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Abstract. Every function over the natural numbers has an infinite subdo-
main on which the function is non-decreasing. Motivated by a question of
Dzhafarov and Schweber, we study the reverse mathematics of variants of
this statement. It turns out that this statement restricted to computably
bounded functions is computationally weak and does not imply the existence
of the halting set. On the other hand, we prove that it is not a consequence
of Ramsey’s theorem for pairs. This statement can therefore be seen as an
arguably natural principle between the arithmetic comprehension axiom and
stable Ramsey’s theorem for pairs.

1. Introduction

A non-decreasing subsequence for a function f : N → N is a set X ⊆ N
such that f(x) ≤ f(y) for every pair x < y ∈ X. Every function over N → N
admits an infinite non-decreasing subsequence. Moreover, such a sequence can
be computably, but not uniformly obtained from the function f . Indeed, given
f : N→ N, either there is a value y ∈ N for which the set Sy = {x ∈ N : f(x) = y}
is infinite, or for every y ∈ N, there is a threshold t ∈ N after which f(x) > y
for every x > t. In the former case, the set Sy is an infinite f -computable non-
decreasing subsequence for f , while in the latter case, one can f -computably
thin out the set N to obtain an infinite, strictly increasing subsequence. This
non-uniform argument can be shown to be necessary by Weihrauch reducing the
limited principle of omniscience (LPO) to this statement [1].

In this paper, we study the reverse mathematics of variants of this state-
ment by considering various classes of non-computable functions over N → N.
This study is motivated by the following question of Dzhafarov and Schweber in
MathOverflow [6] and taken up by Hirschfeldt in his open questions paper [7]. A
set X is a limit non-decreasing subsequence for a stable function f : N×N→ N
if it is a non-decreasing subsequence of its limit function f̃ : N → N defined by
f̃(x) = lims f(x, s).

Let f : N× N→ N be a computable function such that f(x, s+
1) ≤ f(x, s) for every x, s ∈ N. Let X be an infinite limit non-
decreasing subsequence for f . How complicated must such an X
be? In particular, can it avoid computing the halting set?

Let LNS be the statement asserting the existence of an infinite limit non-
decreasing subsequence for any such function f : N× N→ N. Liang Yu noticed
that LNS implies the existence of a diagonally non-computable function, that is,
a function h : N→ N such that h(e) 6= Φe(e) for every e ∈ N. We identify a nat-
ural strengthening of LNS that we call CNS, standing for “computably bounded
non-decreasing subsequence”. We prove that every computable instance of CNS
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admits low2 solutions using the first jump control of Cholak, Jockusch and Sla-
man [2], and show that CNS is a computationally weak statement by proving
that it does not imply weak weak König’s lemma (WWKL). On the other hand,
CNS is not a consequence of Ramsey’s theorem for pairs (RT2

2) and implies sta-
ble Ramsey’s theorem for pairs (SRT2

2). Finally, we separate LNS from CNS by
proving that the former does not imply the stable ascending descending sequence
principle (SADS) in reverse mathematics.

2. The weakness of non-decreasing subsequences

First, note that the general statement of the existence of a non-decreasing
sequence for any function over N → N implies the existence of the halting set.
Indeed, let µ be the modulus function of ∅′, that is, µ(x) is the minimal stage s
such that ∅′s�x = ∅′�x, and let f : N → N be the function defined by f(x) =
µ(n) − k − 1, where n and k are the unique solution to the equation x = k +∑

j<n µ(j) satisfying k < µ(n).

µ(0)

µ(1)

µ(2)

The above argument uses finite decreasing sequences to ensure a sufficient
amount of sparsity in the non-decreasing subsequences for f , to compute fast-
growing functions. At first sight, such an argument does not seem to be applica-
ble to LNS since the value of f̃(x) = lims f(x, s) is bounded by f(x, 0) for every
instance f of LNS. Therefore, one cannot force the solutions to have a hole of
size more than f(x, 0) starting from x. Actually, this computable bounding of

the function f̃ is the essential feature of the weakness of the LNS statement. A
function f : N → N is computably bounded if it is dominated by a computable
function. Let CNS be the statement “Every computably bounded ∆0

2 function
admits an infinite non-decreasing subsequence.” In particular, CNS generalizes
LNS, in that every instance of LNS can be seen as the ∆0

2 approximation of a
computably bounded function. As a warm-up, we prove that CNS admits cone
avoidance.

Theorem 2.1 Fix a set C and a set A 6≤T C. For every C-computably bounded
function f : N→ N, there is an infinite set G non-decreasing for f such that A 6≤T
G⊕ C.

Proof. Let b : N → N be a C-computable function bounding f . Assume that
there is no infinite non-decreasing subsequence G such that A 6≤T G ⊕ C, oth-
erwise we are done. We will construct the set G using a variant of Mathias
forcing.

Our forcing condition are pairs (F,X) where F is a finite set of integers non-
decreasing for f , X is an infinite set such that maxF < minX and such that
f(x) ≤ f(y) for every x ∈ F and y ∈ X. We furthermore require that A 6≤T
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X ⊕ C. A condition d = (E, Y ) extends c = (F,X) if d Mathias extends c, that
is, E ⊇ F , Y ⊆ X and E r F ⊆ X. A set G satisfies a condition (F,X) if
F ⊆ G ⊆ F ∪ X. We start by proving that every sufficiently generic filter for
this notion of forcing yields an infinite set.

Lemma 2.2 For every condition c = (F,X), there is an extension d = (E, Y )
of c such that |E| > |F |.

Proof. Pick any x ∈ X. By strong cone avoidance of the infinite pigeonhole
principle [5], there is an infinite set Y ⊆ X r [0, x] such that either f is constant
over Y for some value smaller than f(x), or f(y) ≥ f(x) for every y ∈ Y . In the
former case, Y is an infinite non-decreasing subsequence for f such that A 6≤T
Y ⊕ C, contradicting our assumption. In the latter case, the condition d =
(F ∪ {x}, Y ) is the desired extension of c. �

A condition c forces a formula ϕ(G) if ϕ(G) holds for every infinite set G
satisfying c. We now prove that A 6≤T G ⊕ C for every set G yielded by a
sufficiently generic filter.

Lemma 2.3 For every condition c = (F,X) and every Turing functional Γ, there
is an extension d of c forcing ΓG⊕C 6= A.

Proof. For every x ∈ N and i < 2, let Fx,i be the the Π0,X⊕C
1 class of all functions

g : N→ N dominated by b such that for every set E ⊂ X non-decreasing for g,

Γ(F∪E)⊕C(x) ↑ or Γ(F∪E)⊕C(n) ↓6= i

Also define P = {(x, i) : Fx,i = ∅}. We have three outcomes. In the first case,
Fx,1−A(x) ∈ P for some x ∈ N. In other words, Fx,1−A(x) = ∅. In particular,
f 6∈ Fx,1−A(x), so there is a finite set E ⊆ X non-decreasing for f , such that

Γ(F∪E)⊕C(x) ↓= 1−A(x). Apply strong cone avoidance avoidance of the infinite
pigeonhole principle as in Lemma 2.2 to obtain an infinite set Y ⊆ X such that
d = (F ∪ E, Y ) is a valid extension of c forcing ΓG⊕C(x) ↓6= A(x).

In the second case, there is some x ∈ N such that Fx,A(x) 6∈ P . By the cone
avoidance basis theorem [9], there is some g ∈ Fx,A(x) such that A 6≤T g⊕X⊕C.
We can g ⊕X-computably thin out the set X to obtain an infinite set Y non-
decreasing for g. In particular the condition d = (F, Y ) is a valid extension of c
forcing ΓG⊕C(x) ↑ or ΓG⊕C(x) ↓6= A(x).

In the last case, for every x ∈ N and i < 2, (x, i) ∈ P ↔ A(x) = i. This
case cannot happen, since otherwise A ≤T P ≤T X ⊕ C, contradicting our
assumption. �

Let F = {c0, c1, . . . } be a sufficiently generic filter containing (∅, ω), where cs =
(Fs, Xs). The filter F yields a unique set G =

⋃
s Fs. By Lemma 2.2, the

set G is infinite, and by definition of a condition, G is non-decreasing for f . By
Lemma 2.3, A 6≤T G⊕ C. This completes the proof. �

König’s lemma asserts that every infinite, finitely branching tree admits an
infinite path. Weak König’s lemma (WKL) is the restriction of König’s lemma
to binary trees. WKL plays an important role in reverse mathematics as many
statements happen to be equivalent to it [12]. It is therefore natural to compare
CNS and LNS to weak König’s lemma. Actually, we will prove that CNS does
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not imply an even weaker variant of König’s lemma, namely, weak weak König’s

lemma. A binary tree T ⊆ 2<N has positive measure if lims
|{σ∈T :|σ|=s}|

2s > 0.
Weak weak König’s lemma (WWKL) is the restriction of WKL to binary trees
of positive measure. It can be seen as asserting the existence of a random real,
in the sense of Martin-Löf [4]. Liu [10] introduced the notion of constant-bound
enumeration avoidance to separate Ramsey’s theorem for pairs from weak weak
König’s lemma. We shall use the same notion to separate CNS from WWKL.

A k-enumeration (or k-enum) of a class C ⊆ 2N is a sequence D0, D1, . . . such
that for each n ∈ N, |Dn| ≤ k, (∀σ ∈ Dn)|σ| = n and C ∩ [Dn] 6= ∅, where Dn is
seen as a clopen set of reals in the Cantor space. A constant-bound enumeration
(or c.b-enum) of C is a k-enum of C for some k ∈ N. We now prove that CNS
does not imply weak weak König’s lemma over RCA0.

Theorem 2.4 Fix a set C and a class C ⊆ 2N with no C-computable c.b-enum.
For every C-computably bounded function f : N → N, there is an infinite non-
decreasing subsequence G such that C has no G⊕ C-computable c.b-enum.

Proof. Let b : N → N be a C-computable function bounding f . Again, assume
that there is no infinite non-decreasing subsequence G such that C has no G⊕C-
computable c.b-enum, otherwise we are done. We will construct the set G using
another variant of Mathias forcing.

Our forcing condition are tuples (F,X, S) where F is a finite set of integers, X
is an infinite set such that maxF < minX, and S is a finite collection of functions
over N→ N dominated by b, and such that g(x) ≤ g(y) for every x ∈ F , y ∈ X
and g ∈ S. We furthermore require that C has no X ⊕C-computable c.b-enum.
A condition d = (E, Y, T ) extends c = (F,X, S) if E ⊇ F , Y ⊆ X, T ⊇ S
and E r F is a non-decreasing subset of X for every g ∈ S. A set G satisfies a
condition (F,X, S) if F ⊆ G ⊆ F∪X and GrF is non-decreasing for every g ∈ S.
In particular, every infinite set satisfying the condition (∅, ω, {f}) is an infinite
non-decreasing sequence for f .

Given a condition c = (F,X, S), we let #(c) be the number of functions g ∈ S
such that g is not constant over X. We now prove that every sufficiently generic
filter for this notion of forcing yields an infinite set.

Lemma 2.5 For every condition c = (F,X, S), there is an extension d =
(E, Y, S) of c such that either #(d) < #(c), or |E| > |F |.

Proof. Suppose that S = {g0, . . . , gk−1}. Pick any x ∈ X. By iteratively apply-
ing strong c.b-enum avoidance of the infinite pigeonhole principle [10], define a
finite sequence X = X0 ⊇ X1 ⊇ · · · ⊇ Xk of infinite sets such that for each i < k,
C has no Xi+1⊕C-computable c.b-enum and either there is some n < gi(x) such
that gi(y) = n for each y ∈ Xi+1, or gi(y) ≥ gi(x) for each y ∈ Xi+1. If we are in
the former case for some i < k, then the condition d = (F,Xi+1, S) is an exten-
sion of c such that #(d) < #(c). Otherwise, the condition d = (F ∪ {x}, Xk, S)
is the desired extension of c. �

We now prove that C has no G ⊕ C-computable c.b-enum for every set G
yielded by a sufficiently generic filter.
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Lemma 2.6 For every condition c = (F,X, S), every k ∈ N and every Turing
functional Γ, there is an extension d of c such that either #(d) < #(c), or d
forces ΓG⊕C not to be a valid k-enum of C.

Proof. Suppose that S = {g0, . . . , gm−1}. For ease of notation, whenever ΓG⊕C(n)
halts, we will interpret ΓG⊕C(n) as a finite set Dn of size k such that |σ| = n
for every σ ∈ Dn. For every n ∈ N, let Cn = {σ ∈ 2n : C ∩ [σ] 6= ∅}. For

every set D ⊆ 2n, let FD be the the Π0,X⊕C
1 class of all m-tuples of functions

〈h0, . . . , hm−1〉 over N→ N dominated by b, such that hi(y) ≥ hi(x) for each x ∈
F , y ∈ X and i < m, and such that Γ(F∪E)⊕C(n) ↑ or Γ(F∪E)⊕C(n) ∩ D 6= ∅
for every set E ⊂ X non-decreasing for every hi simultaneously. Finally, for
each n ∈ N, let Pn = {D ⊆ 2n : FD 6= ∅}. We have three outcomes.

In the first case, Cn 6∈ Pn for some n ∈ N. In other words, FCn = ∅. In
particular, 〈g0, . . . , gm−1〉 6∈ FCn , so there is a finite set E ⊆ X non-decreasing

for every gi simultaneously, such that Γ(F∪E)⊕C(n) ∩ C = ∅. Apply strong c.b-
enum avoidance of the infinite pigeonhole principle as in Lemma 2.5 to obtain
an infinite set Y ⊆ X such that either d = (F, Y, S) is an extension of c sat-
isfying #(d) < #(c), or d = (F ∪ E, Y, S) is a valid extension of c forcing
[ΓG⊕C(n)] ∩ C = ∅.

In the second case, there is some n ∈ N such that for every k-partition
V0, . . . ,Vk−1 of Pn, there is some i < k such that

⋂
Vi = ∅. For each D ∈ Pn,

pick some 〈hD0 , . . . , hDm−1〉 ∈ FD. The condition d = (F,X, T ), where T =

S ∪
⋃
D∈Pn

{hD0 , . . . , hDm−1}, is a valid extension of c forcing ΓG⊕C(n) ↑. To

see that, suppose that ΓG⊕C(n) ↓= {σ0, . . . , σk−1}, and let Vi = {D ∈ Pn :
σi ∈ D}. We claim that V0, . . . ,Vk−1 forms a k-partition of Pn. Indeed, for
any D ∈ Pn, since G satisfies d, G r F is non-decreasing for hD0 , . . . , h

D
m−1, so

{σ0, . . . , σk−1}∩D 6= ∅ and D ∈ Vi for some i < k. But then there is some i < k
such that

⋂
Vi = ∅, contradicting σi ∈

⋂
Vi.

In the last case, for every n ∈ N, Cn ∈ Pn and there is a k-partition V0, . . . ,Vk−1
of Pn such that

⋂
Vi 6= ∅ for each i < k. In this case, we claim that C admits

an X ⊕ C-computable k-enum, contradicting our assumption. First note that
the set Pn is X ⊕ C-co-c.e. uniformly in n. Therefore, given n ∈ N, we can
X ⊕ C-computably find a stage s and a k-partition V0, . . . ,Vk−1 of Pn,s such
that

⋂
Vi 6= ∅ for each i < k. Let Dn be the set obtained by picking a σ in

each
⋂
Vi. The set Dn has size k, and C ∩ [Dn] 6= ∅ since Cn ∈ Pn,s. The

sequence D0, D1, . . . is an X ⊕ C-computable k-enum of C. �

Let F = {c0, c1, . . . } be a sufficiently generic filter containing (∅, ω, {f}),
where cs = (Fs, Xs, Ss). The filter F yields a unique set G =

⋃
s Fs. By

Lemma 2.5, the set G is infinite, and by definition of the extension relation, G is
non-decreasing for f . By Lemma 2.6, G ⊕ C computes no c.b-enum of C. This
completes the proof of Theorem 2.4. �

Corollary 2.7 CNS does not imply WWKL over RCA0.

Proof. Let T be a computable tree of positive measure whose paths are Martin-
Löf randoms. By Liu [10], [T ] has no computable c.b-enum. Iterate Theorem 2.4
to build a model M of CNS such that [T ] has no X-computable c.b-enum for
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any X ∈ M. In particular, T ∈ M, but there is no path through T in M,
so M 6|= WWKL. �

The statement CNS enjoys two important properties. First, any infinite subset
of a non-decreasing sequence is itself non-decreasing. Second, for any function
f : N → N and any infinite set X ⊆ N, one can find an infinite non-decreasing
subsequence Y ⊆ X. These two features are shared with a whole family of state-
ments coming from Ramsey’s theory. Recall that Ramsey’s theorem for n-tuples
and k colors (RTnk) asserts the existence, for every coloring f : [N]n → k, of an
infinite homogeneous set, that is, a set H ⊆ N such that [H]n is monochromatic.
A coloring f : [N]2 → k is stable if lims f(x, s) exists for every x ∈ N. SRT2

k is the
restriction of RT2

k to stable colorings. Any stable coloring f : [N]2 → k can be

seen as the ∆0
2 approximation of the computably bounded function f̃ : N→ N de-

fined by f̃(x) = lims f(x, s). Moreover, any infinite non-decreasing subsequence

for f̃ is, up to finite changes, homogeneous for f̃ , and can be f ⊕H-computably
thinned out to obtain an infinite f -homogeneous set. By Chong, Lempp and
Yang [3], this argument can be formalized in RCA0, therefore CNS implies SRT2

k

over RCA0 for every standard k ∈ N. We will prove in the next section that
the converse does not hold. For now, we show that LNS does not imply CNS
over RCA0 using the notion of preservation of hyperimmunity.

A function f : N → N is hyperimmune if it is not dominated by any com-
putable function. An infinite set is hyperimmune if its principal function is
hyperimmune, where the principal function of a set X = {x0 < x1 < . . . } is
defined by pX(n) = xn. A problem P admits preservation of hyperimmunity
if for each set C, each countable collection of C-hyperimmune sets A0, A1, . . . ,
and each P-instance X ≤T Z, there exists a solution Y to X such that the A’s
are Y ⊕ C-hyperimmune. The author proved [11] that weak statements such as
the stable version of the ascending descending principle (SADS) do not admit
preservation of hyperimmunity, while the Erdős-Moser theorem (EM) does. We
shall use this notion to separate LNS from SADS over RCA0. In particular, this
will separate LNS from CNS since CNS implies SRT2

2, which itself implies SADS
over RCA0 (see [8]).

We have seen that for every computable instance f : N × N → N of LNS,
its limit function f̃ is computably bounded, and that this bounding feature is
sufficient to obtain cone avoidance. We will now exploit another property enjoyed
by f̃ to prove that LNS admits preservation of hyperimmunity. A function g :
N → N is eventually increasing if each y ∈ N has finitely many predecessors
by g. For every computable instance f : N×N→ N of LNS with no computable
solution, its limit function f̃ must be eventually increasing, otherwise the set {x :

f̃(x, s) = y} would be an infinite, computable non-decreasing subsequence for f̃

for the least y with infinitely many predecessors by f̃ . Let ICNS be the restriction
of CNS to eventually increasing functions. We will now prove that ICNS, and
therefore LNS, admits preservation of hyperimmunity.

Theorem 2.8 Fix a set C and a countable sequenceA0, A1, . . . of C-hyperimmune
sets. For every C-computably bounded, eventually increasing function f : N →
N, there is an infinite non-decreasing subsequence G such that the A’s are G⊕C-
hyperimmune.
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Proof. Let b : N→ N be a C-computable function bounding f . As usual, assume
that there is no infinite set G non-decreasing for f such that the A’s are G⊕C-
hyperimmune, otherwise we are done. We will build the set G by a variant of
Mathias forcing.

A condition is a tuple (F,X) where F is a finite set of integers non-decreasing
for f , X is an infinite set such that maxF < minX, f(x) ≤ f(y) for every x ∈ F ,
y ∈ X, and the A’s are X⊕C-hyperimmune. The notions of condition extension
and of set satisfaction inherit from Mathias forcing. We again prove that every
sufficiently generic filter for this notion of forcing yields an infinite set.

Lemma 2.9 For every condition c = (F,X), there is an extension d = (E, Y )
such that |E| > |F |.

Proof. Pick any x ∈ X and let Y = {y ∈ X : y > x ∧ f(y) ≥ f(x)}. The set Y
is obtained from X by removing finitely many elements since f is eventually
increasing, so the A’s are Y ⊕ C-hyperimmune. The condition (F ∪ {x}, Y ) is
the desired extension of c. �

Next, we prove that every sufficiently generic filter yields a set G such that
the A’s are G⊕ C-hyperimmune.

Lemma 2.10 For every condition c = (F,X), every Turing functional Γ and
every i ∈ N, there is an extension forcing ΓG⊕C not to dominate pAi .

Proof. Let h be the partial X⊕C-computable function which on input x searches
for a finite set of integers U such that for every function g : N→ N bounded by b,

there is a finite set E ⊆ X non-decreasing for g such that Φ
(F∪E)⊕C
e (x) ↓∈ U . If

such a set U is found, f(x) = maxU , otherwise f(x) ↑. We have two cases.
Case 1: h is total. By X ⊕ C-hyperimmunity of Ai, there is some x such

that h(x) < pAi(x). Let U be the finite set witnessing h(x) ↓. In partic-
ular, taking g = f , there is a finite set E ⊆ X non-decreasing for f such

that Φ
(F∪E)⊕C
e (x) ↓∈ U . By removing finitely many elements from X, we obtain

a set Y such that (F ∪E, Y ) is a valid extension of c forcing ΦG⊕C
e (x) ↓< pAi(x).

Case 2: there is some x such that h(x) ↑. Let C be the Π0,X⊕C
1 class of

functions g : N → N bounded by b such that for every finite set E ⊆ X non-

decreasing for g, Φ
(F∪E)⊕C
e (x) ↑. By compactness, C 6= ∅, so by preservation of

hyperimmunity of WKL, there exists some g ∈ C such that the A’s are g⊕X⊕C-
hyperimmune. We can g⊕X-computably thin out the set X to obtain an infinite
set Y ⊆ X non-decreasing for g. The condition (F, Y ) is an extension of c
forcing ΦG⊕C

e (x) ↑. �

Let F = {c0, c1, . . . } be a sufficiently generic filter containing (∅, ω), where cs =
(Fs, Xs). The filter F yields a unique set G =

⋃
s Fs. By Lemma 2.9, the

set G is infinite, and by definition of a condition, G is non-decreasing for f .
By Lemma 2.10, the A’s are G ⊕ C-hyperimmune. This completes the proof of
Theorem 2.8. �

Corollary 2.11 ICNS ∧ EM∧WKL does not imply SADS over RCA0.
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Proof. By Theorem 2.8, by [11] and by the hyperimmune-free basis theorem [9],
ICNS, EM and WKL admit preservation of hyperimmunity, while SADS does not.
One can therefore build an ω-model of ICNS ∧ EM∧WKL in which SADS does
not hold. �

3. The strength of non-decreasing subsequences

We continue our study of the strength of the non-decreasing statements by
considering their ability to compute functions not dominated by some classes of
functions. Since stable Ramsey’s theorem for pairs is computably reducible to
CNS, there is a computable instance of CNS whose solutions are all of hyperim-
mune degree. We now prove that the same property holds for LNS.

Theorem 3.1 There is a computable function f : N×N→ N such that f(x, s+
1) ≤ f(x, s) for every x, s ∈ N and such that every infinite limit non-decreasing
subsequence for f is hyperimmune.

Proof. We will construct the function f so that pH is hyperimmune for every in-
finite limit non-decreasing subsequence H for f . We want to satisfy the following
requirements for every e ∈ N.

Re : If Φe is total and increasing, then Φe(x0) ↓= x1 and Φe(x1) ↓=
x2 for some x0 < x1 < x2 ∈ N such that lims f(x, s) > lims f(y, s)
for each x ∈ [x0, x1) and y ∈ [x1, x2).

Indeed, given an infinite limit non-decreasing subsequence H for f let Φe be any
computable increasing function. ByRe, eitherH∩[x0, x1) = ∅ orH∩[x1, x2) = ∅.
In the former case, pH(x0) ≥ x1 = Φe(x0), while in the latter case pH(x1) ≥
x2 = Φe(x1).

The overall construction is a finite injury priority argument. The local strategy
for Re requires attention at stage s if Φe(x0) ↓= x1 and Φe(x1) ↓= x2 for
some x0 < x1 < x2 < s such that f(x, s) > e for each x ∈ [x0, x2) and such that
no value in [x0, x2) is restrained by a strategy of higher priority. The strategy
for Re commits f(x, t) to be equal to e for every x ∈ [x1, x2) and any t ≥ s. It
then puts restrains on every value in [x0, x2) and is declared satisfied. If at a
later stage, some strategy of higher priority restrains some value in [x0, x2), then
the strategy for Re is injured and starts over, releasing all its restrains.

The global construction works as follows. At stage 0, f is the empty function.
Suppose that at stage s, the function f is defined over [0, s)2. If some strategy
requires attention, then pick the one of highest priority and run it. In any case,
set f(x, s) = e for every strategy Re which has committed such an assignment.
Then set f(x, s) = f(x, s− 1) for every x < s which has not been assigned yet,
and f(s, t) = s for every t ≤ s. Then go to the next stage. This finishes the
construction. We now turn to the verification.

First notice that each strategy acts finitely often, and therefore that each
strategy is injured finitely many times. Moreover, notice that f(x, s+1) ≤ f(x, s)
for every x, s ∈ N since when f(x, s + 1) 6= f(x, s), this is caused by a strategy
which made its value decrease. We claim that each strategy Re is eventually
satisfied. To see that, let Φe be a total increasing function and let s0 > e be
a stage after which no strategy of higher priority ever acts. By construction,
f(x, s) > e for every x, s ≥ s0. Therefore at some later stage s1, there will
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be some x0 < x1 < x2 < s1 such that Φe(x0) ↓= x1 and Φe(x1) ↓= x2. In
particular, f(x, s) > e for each x ∈ [x0, x2), so the strategy for Re will require
attention and will be satisfied since no strategy of higher priority acts. This
completes the verification. �

We will now prove that RT2
2 ∧WKL does not imply CNS over RCA0 using

the notion of hypersurjectivity. A formula ϕ(U), where U is a finite coded set
parameter, is essential if for every x ∈ N, there is some finite set A > x such
that ϕ(A) holds. Given a set C and an infinite set L ⊆ N, a function f :

N → N is C-hypersurjective for L if for every essential Σ0,C
1 formula ϕ(U) and

every y ∈ L, f(A) = {y} for some finite set A such that ϕ(A) holds. We say
that f is C-hypersurjective if it is C-hypersurjective for some infinite set L ⊆ N.
A problem P admits preservation of hypersurjectivity if for each set C, each
function f : N → N which is C-hypersurjective, and each P-instance X ≤T C,
there exists a solution Y to X and such that f is Y ⊕ C-hypersurjective.

Theorem 3.2 CNS does not admit preservation of hypersurjectivity.

Proof. We will build a ∆0
2 function f : N → N hypersurjective for N, such

that f(x) ≤ x for every x ∈ N. We first claim that for every infinite set H non-
decreasing for f and every infinite set L ⊆ N, f is not H-hypersurjective for L.
Therefore, f is a computable instance of CNS whose solutions do not preserve
its own hypersurjectivity.

Suppose for the sake of contradiction that f is H-hypersurjective for some
infinite set L ⊆ N. Let y be the first element of L. We have two cases. First,

suppose that f(x) ≤ y for every x ∈ H. Let ϕ(U) be the Σ0,H
1 formula which

holds if U is a non-empty subset of H. The formula ϕ(U) is essential since H
is infinite. However, let z be the second element of L. There is no finite set A
such that f(A) = {z} and ϕ(A), otherwise there would be some x ∈ A ⊆ H such
that f(x) = z > y. This contradicts H-hypersurjectivity of f for L. Second,

suppose that there is some x ∈ H such that f(x) > y. Let ψ(U) be the Σ0,H
1

formula which holds if U is a non-empty subset of H r [0, x]. The formula ψ(U)
is again essential since H is infinite. However, if there is a finite set A such
that f(A) = {y} and ψ(A) holds, then there is some z ∈ A ⊆ H r [0, x] such
that f(z) = y. In particular, x < z and f(x) > f(z) which contradicts the fact
that H is non-decreasing for f . Therefore f is not H-hypersurjective.

We now build the function f : N→ N by the finite extension method in a ∆0
2

construction. Fix an enumeration ϕ0(U), ϕ1(U), . . . of all Σ0
1 formulas. Start

at stage 0 with the empty function f . Suppose that at stage s = 〈y, e〉, the
function f is defined over some domain [0,m). Decide in ∅′ whether there is
a finite set A ≥ m such that ϕe(A) holds. If so, set f(x) = y for every x ∈
[m,maxA], otherwise set f(m) = 0. In both case, go to the next stage. This
completes the construction. �

Before proving that RT2
2 admits preservation of hypersurjectivity, we first

need to prove that so does WKL for any fixed L ⊆ N. Indeed, the latter will be
used in the proof of the former. The proof of the following theorem is a slight
modification of the proof of Theorem 14 in [11].

Theorem 3.3 WKL admits preservation of hypersurjectivity for any fixed L.
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Proof. Fix a set C, let f : N → N be a function C-hypersurjective for L, and
let T ⊆ 2<ω be a C-computable infinite binary tree. We construct an infinite
decreasing sequence of computable subtrees T = T0 ⊇ T1 ⊇ . . . such that for
every path P through

⋂
s Ts, f is P ⊕ C-hypersurjective for L. Note that the

intersection
⋂
s Ts is non-empty since the T ’s are infinite trees. More precisely,

if we interpret s as a tuple 〈y, ϕ〉 where y ∈ L and ϕ(G,U) is a Σ0,C
1 formula, we

want to satisfy the following requirement.

Rs : For every path P through Ts+1, either ϕ(P,U) is not essen-
tial, or ϕ(P,A) holds for some finite set A such that f(A) = {y}.

At stage s = 〈y, ϕ〉, given some infinite, computable binary tree Ts, define the

Σ0,C
1 formula

ψ(U) = (∃n)(∀τ ∈ Ts ∩ 2n)(∃Ã ⊆ U)ϕ(τ, Ã)

We have two cases. In the first case, ψ(U) is not essential with some witness t.
By compactness, the following set is an infinite C-computable subtree of Ts:

Ts+1 = {τ ∈ Ts : (∀A > t)¬ϕ(τ,A)}

The tree Ts+1 has been defined so that ϕ(P,U) is not essential for every P ∈
[Ts+1]. In the second case, ψ(U) is essential. By C-hypersurjectivity of f for L,
there is a finite set A such that ψ(A) holds and f(A) = {y}. We claim that for

every path P ∈ [Ts], ϕ(P, Ã) holds for some set Ã such that f(Ã) = {y}. Fix
some path P ∈ [Ts]. Unfolding the definition of ψ(A), there is some n such that

ϕ(P �n, Ã) holds for some set Ã ⊆ A. By continuity, ϕ(P, Ã) holds. Moreover,

f(Ã) = {y} since f(A) = {y} Set Ts+1 = Ts and go to the next stage. This
completes the proof of Theorem 3.3. �

We are now ready to prove that Ramsey’s theorem for pairs admits preserva-
tion of hypersurjectivity.

Theorem 3.4 RT2
2 admits preservation of hypersurjectivity.

Proof. Let C be a set and g : N → N be a function C-hypersurjective for some
infinite set L ⊆ N. Fix a C-computable coloring f : [N]2 → 2. As usual,
assume that there is no infinite f -homogeneous set H such that g is H ⊕ C-
hypersurjective, otherwise we are done. We will build two infinite sets G0, G1,
f -homogeneous for color 0 and 1, respectively, and such that g is either G0⊕C-
hypersurjective, or G1 ⊕ C-hypersurjective.

We will use forcing conditions (F0, F1, X), where F0 and F1 are finite sets
of integers, X is an infinite set such that max(F0, F1) < minX and for every
i < 2 and every x ∈ X, Fi ∪ {x} is f -homogeneous for color i. We furthermore
impose that g is X ⊕ C-hypersurjective for L. A condition d = (E0, E1, Y )
extends c = (F0, F1, X) if (Ei, Y ) Mathias extends (Fi, X) for each i < 2. A
pair of sets G0, G1 satisfies a condition (F0, F1, X) if for each i < 2, Gi if f -
homogeneous for color i and satisfies the Mathias condition (Fi, X). Again, we
start by proving that every infinite filter yields two infinite sets.

Lemma 3.5 For every condition c = (F0, F1, X) and every i < 2, there is an
extension d = (E0, E1, X) of c such that |Ei| > |Fi|.
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Proof. For every x ∈ X, let Sx = {y ∈ X : y > x∧f(x, y) = i}. If Sx is finite for
every x ∈ X, then one can X ⊕ C-computably thin out the set X to obtain an
infinite set f -homogeneous for color 1− i, contradicting our assumption. There-
fore, there is some x ∈ X such that Sx is infinite. The condition (E0, E1, Sx)
where Ei = Fi ∪ {x} and E1−i = F1−i is the desired extension of c. �

Fix an enumeration ϕ0(G,U), ϕ1(G,U), . . . of all Σ0,C
1 formulas. We will now

ensure the following disjunctive requirements for each e0, e1 ∈ N and y ∈ L.

Re0,e1,y : RG0
e0,y ∨R

G1
e1,y

where RGe,y is the statement “If ϕe(G,U) is essential, then ϕ(G,A) holds for
some finite set A such that g(A) = {y}”. If all the disjunctive requirements are
satisfied for some pair of sets G0, G1, then there will be a 2-partition L0∪L1 = L
such that g is Gi⊕C-hypersurjective for Li for each i < 2. Among L0 and L1, at
least one must be infinite. We will then pick the corresponding Gi. We say that
a condition c forces Re0,e1,y if it holds for every pair of sets G0, G1 satisfying c.

Lemma 3.6 For every condition c = (F0, F1, X), every pair of indices e0, e1 ∈ N
and every y ∈ L, there is an extension d of c forcing Re0,e1,y.

Proof. Let ψ(U) be the Σ0,X⊕C
1 formula which holds if there is a finite set H ⊆ X

such that for every 2-partition H0 ∪ H1 = H, there is some i < 2, some finite
set Ui ⊆ U and some set E ⊆ Hi f -homogeneous for color i such that ϕei(Fi ∪
E,Ui) holds. We have two cases.

Case 1: the formula ψ(U) is not essential, with witness x ∈ N. Let C be the

Π0,X⊕C
1 class of all sets H0 ⊕ H1 such that H0 ∪ H1 = X and for every i < 2,

every finite set Ui > x and every finite set E ⊆ Hi f -homogeneous for color i,
ϕei(Fi ∪E,Ui) does not hold. Since there is not finite set U > x such that ϕ(U)
holds, then by a compactness argument C is non-empty. By preservation of
hypersurjectivity of WKL for L (Theorem 3.3), there is some H0 ⊕ H1 ∈ C
such that g is H0 ⊕ H1 ⊕ X ⊕ C-hypersurjective for L. Let i < 2 be such
that Hi is infinite. The condition (F0, F1, Hi) is an extension of c forcing RGi

ei,y,
hence Re0,e1,y.

Case 2: the formula ψ(U) is essential. By X ⊕C-hypersurjectivity of g for L,
ψ(A) holds for some finite set A such that g(A) = {y}. Let H ⊆ X be the finite
set witnessing that ψ(A) holds. Every z ∈ X, induces a 2-partition H0∪H1 = H
defined by Hi = {x ∈ H : f(x, z) = i}. Since there are finitely many 2-partitions
of H, there is a 2-partition H0 ∪H1 = H such that the set

Y = {z : X : z > maxH ∧ (∀i < 2)(∀x ∈ Hi)f(x, z) = i}
is infinite. In particular, there is some i < 2 and some set E ⊆ Hi f -homogeneous
for color i such that ϕei(Fi ∪ E,Ai) holds for some set Ai ⊆ A. The condi-
tion (E0, E1, Y ) defined by Ei = Fi ∪ E and E1−i = F1−i is an extension of c
forcing RGi

ei,y, hence Re0,e1,y. �

Let F = {c0, c1, . . . } be a sufficiently generic filter containing (∅, ∅, ω), where
cs = (F0,s, F1,s, Xs). The filter F yields a unique pair of sets G0 =

⋃
s F0,s

and G1 =
⋃
s F1,s. By Lemma 3.5, both G0 and G1 are infinite. By Lemma 3.6,

there is some i < 2 and some infinite set Li ⊆ L such that g is Gi ⊕ C-
hypersurjective for L. This completes the proof. �
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Corollary 3.7 RT2
2 ∧WKL does not imply CNS over RCA0.

4. Low2 non-decreasing subsequences

Cholak, Jockusch and Slaman [2] proved that every computable instance
of RT2

2 admits a low2 solution. In this section, we prove that the same prop-

erty holds for CNS. Given two sets X and A, an integer e ∈ N is a ∆0,X
2

index of A if ΦX′
e = A. Similarly, e is an X-jump index of A if ΦX

e = A′. A
function f : N → {0, 1} is X-dnc2 if f(e) 6= ΦX

e (e) for every e. The following
theorem is obtained by looking at the uniformity of the first jump control of
Cholak, Jockusch and Slaman [2].

Theorem 4.1 There are two computable functions h0, h1 : N→ N such that for

every set C and every C ′-dnc2 function f , if e is the ∆0,C
2 index of a set A, then

either h0(e) is an f -jump index of Y0 ⊕ C, where Y0 is an infinite subset of A,
or h1(e) is an f -jump index of Y1 ⊕ C, where Y1 is an infinite subset of A.

Proof. Fix a set C and let f be a C ′-dnc2 function and e be an index of a ∆0,C
2

set A. We will describe an f -computable construction of a set G such that for
every pair e0, e1 ∈ N, either ((G∩A)⊕C)′(e0), or ((G∩A)⊕C)′(e1) is decided.
We work with Mathias conditions (F,X) where X is low over C. An index of

such a condition c = (F,X) is a code 〈F, i〉 such that ΦC′
i = (X ⊕ C)′.

To simplify our notation, we let A0 = A and A1 = A. Given some i < 2
and some ei ∈ N, a condition c = (F,X) decides ((G ∩ Ai) ⊕ C)′(ei) if ei-

ther Φ
(F∩Ai)⊕C
ei (ei) ↓, or Φ

((F∩Ai)∪H)⊕C
ei (ei) ↑ for every set H ⊆ X. Note that H

is not necessarily included in Ai. This precision will be used in Lemma 4.3.

Lemma 4.2 (Lemma 4.6 in [2]) Given a condition c = (F,X) and a pair of
indices e0, e1 ∈ N, there is an extension d of c deciding either ((G∩A)⊕C)′(e0),
or ((G ∩A)⊕C)′(e1). Furthermore, and index of d may be f -computably com-
puted from e0, e1 and an index of c, and one can f -computably decide which
case applies.

Using Lemma 4.2, build an infinite f -computable decreasing sequence of con-
ditions (∅, ω) = (F0, X0) ≥ (F1, X1) ≥ . . . such that for every s = 〈e0, e1〉,
(Fs+1, Xs+1) decides either ((G ∩ A) ⊕ C)′(e0), or ((G ∩ A) ⊕ C)′(e1). Unlike
the original construction [2], we do not interleave requirements to ensure that
both G∩A and G∩A are infinite, and indeed, it is not possible since we cannot
uniformly decide whether there is a low solution or not. Thankfully, the infinity
requirements are already ensured by the decision process, as shows the following
lemma.

Lemma 4.3 If G∩Ai is finite, then for some ei ∈ N, there is no stage s at which
(Fs+1, Xs+1) decides ((G ∩Ai)⊕ C)′(ei).

Proof. Let k = |G∩Ai|, and let ei ∈ N be such that for every set H, ΦH⊕C
ei (ei) ↓

if and only if H contains at least k + 1 elements. Suppose there is a stage s at

which (Fs+1, Xs+1) decides ((G ∩ Ai)⊕ C)′(ei). By definition, Φ
(F∩Ai)⊕C
ei (ei) ↓,

or Φ
((F∩Ai)∪H)⊕C
ei (ei) ↑ for every set H ⊆ X. The former does not hold since |F ∩
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Ai| = k, and neither does the latter since Φ
((F∩Ai)∪H)⊕C
ei (ei) ↓ for any infinite

set H ⊆ X. �

For each i < 2, let hi(e) be the Turing index of the f -algorithm which on
input ei, f -computably runs the construction until it finds some stage s at
which (Fs+1, Xs+1) decides ((G ∩ A)⊕ C)′(ei). If such stage is found, the algo-
rithm outputs the answer, otherwise it does not terminate. We claim that one
of the two following holds:

(a) h0(e) is an f -jump index of (G ∩A)⊕ C and G ∩A is infinite;
(b) h1(e) is an f -jump index of (G ∩A)⊕ C and G ∩A is infinite.

If case (a) does not hold, then either G ∩ A is finite, or the algorithm of h0(e)
is not total, and by Lemma 4.3, the former implies the latter. Moreover, if the
algorithm of h0(e) is not total, then by the usual pairing argument, the algorithm
of h1(e) is total, and by the contrapositive of Lemma 4.3, G ∩ A is infinite, so
case (b) holds. This completes the proof. �

We are now ready to prove the main theorem of the section.

Theorem 4.4 Fix a set C and a set P � C ′. For every C-computable instance
of CNS, there is an infinite non-decreasing subsequence G such that (G⊕C)′ ≤T
P .

Proof. Let f : N → N be a ∆0,C
2 function C-computably bounded by some

function b : N → N. Let h0, h1, . . . be a uniformly P -computable sequence of
functions such that h0 ≡T C ′, and hi+1 is hi-dnc2 for every i ∈ N. Assume that
there is no infinite set G over which f is constant, and such that (G⊕C)′ ≤T P ,
otherwise we are done. We will build our set G by a P -computable construction
using variants of Mathias conditions.

An hi-condition is a tuple (F,X, S) where (F,X) is a Mathias condition,
g(x) ≤ g(y) for every x ∈ F , y ∈ X and g ∈ S∪{f}, and S is a finite collection of
functions bounded b, such that (X⊕S⊕C)′ ≤T hi. A hj-condition d = (E, Y, T )
extends an hi-condition c = (F,X, S) if j ≥ i, E ⊇ F , Y ⊆ X, T ⊇ S and ErF
is a non-decreasing subset of X for every g ∈ S ∪{f}. A set G satisfies (F,X, S)
if F ⊆ G ⊆ F ∪X and Gr F is non-decreasing for every g ∈ S ∪ {f}.

An hi-index of (F,X, S) is a code 〈i, F, e〉 such that Φhi
e = (X⊕S⊕C)′. Given

an hi-condition c = (F,X, S), we let #(c) be the number of functions g ∈ S such
that g is not constant over X. Note that an hi+1-index of c can be P -computed
from an hi-index of c, and that #(c) can be hi-computed from an hi-index of c.

Lemma 4.5 For every n ∈ N and every hn-condition c = (F,X, S), there is an
hn+1-extension d = (E, Y, S) of c such that either #(d) < #(c), or |E| > |F |.
Furthermore, an hn+1-index of d may be P -computed from an hn-index of c.

Proof. Pick any x ∈ X. Since hn+1 � (X ⊕ S ⊕ C)′, one can hn+1-computably
decide if there is some g ∈ S and some u < g(x) such that the set Y0 = {y ∈ X :
g(y) = u} is infinite, or whether the set Y1 = {y ∈ X : (∀g ∈ S)g(y) ≥ g(x)}
is infinite. In the first case, the hn+1-condition d = (F, Y0, S) is an extension
of c such that #(d) < #(c). In the second case, let A = {y ∈ Y1 : f(y) ≥
f(x)}. By Theorem 4.1, either we obtain a hn+1-jump index of Z0⊕X ⊕S⊕C,
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where Z0 is an infinite subset of A, or an hn+1-jump index of Z1 ⊕X ⊕ S ⊕ C,
where Z1 is an infinite subset of Y1 r A. The second case cannot happen since
otherwise, f would be of bounded range over Z1, and by further applications of
Theorem 4.1, one would obtain an infinite setH over which f is constant and such
that (H ⊕ C)′ ≤T P , contradicting our initial assumption. We therefore obtain
an infinite set Z0 ⊆ A such that hn+1 ≥T (Z0 ⊕ S ⊕ C)′. The hn+1-condition
d = (F ∪ {x}, Z0, S) is an extension of c satisfied the desired property. �

An hi-condition c = (F,X) decides (G ⊕ C)′(e) if either ΦF⊕C
e (e) ↓, or

Φ
(F∪H)⊕C
e (e) ↑ for every set H ⊆ X.

Lemma 4.6 For every n ∈ N, every hn-condition c = (F,X, S) and every e ∈ N,
there is an hn+1-extension d of c such that either #(d) < #(c), or d decides
(G ⊕ C)′(e). Furthermore, an hn+1-index of d may be P -computed from an
hn-index of c, and one can P -computably decide which case applies.

Proof. Let C be the Π0,X⊕S⊕C
1 class of all functions p : N → N bounded by b,

such that p(x) ≤ p(y) for every x ∈ F and y ∈ X, and for every finite set E ⊆ X
non-decreasing for every g ∈ S∪{p} simultaneously, Φ(F∪E)⊕C(e) ↑. Since hn ≥T
(X ⊕ S ⊕ C)′, one can hn-decide whether C is empty or not.

If C is empty, then in particular f 6∈ C. Unfolding the definition, there is a
finite set E ⊆ X non-decreasing for every g ∈ S∪{f}, such that Φ(F∪E)⊕C)(e) ↓.
As in Lemma 4.5, one can hn+1-computably decide whether there is some g ∈ S
and some u < max{g(x) : x ∈ E} such that the set Y0 = {y ∈ X : g(y) = u}
is infinite, or whether the set Y1 = {y ∈ X : (∀g ∈ S)(∀x ∈ E)g(y) ≥ g(x)}
is infinite. In the first case, the hn+1-condition d = (F, Y0, S) is an extension
of c such that #(d) < #(c). In the second case, let A = {y ∈ Y1 : (∀x ∈
E)f(y) ≥ f(x)}. Still by the same argument as in Lemma 4.5, one can P -
computably find an infinite set Z0 ⊆ A such that hn+1 ≥T (Z0 ⊕ S ⊕ C)′. The
hn+1-condition (F ∪ E,Z0, S) is an extension of c forcing (G⊕ C)′(e) = 1.

If C 6= ∅, then by the relativized low basis theorem [9], one can hn-computably
pick some g ∈ C such that hn ≥T (g⊕X⊕S⊕C)′. The hn+1-condition (F,X, S∪
{g}) is an extension of c forcing (G⊕ C)′(e) = 0. �

Using Lemma 4.5 and Lemma 4.6, build an infinite P -computable decreasing
sequence of tuples (∅, ω, ∅) = (F0, X0, S0) ≥ (F1, X1, S1) ≥ . . . such that for
every s ∈ N,

(i) (Fs, Xs, Ss) is an hn-condition for some n ∈ N
(ii) |Fs| ≥ s
(iii) (Fs, Xs, Ss) decides (G⊕ C)′(e)

The set G =
⋃
s Fs is an infinite non-decreasing subsequence for f such that (G⊕

C)′ ≤T P . This completes the proof of Theorem 4.4. �

Corollary 4.7 Every computable instance of CNS admits a low2 solution.

Proof. Let f be a computable instance of CNS. By the relativized low basis
theorem [9], there is a set P � ∅′ such that P ′ ≤T ∅′′. By Theorem 4.4, there is
an infinite non-decreasing subsequence G for f , such that G′ ≤T P . In particular,
G′′ ≤T P ′ ≤T ∅′′, so G is low2. �
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5. Summary and open questions

In this section, we summarize the known relations between CNS, LNS, and
existing principles in reverse mathematics. We also state some remaining open
questions. In Figure 5, and plain arrow from P to Q means that P implies Q
over RCA0, while a dotted arrow stands for an open implication.

ACA

WKL

WWKL

DNR

RT2
2

SRT2
2

CNS

LNS

OPT

Figure 1. Non-decreasing subsequences in reverse mathematics

We wonder about the two remaining open implications between Ramsey’s
theorem for pairs and the non-decreasing sequence statements.

Question 5.1 Does CNS imply RT2
2 over RCA0?

Question 5.2 Does RT2
2 imply LNS over RCA0?

The same questions hold for ω-models and over computable reducibility.
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