∪ {z} is pseudo-homogeneous for color i.

(iii) ϕei
(Fi ∪ Ei , Ui , Vi) holds for some Ui ⊆ U and Vi ⊆ V

Suppose that c does not force R~e, otherwise we are done.
We claim that ψ is essential. Since c does not force R~e, there is a k-tuple of infi-

nite sets G0, . . . , Gk−1 satisfying c and such that ϕei
(Gi , U , V ) is essential for each i <

k. Fix some x ∈ ω. By definition of being essential, there are some finite sets
R0, . . . , Rk−1 > x such that for every y ∈ ω, there are finite sets S0, . . . , Sk−1 > y
such that ϕei

(Gi , Ri , Si) holds for each i < k. Let R =
⋃

Ri and fix some y ∈ ω.
There are finite sets S0, . . . , Sk−1 > y such that ϕei

(Gi , Ri , Si) holds for each i < k.
Let S =

⋃

Si . By continuity, there are finite sets E0, . . . , Ek−1 such that Gi�max(Ei) =
Fi∪Ei andϕei

(Fi∪Ei , Ri , Si) holds for each i < k. By our precise definition of satisfac-
tion, we can even assume without loss of generality that (F0∪ E0, . . . , Fk−1∪ Ek−1, Y )
is a valid extension of c for some infinite set Y ⊆ X . Let z ∈ Y . In particular, by
the definition of being a condition extending c, z ∈ X , z > max(E0, . . . , Ek−1) and
Fi ∪ Ei ∪ {z} is pseudo-homogeneous for color i for each i < k. Therefore ψ(R, S)
holds, as witnessed by E0, . . . , Ek−1 and z. Thus ψ(R, S) is essential.

Since A0, A1 is dependently X⊕Z-hyperimmune, thenψ(R, S) holds for some R ⊆
A0 and some S ⊆ A1. Let E0, . . . , Ek−1 ⊆ X be the k-tuple of sets and z ∈ X be the
integer witnessingψ(R, S). Let i < k be such that the set Y = {w ∈ Xr[0, max(Ei)] :
f (z, w) = i} is infinite. The condition d = (F0, . . . , Fi−1, Fi∪Ei∪{z}, Fi+1, . . . , Fk−1, Y )
is a valid extension of c forcing R~e. ut

Theorem 27. Fix some set Z and a pair of sets A0, A1 dependently Z-hyperimmune.
If Y is sufficiently random relative to Z, then the pair A0, A1 is dependently Y ⊕ Z-
hyperimmune.

Corollary 28. WWKL admits preservation of dependent hyperimmunity.

Proof. Let Z be a set and A0, A1 be a pair of dependently Z-hyperimmune sets. Fix a
Z-computable tree of positive measure T ⊆ 2<ω. By Theorem 27, the pair A0, A1 is
dependently Y ⊕ Z-hyperimmune for some Martin-Löf random Y relative to Z . By
Kučera [12], Y is, up to finite prefix, a path through T . ut

Corollary 29. For every k ≥ 2, RCA0 ∧ psRT
2
k ∧WWKL 0 SCAC.

Whenever requiring the sets A0 and A1 to be co-c.e., we recover the standard
notion of hyperimmunity. Therefore, the restriction of the preservation of depen-
dent hyperimmunity to co-c.e. sets is not a good computability-theoretic property to
distinguish consequences of Ramsey’s theorem for pairs.

Lemma 30. Fix two sets A0, A1 such that A0 is X -co-c.e. The pair A0, A1 is dependently
X -hyperimmune iff A0 and A1 are X -hyperimmune.

Corollary 31. RT2
2 admits preservation of dependent hyperimmunity for co-c.e. sets.
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A Preservation of Properties for Co-c.e. Sets

Proof. Take any x ∈ X such that the set Y = {y ∈ X : f (x , y) = 1} is infinite. Such
an x must exist, otherwise the set X is limit-homogeneous for color 0 and one can X -
compute, hence Z-compute, an infinite f -homogeneous set for color 0, contradicting
our hypothesis. Take (F ∪ {x}, Y ) as the desired extension.

B CAC and Constant-Bound Immunity

Proof (Proof of Lemma 12). Fix a non-empty classC ⊆ 2ω, and let A= {σ :C∩[σ] 6=
;}. We claim that the degrees of the c.b-enums of A and ofC coincide. Any c.b-enum
of C is a c.b-enum of A. Conversely, let F0 < F1 < . . . be a c.b-enum of C . We can
computably thin it out and normalize it into an enumeration E0 < E1 < . . . such that
|σ|= i for every σ ∈ Ei . ut

Proof (Proof of Lemma 10). We first prove that if A is not X -immune, then it is not
c.b-immune relative to X . Let W be an infinite X -computable infinite subset of A.
Let ϕ(U) be the Σ0,X formula which holds if U ∩W 6= ;. The formula ϕ(U) is essen-
tial, but there is no set R ⊆ A such that ϕ(R) holds. Therefore, A is not c.b-immune
relative to X .

We now show by induction over k if A is X -co-c.e. and has an X -computable k-
enumeration F0, F1, . . . then it has an infinite X -computable subset. If k = 1, then
it is already an infinite subset of A. Suppose now that k ≥ 2. If there are infinitely
many i ∈ ω such that min(Fi) ∈ A 6= ;, then since A is X -co-c.e., one can find
an X -computable infinite set S of such i’s. The sequence {Fi r min(Fi) : i ∈ S}
is an X -computable (k − 1)-enumeration of A, and by induction hypothesis, there
is an X -computable subset of A. If there are only finitely many such i’s, then the
sequence {min(Fi) : i ∈ω)} is, up to finite changes, an infinite X -computable subset
of X . ut

Proof. Take any x ∈ X such that the set Y = {y ∈ X : f (x , y) = i} is infinite.
Such an x must exist, otherwise the set X is limit-homogeneous for color 1− i and
one can X -compute an infinite f -homogeneous set, contradicting our hypothesis.
Let Ei = Fi ∪ {x} and E1−i = F1−i , and take (E0, E1, Y ) as the desired extension.

Proof (Proof of Theorem 16). Let µ;′ be the modulus function of ;′, that is, such
that µ;′(x) is the minimum stage s at which ;

′

s�x = ;
′�x . The sketch of the proof is

the following:
Computably split ω into countably many columns X0, X1, . . . of infinite size. For

example, set X i = {〈i, n〉 : n ∈ ω} where 〈·, ·〉 is a bijective function from ω2 to ω.
For each i, let Fi be the set of the µ;′(i) first elements of X i . The sequence F0, F1, . . .
is ;′-computable. Assume for now that we have defined a c.e. set W such that the
∆0

2 set A=
⋃

i FirW is c.b-immune, and such that |X i∩W | ≤ i. We claim that every
DNC function computes an infinite subset of A.

Let f be any DNC function. By a classical theorem about DNC functions (see
Bienvenu et al. [1] for a proof), f computes a function g(·, ·, ·) such that when-
ever |We| ≤ n, then g(e, n, i) ∈ X i rWe. For each i, let ei be the index of the c.e.
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set Wei
= W ∩ X i , and let ni = g(ei , i, i). Since |X i ∩ W | ≤ i, |Wei

| ≤ i, hence
ni = g(ei , i, i) 6∈Wei

= X i rW . We then have two cases.

– Case 1: ni ∈ Fi for infinitely many i’s. One can f -computably find infinitely
many of them since µ;′ is left-c.e. and the sequence of the n’s is f -computable.
Therefore, one can f -computably find an infinite subset of

⋃

i Fi rW = A.
– Case 2: ni ∈ Fi for only finitely many i’s. Then the sequence of the ni ’s dominates

the modulus function µ;′ , and therefore computes the halting set. Since the set A
is ∆0

2, f computes an infinite subset of A.

We now detail the construction of the c.e. set W . In what follows, interpret Φe as
a partial computable sequence of finite sets such that ifΦe(x) andΦe(x+1) both halt,
then max(Φe(x)) < min(Φe(x + 1)). We need to satisfy the following requirements
for each e, k ∈ω:

Re,k : [Φe total ∧ (∀i)(∀∞x)(Φe(x)∩ X i = ;)]→ (∃x) [|Φe(x)|> k ∨Φe(x) ⊆W ]

We furthermore want to ensure that |X i ∩W | ≤ i for each i. We can prove by induc-
tion over k that if Re,` is satisfied for each `≤ k, then the set A=

⋃

i Fi rW admits
no computable k-enumeration. The case k = 1 is trivial, since if Φe is total and has
an infinite intersection with X i for some i ∈ω, then it intersects X irFi , hence inter-
sects A. For the case k ≥ 1, if Φe is total, and intersects infinitely many times X i for
some i ∈ ω, then by a finite modification, one can compute a (k − 1)-enumeration
E0 < E1 < . . . of A by setting En = Φe(n)r X i , and apply the induction hypothesis.

We now explain how to satisfy Re,k for each e, k ∈ ω. For each pair of in-
dices e, k ∈ ω, let ie,k =

∑

〈e′,k′〉≤〈e,k〉 k
′. A strategy for Re,k requires attention at

stage s > 〈e, k〉 if Φe,s(x) ↓, |Φe,s(x)| ≤ k, and Φe,s(x) ⊆
⋃

j≥ie,k
X j . Then, the strategy

enumerates all the elements of Φe,s in W , and is declared satisfied, and will never
require attention again. First, notice that if Φe is total, outputs k-sets, and meets
finitely many times each X i , then it will require attention at some stage s and will be
declared satisfied. Therefore each requirementRe,k is satisfied. Second, suppose for
the sake of contradiction that |X i∩Wi |> i for some i. Let s be the a stage at which it
happens, and let 〈e, k〉< s be the maximal pair such thatRe,k has enumerated some
element of X i in W . In particular, ie,k ≤ i. Since the strategy forRe′,k′ enumerates at
most k′ elements in W ,

∑

〈e′,k′〉≤〈e,k〉

k′ ≥ |X i ∩Wi |> i ≥ ie,k =
∑

〈e′,k′〉≤〈e,k〉

k′

Contradiction. ut

C ADS and Dependent Hyperimmunity

Proof (Proof of Lemma 30). We first show that if A0 and A1 are dependently X -
hyperimmune then both A0 and A1 are X -hyperimmune. Let F0, F1, . . . be a X -c.e.
array. Let ϕ(U , V ) be the Σ0,X

1 formula which holds if U = Fi for some i ∈ ω. The
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formula ϕ(U , V ) is essential, therefore there ϕ(R, S) holds for some finite set R ⊆ A0
and S ⊆ A1. In particular, R = Fi for some i ∈ ω, therefore Fi ⊆ A0 and A0 is
hyperimmune. Similarly, theΣ0,X

1 formulaψ(U , V )which holds if V = Fi for some i ∈
ω witnesses that A1 is hyperimmune.

We now prove that if A0 and A1 are X -co-c.e. and X -hyperimmune, then the pair
A0, A1 is dependently X -hyperimmune. Let ϕ(U , V ) be an essential Σ0,X

1 formula.
Define an X -c.e. sequence of sets F0 < F1 < . . . such that for every i ∈ ω, there is
some R < Fi such that ϕ(R, Fi) holds and R ⊆ A0. First, notice that the sequence is
X -c.e. since A0 is X -co-c.e. Second, we claim that the sequence is infinite. To see this,
define an X -c.e. array E0 < F1 < . . . such that for every i ∈ ω, there is some finite
set S > Ei such that ψ(Ei , S) holds. The array is infinite since ψ(U , V ) is essential.
Since A0 is X -hyperimmune, there are infinitely many i’s such that Ei ⊆ A0. Last, by
X -hyperimmunity of A1, there is some i ∈ ω such that Fi ⊆ A1. By definition of Fi ,
there is some R ⊆ A0 such that ϕ(R, Fi) holds. ut

Proof (Proof of Theorem 22). Fix an enumeration ϕ0(U , V ),ϕ1(U , V ), . . . of all Σ0
1

formulas. The construction of the function f is done by a finite injury priority argu-
ment with a movable marker procedure. We want to satisfy the following scheme of
requirements for each e, where Ai = {x : lims f (x , s) = i}:

Re : ϕe(U , V ) essential→ (∃R ⊆ f in A0)(∃S ⊆ f in A1)ϕe(R, S)

The requirements are given the usual priority ordering. We proceed by stages,
maintaining two sets A0, A1 which represent the limit of the function f . At stage 0,
A0,0 = A1,0 = ; and f is nowhere defined. Moreover, each requirement Re is given
a movable marker me initialized to 0.

A strategy for Re requires attention at stage s + 1 if ϕe(R, S) holds for some R <
S ⊆ (me, s]. The strategy sets A0,s+1 = (A0,sr (me, min(S))∪ [min(S), s] and A1,s+1 =
(A1,sr[min(S), s])∪(me, min(S)). Note that (me, min(S))∩[min(S), s] = ; since R<
S. Then it is declared satisfied and does not act until some strategy of higher priority
changes its marker. Each marker me′ of strategies of lower priorities is assigned the
value s+ 1.

At stage s+ 1, assume that A0,s ∪ A1,s = [0, s) and that f is defined for each pair
over [0, s). For each x ∈ [0, s), set f (x , s) = i for the unique i such that x ∈ Ai,s. If
some strategy requires attention at stage s+1, take the least one and satisfy it. If no
such requirement is found, set A0,s+1 = A0,s ∪ {s} and A1,s+1 = A1,s. Then go to the
next stage. This ends the construction.

Each time a strategy acts, it changes the markers of strategies of lower priority,
and is declared satisfied. Once a strategy is satisfied, only a strategy of higher priority
can injure it. Therefore, each strategy acts finitely often and the markers stabilize.
It follows that the A’s also stabilize and that f is a stable function.

Claim. For every x < y < z, f (x , y) = 1∧ f (y, z) = 1→ f (x , z) = 1

Proof. Suppose that f (x , y) = 1 and f (y, z) = 1 but f (x , z) = 0. By construction
of f , x ∈ A0,z , x ∈ A1,y and y ∈ A1,z . Let s ≤ z be the last stage such that x ∈ A1,s.
Then at stage s + 1, some strategy Re receives attention and moves x to A0,s+1 and
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therefore moves [x , s] to A0,s+1. In particular y ∈ A0,s+1 since y ∈ [x , s]. Moreover,
the strategies of lower priority have had their marker moved to s+ 1 and therefore
will never move any element below s. Since f (y, z) = 1, then y ∈ A1,z . In particular,
some strategyRi of higher priority moved y to A1,t+1 at stage t+1 for some t ∈ (s, z).
Since Ri has a higher priority, mi ≤ me, and since y is moved to A1,t+1, then so
is [mi , y], and in particular x ∈ A1,t+1 since mi ≤ me ≤ x ≤ y . This contradicts the
maximality of s.

Claim. For every e ∈ω, Re is satisfied.

Proof. By induction over the priority order. Let s0 be a stage after which no strategy
of higher priority will ever act. By construction, me will not change after stage s0.
If ϕe(U , V ) is essential, then ϕe(R, S) holds for two sets me < R < S. Let s = 1 +
max(s0, S). The strategyRe will require attention at some stage before s, will receive
attention, be satisfied and never be injured.

This last claim finishes the proof. ut

Proof. If for every x ∈ X and almost every y ∈ X , f (x , y) 6= i, then we can X ⊕ Z-
compute an infinite f -thin subset Y ⊆ X , contradicting our assumption. Let x ∈ X
be such that the X ⊕ Z-computable set Y = {y ∈ X : f (x , y) = i} is infinite. The
condition d = (F0, . . . , Fi−1, Fi ∪ {x}, Fi+1, . . . , Fk−1, Y ) is the desired extension.

Proof (Proof of Theorem 27). It suffices to prove that for everyΣ0,Z
1 formulaϕ(G, U , V )

and every i ∈ω, the following class is Lebesgue null.

S = {X : [ϕ(X , U , V ) is essential ]∧ (∀R, S ⊆fin ω)ϕ(X , R, S)→ R 6⊆ A0 ∨ S 6⊆ A1}

Suppose it is not the case. There exists σ ∈ 2<ω such that

µ{X ∈ S : σ ≺ X }> 0.8 · 2−|σ|

Define

ψ(U , V ) = [µ{X � σ : (∃Ũ ⊆ U)(∃Ṽ ⊆ V )ϕ(X , Ũ , Ṽ )}> 0.6 · 2−|σ|]

By compactness, the formula ψ(U , V ) is Σ0,Z
1 .

Lemma 32. ψ(U , V ) is essential.

Proof. Suppose it is not. Then, there exists some x ∈ ω, such that for every n ∈ ω,
there is some yn ∈ ω such that ψ([x , n], [yn,+∞)) does not hold. Let P (X , n, yn)
be the formula

(∀Ũ ⊆ [x , n])(∀Ṽ ⊆ [yn,+∞))¬ϕ(X , Ũ , Ṽ )

Unfolding the definition of ¬ψ([x , n], [yn,+∞)),

µ{X � σ :P (X , n, yn)}> 0.4 · 2−|σ|
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Then, by Fatou’s lemma,

µ{X � σ : (∃∞n)P (X , n, yn)}> 0.2 · 2−|σ|

Since whenever P (X , n, yn) holds, so does P (X , n− 1, yn),

µ{X � σ : (∀n)(∃y)P (X , n, y)}> 0.2 · 2−|σ|

Therefore
µ{X � σ : ϕ(X , U , V ) is essential } ≤ 0.8 · 2−|σ|

Contradicting our assumption. This finishes the lemma.

By Lemma 32 and by dependent Z-hyperimmunity of A0, A1, there exists some
finite sets R ⊆ A0 and S ⊆ A1 such thatψ(R, S) holds. For every R, S such thatψ(R, S)
holds, there exists some X ∈ S and some R̃ ⊆ R and S̃ ⊆ S such that ϕ(X , R̃, S̃)
holds. By definition of X ∈ S , R̃ 6⊆ A0 or S̃ 6⊆ A1 and therefore either R 6⊆ A0 or
S 6⊆ A1. Contradiction. ut
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