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Abstract

In this note we present an adaptation of the forcing separating the Erdős Moser theorem
(EM) from the stable Rasey theorem for pairs (SRT2

2). We construct an ω-model of EM
not model of a stable version of the thin set theorem for pairs (STS(2)).
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We assume the reader is familiar with reverse mathematics (see [2] for a good survey)
and the forcing separating EM from STS(2) by Lerman & al. [3]. This note does not
even try to be self-contained and emphasis on the adaptations of the forcing from [3]
needed for separating Erdős Moser theorem from a stable version of the thin set theorem
for pairs over ω-models.

1. EM does not imply STS(2)

Definition 1 (The Erdős-Moser theorem) A tournament T = (D,T ) consists of a set
D and an irreflexive binary relation on D such that for all x, y ∈ D with x 6= y,
exactly one of T (x, y) and T (y, x) holds. A tournament T is transitive if the relation
T is transitive in the usual sense. A sub-tournament of T is a tournament of the form
(E,E2 ∩ T ) for an E ⊆ D. EM is the statement “for every infinite tournament there is
an infinite transitive sub-tournament”.

Definition 2 (The thin set theorem) Let c : [N]n → N be a coloring function. A set
H is thin for c with witness a if a 6∈ c(Hn). H is thin for c if there is a witness a
such that H is thin for c with witness a. TS(k) is statement: “Every coloring function
c : [N]k → N has an infinite set thin for c.”. STS(k) is the restriction of TS(2) on stable
colorings.

It has been proven in [1, Corollary 5.4] that for every k, RCA0 ` RTk
2 → TS(k). We

noticed that when considering stable functions, the proof still holds. Hence RCA0 `
SRT2

2 → STS(2).

Definition 3 Fix sets A and B. A partition map F ∗ : A→ B is a function from A to



P(B) such that

(∀x ∈ B)(∀y, z ∈ A)(x ∈ F (y) ∩ F (z)⇒ y = z).

There is a natural partial order between such maps:

F ∗ ≤ G∗ iff (∀a ∈ ω)(G∗(a) ⊆ F ∗(a)).

We can also define an update operation defined as follows:

(F ∗ + (a 7→ Sa))(x) =

{
F ∗(x) ∪ Sa if x = a
F ∗(x) otherwise

Example 1 Let c : [N]2 → N be a coloring function. There is a natural partition map
F ∗c verifying

F ∗c (a) = {x : (∀∞y)(c(x, y) = a)} .

Remark that for any infinite set H thin for c with witness a, H ∩F ∗c (a) = ∅. Hence F ∗c
can be seen as the map of forbidden values if we want to create a set thin with a given
witness.

1.1. Iteration forcing

Previous definitions and forcing conditions are similar to [3].

Definition 4 (4.8) A requirement is a set KX,F ∗c (x) of finite transitive subtournaments
of TX

e which is closed under extensions and is defined by

KX,F ∗c (x) =
{
F ∈ FX

e : ∃a ∈ F ∗c (x)(RX
K (F, a))

}
for an X-computable relation RX

K (x, y).

Example 2 (4.9) For each m and x, we define the requirement

WX,F ∗c (x)
m =

{
F ∈ FX

e : ∃a ∈ F ∗c (x)(Φ(X⊕F
m (a) = 1)

}
Suppose a condition (F, I, S) used to construct our generic G satisfies F ∈ WX,F ∗c (x)

m .
Because F is an initial segment of G, we have successfully diagonalized against ΦX⊕G

m

computing an infinite set thin for c with witness x.

We can replace the set F ∗c (x) by a set B. Usually B will be finite. We abuse notation
and write KX,B in this situation.

Definition 5 (4.10) We say KX is essential below (F, I, S) if for every x there is a
finite set B > x and a level n such that whenever E ∈ S(n) and E = E0 ∪ E1 is a
partition, there is an i ∈ {0, 1} and a transitive F ′ ⊆ Ei such that F ∪ F ′ ∈ KX,B.
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Definition 6 (4.11) We say KX,F ∗c (x) is uniformly dense if whenever KX is essential
below (F, I, S), there is some level n such that whenever E ∈ S(n) and E = E0 ∪E1 is
a partition, there is an i ∈ {0, 1} and a transitive F ′ ⊆ Ei such that F ∪F ′ ∈ KX,F ∗c (x).

Definition 7 (4.12) We say (F, I, S) settles KX,F ∗c (x) if either F ∈ KX,F ∗c (x) or there
is an x such that whenever E ∈ S(n) is on an infinite path through S and F ′ ⊆ E is
transitive, F ∪ F ′ 6∈ KX,(x,∞).

We give one example to illustrate settling and prove one essential property of this
notion.

Example 3 (4.13) Suppose (F, I, S) settlesWX,F ∗c (x)
m . We claim that if (F, I, S) appears

in a sequence defining a generic G, then ΦX⊕G
m is not a solution for c. If (F, I, S) ∈

WX,F ∗c (x)
m , then this claim was verified in Example 2. So, assume that (F, I, S) settles

WX,F ∗c (x)
m via the second condition in this definition and fix the witness x. We claim

that for all (F̃ , Ĩ, S̃) ≤ (F, I, S) and all b > x, ΦX⊕F̃
m (b) 6= 1. It follows immediatly from

this claim that ΦX⊕G
m is finite and hence is not a solution to c.

To prove this claim, fix (F̃ , Ĩ, S̃) ≤ (F, I, S). Suppose of a contradiction that there

is a b > x such that ΦX⊕F̃
m (b) = 1. Then ∃b > x(ΦX⊕F

m (b) = 1) and hence F̃ ∈ WX,(x,∞)
m .

Let F ′ = F̃ r F , so F ∪ F ′ ∈ WX,(x,∞)
m . Because (F̃ , Ĩ, S̃) ≤ (F, I, S), we have

(F̃ r F ) + S ′ = f ′ + S ′ ≤ S and hence there is a level n and an E ⊆ S(n) such that
F ′ ⊆ E. Therefore, F ′ shows that our fixed x does not witness the second condition
for (F, I, S) to settle WX,F ∗c (x)

m giving the desired contradiction.

Lemma 1 (4.14) If (F, I, S) settles KX,F ∗c (x) and (F̃ , Ĩ, S̃) ≤ (F, I, S), then (F̃ , Ĩ, S̃)
settles KX,F ∗c .

The heart of this construction is the following theorem.

Theorem 1 (4.15) Let KX,F ∗c (x) be a uniformly dense requirement and let (F, I, S) be
a condition. There is an extension (F ′, I ′, S ′) ≤ (F, I, S) settling KX,F ∗c (x).

We will show how Theorem 1 is used to construct our generic G and verify that
X ⊕ G does not compute a solution to c and that for any index e′ such that ΦX⊕G

e′

defines a tournament, the associated requirements KX⊕G,F ∗c are uniformly dense.
To define G, let KX,F ∗c (x)

n , for n ∈ ω be a list of all the requirements. We define a
sequence of conditions

(F0, I0, S0) ≥ (F1, I1, S1) ≥ . . .

by induction. Let F0 = ∅, I0 = (−∞,∞) and S0(n) = {[0, n]}. Assume (Fk, Ik, Sk) has

ben defined. Let n be the least index such that KX,F ∗c (x)
n is not settled by (Fk, Ik, Sk).

Applying Theorem 1, we choose (Fk+1, Ik+1, Sk+1) so that it settles KX,F ∗c (x)
n . We define

our generic by G =
⋃

Fn.
The next lemma shows that we eventually settle each condition that is not trivially

satisfied.
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Lemma 2 (4.16) Let KX,F ∗c (x)
n be a requirement and let (Fj, Ij, Sj) be the sequence of

conditions defining G. There is an index k such that (Fk, Ik, Sk) settles KX,F ∗c (x)
n .

We can now verify the properties of G starting with the fact that X ⊕ G does not
compute a solution to c.

Lemma 3 (4.17) X ⊕G does not compute a solution to c.

Proof. Fix an index m and we show that ΦX⊕G
m is not a solution to c using the require-

ment WX,F ∗c (x)
m . If ΦX⊕G

m (u) is never equal to 1 for any u, then ΦX⊕G
m does not compute

an infinite set and we are done. Therefore assume that ΦX⊕G
m (u) = 1 for some u. In this

case WX,F ∗c (x)
m is settled by some conditions (Fk, Ik, Sk) in the sequence defining G. In

Example 3 we verified that if WX,F ∗c (x)
m is settled by a condition in a sequence defining

a generic G, then ΦX⊕G
m does not compute a solution c.

Next, we describe the requirements forcing uniform density at the next level. To
specify a potential requirement at the next level, we need to fix three indices: an index
e′ for a potential infinite transitive tournament TX⊕G

e′ and an index for RX⊕G
K (defining

KX⊕G,F ∗c ). We regard the index for RX⊕G
K as K and will represent this choice of index

by indicating e′ and K. For each choice of these indices and each q = (Fq, Iq, Sq),
representing a potential condition in QX⊕G

e′ , we will have a requirement T X
e′,K,q.

Forcing definitions are the same as in [3]. The requirement T X,F ∗c (x)
e′,K,q consists of all

finite transitive subtournaments F of TX
e such that either

(C1) F  q 6∈ QX⊕G
e′ ; or

(C2) there is an n ≤ |F | such that F  (q is a condition up to level n) and for all
E ∈ SX⊕F

q (n) and all partitions E = E0 ∪ E1, there is an i ∈ {0, 1} and a

transitive F ′ ⊆ Ei such that ∃a ∈ F ∗c (x)(RX⊕F
K )(Fq ∪ F ′, a)).

Lemma 4 (4.18) Let G =
⋃

Fk be a generic defined by a equence of conditions
(Fk, Ik, Sk) and let e′ be an index such that TX⊕G

e′ is an infinite tournament. Each
requirement KX⊕G,F ∗c (x) is uniformly dense in QX⊕G

e′ .

1.2. Ground forcing

We now carry out the ground level forcing to produce the coloring c. Our forcing
conditions are pairs (c, F ∗) where c is a coloring of two-element subsets of a finite
domain [0, |c|], and F ∗ is a partition map of support bounded by ‖c‖. We say that
(c, F ∗) ≤ (c0, F

∗
0 ) if c0 ⊆ c, F ∗ ≤ F ∗0 and whenever b ∈ F ∗0 (a) and x > |c0|, c(b, x) = a.

Clearly the set of (c, F ∗) such that i ∈
⋃
Im(F ∗) is dense, so we may ensure that

the coloring given by a generic is stable. We need to ensure that our generic coloring
does not compute a solution to itself.

Definition 8 We say (c, F ∗)  (ΦG
e is finite) if ∃k∀(c0, F ∗0 ) ≤ (c, F ∗)∀x(Φc0

e (x) = 1 →
x ≤ k). We say (c, F ∗)  (ΦG

e is not thin with witness x) if ∃a ∈ F ∗(x)(Φc
e(a) = 1).
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Lemma 5 (4.25) For each index e and color x, the set of conditions which either force
ΦG

e is finite or force ΦG
e is not thin with witness x is dense.

Proof. Fix an index e and a condition (c, F ∗). If some extension of (c, F ∗) forces ΦG
e

is finite, then we are done. Otherwise there is an y > ‖c‖ and a condition (c0, F
∗)

extending (c, F ∗) such that Φc0
e (y) = 1. (Without loss of generality only the coloring

changes.) The condition (c0, F
∗ + (x 7→ {y})) extends (c, F ∗) and forces is ΦG

e not to
be thin with witness x.

Finally, we need to force the requirements KG,F ∗(G) for any generic G to be uniformly
dense in QG

e . Fix an index e and a potential iterated forcing condition p = (Fp, Ip, Sp)
where Fp is a finite set, Ip is a pair of elements in Fp and Sp is the index for a potential
family of subtournaments of TG

e . Forcing notions remain the same as in original forcing.

Lemma 6 (4.26) Let KG,F ∗G(x) be a potential requirement given by the indices i and i′.
Then for any potential iterated forcing condition p, there is a dense set of conditions
(c, F ∗) such that:

• (c, F ∗)  p 6∈ QG
e ; or

• (c, F ∗)  KG is not essential below p; or

• there is a level n such that Sc
p(n) converges and whenever E ∈ Sc

p(n) and E =
E0 ∪ E1 is a partition, there is a j ∈ {0, 1} and a transitive F ′ ⊆ Ej such that

∃a ∈ F ∗(x)(Φc
i(Fp ∪ F ′, a) = 1).

Proof. Fix a condition (c, F ∗) and a potential iterated forcing condition p = (Fp, Ip, Sp).
If there is any (c0, F

∗
0 ) ≤ (c, F ∗) forcing that p 6∈ Qc

e there we are done, so assume not.
Suppose there is an extension (c0, F

∗) ≤ (c, F ∗), a finite set B > max(‖c‖ , ac0K (Fp))
and an n such that Sc0

p (n) converges and whenever E ∈ Sc0
p (n) and E = E0 ∪ E1 is a

partition, there is a j ∈ {0, 1} and a transitive F ′ ⊆ Ej such that

∃b ∈ B(Φc0
i (Fp ∪ F ′, b) = 1)

ie. Fp ∪ F ′ ∈ Kc0,B. (c0, F
∗ + (ac

′
K 7→ B)) is the desired condition.

Suppose there is no such (c0, F
∗). Then we claim that (c, F ∗) already forces that

KG is not essential below p. Let c̃ be any completion of c to a stable coloring on ω, and
suppose Kc were essential below p. Then there would be some B > max(‖c‖ , acK(Fp))
and an n such that Sc

p(n) converges and whenever E ∈ Sc
p(n), every partition is as

described above. In particular, there would be some finite initial segment of c̃ witnessing
the necessary computations, contradicting our assumption.
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