A note on "Separating principles below Ramsey's Theorem for Pairs"

Ludovic Patey

Abstract

In this note we present an adaptation of the forcing separating the Erdős Moser theorem (EM) from the stable Rasey theorem for pairs (SRT_2^2). We construct an ω -model of EM not model of a stable version of the thin set theorem for pairs (STS(2)).

 $Keywords:\;$ Reverse mathematics, Forcing, Ramsey theory, Erdös Moser theorem, Thin set

We assume the reader is familiar with reverse mathematics (see [2] for a good survey) and the forcing separating EM from STS(2) by Lerman & al. [3]. This note does not even try to be self-contained and emphasis on the adaptations of the forcing from [3] needed for separating Erdős Moser theorem from a stable version of the thin set theorem for pairs over ω -models.

1. EM does not imply STS(2)

Definition 1 (The Erdős-Moser theorem) A tournament T = (D, T) consists of a set D and an irreflexive binary relation on D such that for all $x, y \in D$ with $x \neq y$, exactly one of T(x, y) and T(y, x) holds. A tournament T is transitive if the relation T is transitive in the usual sense. A sub-tournament of T is a tournament of the form $(E, E^2 \cap T)$ for an $E \subseteq D$. EM is the statement "for every infinite tournament there is an infinite transitive sub-tournament".

Definition 2 (The thin set theorem) Let $c : [\mathbb{N}]^n \to \mathbb{N}$ be a coloring function. A set H is thin for c with witness a if $a \notin c(H^n)$. H is thin for c if there is a witness a such that H is thin for c with witness a. $\mathsf{TS}(k)$ is statement: "Every coloring function $c : [\mathbb{N}]^k \to \mathbb{N}$ has an infinite set thin for c.". $\mathsf{STS}(k)$ is the restriction of $\mathsf{TS}(2)$ on stable colorings.

It has been proven in [1, Corollary 5.4] that for every k, $\mathsf{RCA}_0 \vdash \mathsf{RT}_2^k \to \mathsf{TS}(k)$. We noticed that when considering stable functions, the proof still holds. Hence $\mathsf{RCA}_0 \vdash \mathsf{SRT}_2^2 \to \mathsf{STS}(2)$.

Definition 3 Fix sets A and B. A partition map $F^*: A \to B$ is a function from A to

 $\mathcal{P}(B)$ such that

$$(\forall x \in B)(\forall y, z \in A)(x \in F(y) \cap F(z) \Rightarrow y = z).$$

There is a natural partial order between such maps:

$$F^* \leq G^*$$
 iff $(\forall a \in \omega)(G^*(a) \subseteq F^*(a)).$

We can also define an update operation defined as follows:

$$(F^* + (a \mapsto S_a))(x) = \begin{cases} F^*(x) \cup S_a & \text{if } x = a \\ F^*(x) & \text{otherwise} \end{cases}$$

Example 1 Let $c: [\mathbb{N}]^2 \to \mathbb{N}$ be a coloring function. There is a natural partition map F_c^* verifying

$$F_{c}^{*}(a) = \{x : (\forall^{\infty} y)(c(x, y) = a)\}$$

Remark that for any infinite set H thin for c with witness $a, H \cap F_c^*(a) = \emptyset$. Hence F_c^* can be seen as the map of forbidden values if we want to create a set thin with a given witness.

1.1. Iteration forcing

Previous definitions and forcing conditions are similar to [3].

Definition 4 (4.8) A *requirement* is a set $\mathcal{K}^{X,F_c^*(x)}$ of finite transitive subtournaments of T_e^X which is closed under extensions and is defined by

$$\mathcal{K}^{X,F_c^*(x)} = \left\{ F \in \mathbb{F}_e^X : \exists a \in F_c^*(x)(R_{\mathcal{K}}^X(F,a)) \right\}$$

for an X-computable relation $R_{\mathcal{K}}^X(x, y)$.

Example 2 (4.9) For each m and x, we define the requirement

$$\mathcal{W}_m^{X,F_c^*(x)} = \left\{ F \in \mathbb{F}_e^X : \exists a \in F_c^*(x)(\Phi_m^{(X \oplus F}(a) = 1)) \right\}$$

Suppose a condition (F, I, S) used to construct our generic G satisfies $F \in \mathcal{W}_m^{X, F_c^*(x)}$. Because F is an initial segment of G, we have successfully diagonalized against $\Phi_m^{X \oplus G}$ computing an infinite set thin for c with witness x.

We can replace the set $F_c^*(x)$ by a set *B*. Usually *B* will be finite. We abuse notation and write $\mathcal{K}^{X,B}$ in this situation.

Definition 5 (4.10) We say \mathcal{K}^X is *essential* below (F, I, S) if for every x there is a finite set B > x and a level n such that whenever $E \in S(n)$ and $E = E_0 \cup E_1$ is a partition, there is an $i \in \{0, 1\}$ and a transitive $F' \subseteq E_i$ such that $F \cup F' \in \mathcal{K}^{X,B}$.

Definition 6 (4.11) We say $\mathcal{K}^{X,F_c^*(x)}$ is uniformly dense if whenever \mathcal{K}^X is essential below (F, I, S), there is some level n such that whenever $E \in S(n)$ and $E = E_0 \cup E_1$ is a partition, there is an $i \in \{0, 1\}$ and a transitive $F' \subseteq E_i$ such that $F \cup F' \in \mathcal{K}^{X,F_c^*(x)}$.

Definition 7 (4.12) We say (F, I, S) settles $\mathcal{K}^{X, F_c^*(x)}$ if either $F \in \mathcal{K}^{X, F_c^*(x)}$ or there is an x such that whenever $E \in S(n)$ is on an infinite path through S and $F' \subseteq E$ is transitive, $F \cup F' \notin \mathcal{K}^{X, (x, \infty)}$.

We give one example to illustrate settling and prove one essential property of this notion.

Example 3 (4.13) Suppose (F, I, S) settles $\mathcal{W}_m^{X, F_c^*(x)}$. We claim that if (F, I, S) appears in a sequence defining a generic G, then $\Phi_m^{X \oplus G}$ is not a solution for c. If $(F, I, S) \in \mathcal{W}_m^{X, F_c^*(x)}$, then this claim was verified in Example 2. So, assume that (F, I, S) settles $\mathcal{W}_m^{X, F_c^*(x)}$ via the second condition in this definition and fix the witness x. We claim that for all $(\tilde{F}, \tilde{I}, \tilde{S}) \leq (F, I, S)$ and all b > x, $\Phi_m^{X \oplus \tilde{F}}(b) \neq 1$. It follows immediatly from this claim that $\Phi_m^{X \oplus G}$ is finite and hence is not a solution to c.

To prove this claim, fix $(\tilde{F}, \tilde{I}, \tilde{S}) \leq (F, I, S)$. Suppose of a contradiction that there is a b > x such that $\Phi_m^{X \oplus \tilde{F}}(b) = 1$. Then $\exists b > x(\Phi_m^{X \oplus F}(b) = 1)$ and hence $\tilde{F} \in \mathcal{W}_m^{X,(x,\infty)}$.

Let $F' = \tilde{F} \smallsetminus F$, so $F \cup F' \in \mathcal{W}_m^{X,(x,\infty)}$. Because $(\tilde{F}, \tilde{I}, \tilde{S}) \leq (F, I, S)$, we have $(\tilde{F} \smallsetminus F) + S' = f' + S' \leq S$ and hence there is a level n and an $E \subseteq S(n)$ such that $F' \subseteq E$. Therefore, F' shows that our fixed x does not witness the second condition for (F, I, S) to settle $\mathcal{W}_m^{X,F_c^*(x)}$ giving the desired contradiction.

Lemma 1 (4.14) If (F, I, S) settles $\mathcal{K}^{X, F_c^*(x)}$ and $(\tilde{F}, \tilde{I}, \tilde{S}) \leq (F, I, S)$, then $(\tilde{F}, \tilde{I}, \tilde{S})$ settles \mathcal{K}^{X, F_c^*} .

The heart of this construction is the following theorem.

Theorem 1 (4.15) Let $\mathcal{K}^{X,F_c^*(x)}$ be a uniformly dense requirement and let (F, I, S) be a condition. There is an extension $(F', I', S') \leq (F, I, S)$ settling $\mathcal{K}^{X,F_c^*(x)}$.

We will show how Theorem 1 is used to construct our generic G and verify that $X \oplus G$ does not compute a solution to c and that for any index e' such that $\Phi_{e'}^{X \oplus G}$ defines a tournament, the associated requirements $\mathcal{K}^{X \oplus G, F_c^*}$ are uniformly dense.

To define G, let $\mathcal{K}_n^{X,F_c^*(x)}$, for $n \in \omega$ be a list of all the requirements. We define a sequence of conditions

$$(F_0, I_0, S_0) \ge (F_1, I_1, S_1) \ge \dots$$

by induction. Let $F_0 = \emptyset$, $I_0 = (-\infty, \infty)$ and $S_0(n) = \{[0, n]\}$. Assume (F_k, I_k, S_k) has ben defined. Let *n* be the least index such that $\mathcal{K}_n^{X, F_c^*(x)}$ is not settled by (F_k, I_k, S_k) . Applying Theorem 1, we choose $(F_{k+1}, I_{k+1}, S_{k+1})$ so that it settles $\mathcal{K}_n^{X, F_c^*(x)}$. We define our generic by $G = \bigcup F_n$.

The next lemma shows that we eventually settle each condition that is not trivially satisfied.

Lemma 2 (4.16) Let $\mathcal{K}_n^{X,F_c^*(x)}$ be a requirement and let (F_j, I_j, S_j) be the sequence of conditions defining G. There is an index k such that (F_k, I_k, S_k) settles $\mathcal{K}_n^{X,F_c^*(x)}$.

We can now verify the properties of G starting with the fact that $X \oplus G$ does not compute a solution to c.

Lemma 3 (4.17) $X \oplus G$ does not compute a solution to c.

Proof. Fix an index m and we show that $\Phi_m^{X\oplus G}$ is not a solution to c using the requirement $\mathcal{W}_m^{X,F_c^*(x)}$. If $\Phi_m^{X\oplus G}(u)$ is never equal to 1 for any u, then $\Phi_m^{X\oplus G}$ does not compute an infinite set and we are done. Therefore assume that $\Phi_m^{X\oplus G}(u) = 1$ for some u. In this case $\mathcal{W}_m^{X,F_c^*(x)}$ is settled by some conditions (F_k, I_k, S_k) in the sequence defining G. In Example 3 we verified that if $\mathcal{W}_m^{X,F_c^*(x)}$ is settled by a condition in a sequence defining a generic G, then $\Phi_m^{X\oplus G}$ does not compute a solution c.

Next, we describe the requirements forcing uniform density at the next level. To specify a potential requirement at the next level, we need to fix three indices: an index e' for a potential infinite transitive tournament $T_{e'}^{X\oplus G}$ and an index for $\mathcal{R}_{\mathcal{K}}^{X\oplus G}$ (defining $\mathcal{K}^{X\oplus G,F_c^*}$). We regard the index for $\mathcal{R}_{\mathcal{K}}^{X\oplus G}$ as \mathcal{K} and will represent this choice of index by indicating e' and \mathcal{K} . For each choice of these indices and each $q = (F_q, I_q, S_q)$, representing a potential condition in $\mathbb{Q}_{e'}^{X\oplus G}$, we will have a requirement $\mathcal{T}_{e',\mathcal{K},q}^{X}$.

Forcing definitions are the same as in [3]. The requirement $\mathcal{T}_{e',\mathcal{K},q}^{X,F_c^*(x)}$ consists of all finite transitive subtournaments F of T_e^X such that either

- (C1) $F \Vdash q \notin \mathbb{Q}_{e'}^{X \oplus G}$; or
- (C2) there is an $n \leq |F|$ such that $F \Vdash (q \text{ is a condition up to level } n)$ and for all $E \in S_q^{X \oplus F}(n)$ and all partitions $E = E_0 \cup E_1$, there is an $i \in \{0, 1\}$ and a transitive $F' \subseteq E_i$ such that $\exists a \in F_c^*(x)(\mathcal{R}_{\mathcal{K}}^{X \oplus F})(F_q \cup F', a)).$

Lemma 4 (4.18) Let $G = \bigcup F_k$ be a generic defined by a equence of conditions (F_k, I_k, S_k) and let e' be an index such that $T_{e'}^{X \oplus G}$ is an infinite tournament. Each requirement $\mathcal{K}^{X \oplus G, F_c^*(x)}$ is uniformly dense in $\mathbb{Q}_{e'}^{X \oplus G}$.

1.2. Ground forcing

We now carry out the ground level forcing to produce the coloring c. Our forcing conditions are pairs (c, F^*) where c is a coloring of two-element subsets of a finite domain [0, |c|], and F^* is a partition map of support bounded by ||c||. We say that $(c, F^*) \leq (c_0, F_0^*)$ if $c_0 \subseteq c$, $F^* \leq F_0^*$ and whenever $b \in F_0^*(a)$ and $x > |c_0|$, c(b, x) = a.

Clearly the set of (c, F^*) such that $i \in \bigcup Im(F^*)$ is dense, so we may ensure that the coloring given by a generic is stable. We need to ensure that our generic coloring does not compute a solution to itself.

Definition 8 We say $(c, F^*) \Vdash (\Phi_e^G \text{ is finite})$ if $\exists k \forall (c_0, F_0^*) \leq (c, F^*) \forall x (\Phi_e^{c_0}(x) = 1 \rightarrow x \leq k)$. We say $(c, F^*) \Vdash (\Phi_e^G \text{ is not thin with witness } x)$ if $\exists a \in F^*(x) (\Phi_e^{c_0}(a) = 1)$.

Lemma 5 (4.25) For each index e and color x, the set of conditions which either force Φ_e^G is finite or force Φ_e^G is not thin with witness x is dense.

Proof. Fix an index e and a condition (c, F^*) . If some extension of (c, F^*) forces Φ_e^G is finite, then we are done. Otherwise there is an y > ||c|| and a condition (c_0, F^*) extending (c, F^*) such that $\Phi_e^{c_0}(y) = 1$. (Without loss of generality only the coloring changes.) The condition $(c_0, F^* + (x \mapsto \{y\}))$ extends (c, F^*) and forces is Φ_e^G not to be thin with witness x.

Finally, we need to force the requirements $\mathcal{K}^{G,F^*(G)}$ for any generic G to be uniformly dense in \mathbb{Q}_e^G . Fix an index e and a potential iterated forcing condition $p = (F_p, I_p, S_p)$ where F_p is a finite set, I_p is a pair of elements in F_p and S_p is the index for a potential family of subtournaments of T_e^G . Forcing notions remain the same as in original forcing.

Lemma 6 (4.26) Let $\mathcal{K}^{G,F_G^*(x)}$ be a potential requirement given by the indices *i* and *i'*. Then for any potential iterated forcing condition *p*, there is a dense set of conditions (c, F^*) such that:

- $(c, F^*) \Vdash p \notin \mathbb{Q}_e^G$; or
- $(c, F^*) \Vdash \mathcal{K}^G$ is not essential below p; or
- there is a level n such that $S_p^c(n)$ converges and whenever $E \in S_p^c(n)$ and $E = E_0 \cup E_1$ is a partition, there is a $j \in \{0, 1\}$ and a transitive $F' \subseteq E_j$ such that

$$\exists a \in F^*(x)(\Phi_i^c(F_p \cup F', a) = 1).$$

Proof. Fix a condition (c, F^*) and a potential iterated forcing condition $p = (F_p, I_p, S_p)$. If there is any $(c_0, F_0^*) \leq (c, F^*)$ forcing that $p \notin \mathbb{Q}_e^c$ there we are done, so assume not.

Suppose there is an extension $(c_0, F^*) \leq (c, F^*)$, a finite set $B > max(||c||, a_{\mathcal{K}}^{c_0}(F_p))$ and an *n* such that $S_p^{c_0}(n)$ converges and whenever $E \in S_p^{c_0}(n)$ and $E = E_0 \cup E_1$ is a partition, there is a $j \in \{0, 1\}$ and a transitive $F' \subseteq E_j$ such that

$$\exists b \in B(\Phi_i^{c_0}(F_p \cup F', b) = 1)$$

ie. $F_p \cup F' \in \mathcal{K}^{c_0,B}$. $(c_0, F^* + (a_{\mathcal{K}}^{c'} \mapsto B))$ is the desired condition.

Suppose there is no such (c_0, F^*) . Then we claim that (c, F^*) already forces that \mathcal{K}^G is not essential below p. Let \tilde{c} be any completion of c to a stable coloring on ω , and suppose \mathcal{K}^c were essential below p. Then there would be some $B > max(||c||, a_{\mathcal{K}}^c(F_p))$ and an n such that $S_p^c(n)$ converges and whenever $E \in S_p^c(n)$, every partition is as described above. In particular, there would be some finite initial segment of \tilde{c} witnessing the necessary computations, contradicting our assumption.

[1] Peter A Cholak, Mariagnese Giusto, Jeffry L Hirst, and Carl G Jockusch Jr. Free sets and reverse mathematics. *Reverse mathematics*, 2006, 2001.

- [2] Denis R Hirschfeldt. Slicing the truth. preprint, 2013.
- [3] Henry Towsner Manuel Lerman, Reed Solomon. Separating principles below Ramsey's Theorem for Pairs. preprint, 2013.