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Abstract. Satisfiability problems play a central role in computer science and
engineering as a general framework for studying the complexity of various
problems. Schaefer proved in 1978 that truth satisfaction of propositional
formulas given a language of relations is either NP-complete or tractable. We
classify the corresponding satisfying assignment construction problems in the
framework of Reverse Mathematics and show that the principles are either
provable over RCA0 or equivalent to WKL0. We formulate also a Ramseyan
version of the problems and state a different dichotomy theorem. However,
the different classes arising from this classification are not known to be dis-
tinct.

1 Introduction

A common way to solve a constrained problem in industry consists of reducing it to a
satisfaction problem over propositional logic and using a SAT solver. The generality
of the framework and its multiple applications make it a natural subject of interest
for the scientific community and constraint satisfaction problems remains an active
field of research.

In 1978, Schaefer [9] gave a great insight in the understanding of the com-
plexity of satisfiability problems by studying a parameterized class of problems and
showing they admit a dichotomy between NP-completeness and tractability. Many
other dichotomy theorems have been proven since, about refinements to AC0 re-
ductions [1], variants about counting, optimization, 3-valued domains and many
others [4,7,3]. The existence of dichotomies for n-valued domains with n > 3 re-
mains open.

Reverse Mathematics is a vast program of classification of the strength of math-
ematical theorems by emphasizing on their computational content. This study has
led to the main observation that many theorems are computationally equivalent to
one of four axioms. On particular axiom is Weak König’s lemma (WKL0) which al-
lows formalization of many compactness arguments and the solution of many satis-
fiability problems. We believe that studying constraint satisfaction problems within
this framework can lead to insights in both fields: in Reverse Mathematics, we can
exploit the generality of constraint satisfaction problems to compare existing prin-
ciples by reducing them to satisfaction problems. In CSP, Reverse Mathematics can
yield a better understanding of the computational strength of satisfiability problems



for particular classes of formulas. In particular we answer to the question of Marek
& Remmel [8] whether there exists dichotomy theorems for infinite recursive ver-
sions of constraint satisfaction problems.

Definition 1. As set of Boolean formulas C is satisfiable if every conjunction of a finite
set of formulas in C is satisfiable. SAT is the statement “for every satisfiable set C of
Boolean formulas over an infinite set of variables V there is an infinite assignment
ν : V → {T,F} satisfying C.” The pair (V, C) forms an instance of SAT.

The weak system on which relations are based is called RCA0, standing for
Recursive Comprehension Axiom. It consists of basic Peano axioms together with a
comprehension scheme restricted to ∆0

1 formulas and an the induction restricted to
Σ0

1 formulas.

Theorem 2 (Simpson [10]). RCA0 `WKL0↔ SAT

RWKL, a weakening of WKL0, has been recently introduced by Flood in [5].
Given an infinite binary tree, the principle does not assert the existence of a path,
but rather of an infinite subset of a path in the tree. Initially called RKL, it has been
renamed to RWKL in [2] to give a consistent R prefix to Ramseyan principles. This
principle has been shown to be strictly weaker than SRT2

2 and WKL0 by Flood, and
stricly stronger than DNR by Bienvenu & al. in [2]. By analogy with RWKL, we
formulate Ramsey-type versions of satisfiability problems.

Definition 3. Let C be a set of Boolean formulas over an infinite set of variables V .
A set H is homogeneous for C if there is a c ∈ {T,F} such that every conjunction of
a finite set of formulas in C is satisfiable by a truth assignment ν such that (∀a ∈
H)(ν(a) = c).

Definition 4. LRSAT is the statement “ Let C be a satisfiable set of Boolean formulas
over an infinite set of variables V For every infinite set L ⊆ V there exists an infinite
set H ⊆ L homogeneous for C.” The corresponding instance of LRSAT is the tuple
(V, C , L). RSAT is obtained by restricting LRSAT to L = V . Then an instance of
RSAT is an ordered pair (V, C).

The equivalence between WKL0 and SAT over RCA0 extends to their Ramseyan
version. The proof is relatively easy and directly adaptable from proof of Theorem 2.

Theorem 5 (Bienvenu & al. [2]). RCA0 ` RWKL↔ RSAT↔ LRSAT

1.1 Definitions and notations

Some classes of Boolean formulas – bijunctive, affine, horn, ... – have been exten-
sively studied in Complexity Theory, leading to the well-known dichotomy theorem
due to Schaefer. We give a precise definition of those classes in order to state our
dichotomy theorems.



Definition 6. A literal is either a Boolean variable (positive literal), or its negation
(negative literal). A clause is a disjunction of literals. A clause is horn if it has at
most one positive literal, co-horn if it has at most one negative literal and bijunctive
if it has at most 2 literals. If we number Boolean variables, we can associate to each
Boolean formula ϕ with Boolean variables x1, . . . , xn a relation [ϕ] ⊆ {F,T}n such
that a ∈ [ϕ] iff ϕ(a). If S is a set of relations, an S-formula over a set of variables V
is a formula of the form R(y1, . . . , yn) for some R ∈ S and y1, . . . , yn ∈ V .

Example 7. Let S = {→}. (x → y) is an S-formula but (x → ¬y) is not. Neither is
(x → y)∧ (y → z). The formula (x → y) is equivalent to the horn clause (¬x ∨ y)
where the literals are ¬x and y .

Definition 8. A formula ϕ is i-valid for i = 0,1 if ϕ(i, . . . , i) is true. It is horn (resp.
co-horn, bijunctive) if it is a conjunction of horn (resp. co-horn, bijunctive) clauses.
A formula is affine if it is a conjunction of formulas of the form x1 ⊕ . . .⊕ xn = i for
i ∈ {0,1} where ⊕ is the exclusive or.

A relation R ⊆ {0,1}n is bijunctive (resp. horn, co-horn, affine, i-valid) if there
is bijunctive (resp. horn, co-horn, affine, i-valid) formula ϕ such that R = [ϕ]. A
relation R is i-default for i = 0, 1 if for every finite set I ⊆ N, if r ∈ R with r (k) = i
for every k ∈ I then s , defined by s(k) = 1−i for every k ∈ I and s(k) = i otherwise,
is also in R. In particular every i-default relation is i-valid, as witnessed by taking
I = ;. We denote by ISAT(S) the class of satisfiable conjunctions of S-formulas.

1.2 Dichotomies

Theorem 9 (Schaefer’s dichotomy [9]). Let S be a finite set of Boolean relations.
If S satisfies one of the conditions (a)− ( f ) below, then ISAT(S) is polynomial-time
decidable. Otherwise, ISAT(S) is log-complete in NP.

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) Every relation in S is horn

(d) Every relation in S is co-horn
(e) Every relation in S is affine.
(f) Every relation in S is bijunctive.

In the remainder of this paper, S will be a – possibly infinite – class of Boolean
relations. Note that there is no effectiveness requirement on S.

Definition 10. SAT(S) is the following statement: for every set C of S-formulas over
an infinite set of variables V such that every finite set C0 ⊆ C is satisfiable there is an
infinite assignment ν : V → {T,F} satisfying C.

We will prove the following dichotomy theorem based on Schaefer’s theorem.

Theorem 11. If S satisfies one of the conditions (a) − (d) below, then SAT(S) is
provable over RCA0. Otherwise SAT(S) is equivalent to WKL0 over RCA0.

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) If R ∈ S is not 0-default then R= [x].



(d) If R ∈ S is not 1-default then R= [¬x].

SAT(S) principles are not fully satisfactory as these are not robust notions: if we
define SAT(S) in terms of satisfiable sets of conjunctions of S-formulas, this yields
a different dichotomy theorems. In particular, RCA0 ` SAT([x], [¬y]) whereas
RCA0 ` SAT([x ∧ ¬y]) ↔ WKL0. Ramseyan versions of satisfaction problems
have better properties.

Definition 12. RSAT(S) is the following statement: for every satisfiable set C of S-
formulas over an infinite set of variables V , there is an infinite set H ⊆ V homogeneous
for C.

Usual reductions between satisfiability problems involve fresh variable introduc-
tions. This is why it is natural to define a localized version of those principles, i.e.
where the homogeneous set has to lie within a pre-specified set.

Definition 13. LRSAT(S) is the following statement: for every satisfiable set C of S-
formulas over an infinite set of variables V and every infinite set X ⊆ V , there is an
infinite set H ⊆ X homogeneous for C.

In particular, we define LRSAT(0-valid) (resp. LRSAT(1-valid), LRSAT(Horn),
LRSAT(CoHorn), LRSAT(Bijunctive) or LRSAT(Affine)) to denote LRSAT(S)where
S is the set of all 0-valid (resp. 1-valid, horn, co-horn, bijunctive or affine) relations.
We will prove the following dichotomy theorem.

Theorem 14. Either RCA0 ` LRSAT(S) or LRSAT(S) is equivalent to one of the
following principles over RCA0:

1. LRSAT
2. LRSAT([x 6= y])

3. LRSAT(Affine)
4. LRSAT(Bijunctive)

As we will see in Theorem 37, each of those principles are equivalent to their
non localized version. As well, LRSAT([x 6= y]) coincides with an already exist-
ing principle about bipartite graphs called RCOLOR2 and LRSAT is equivalent to
RWKL over RCA0. Hence LRSAT(S) is either provable over RCA0, or equivalent
to one of RCOLOR2, RSAT(Affine), RSAT(Bijunctive) and RWKL over RCA0.

2 Schaefer’s dichotomy theorem

Definition 15. Let S be a class of Boolean relations and V be a set of variables. Let
ϕ be an S-formula over V . We denote by Var(ϕ) the set variables occurring in ϕ. An
assignment for ϕ is a function ν : Var(ϕ)→ {T,F}. An assignment can be naturally
extended to a function over formulas by the natural interpretation rules for logical
connectives. Then an assignment ν satisfies ϕ if ν(ϕ) = T. The set of assignments of ϕ
is written Assign(ϕ). Variable substitution is defined in the usual way and is written
ϕ[y/x], meaning that all occurrences of x in ϕ are replaced by y. We will also write
ϕ[y/X ] where X is a set of variables to denote substitution of all occurrences of a
variable of X in ϕ by y. A constant is either 0 or 1.



Definition 16. Let S be a class of relations over Booleans. The class of existentially
quantified S-formulas with constants – i.e. of the form (∃x )ϕ[x , y ,T,F] with ϕ ∈ S
– is denoted by Gen(S). We also define Rep(S) = {[R] : R ∈ Gen(S)}, ie. the relations
represented by existentially quantified S-formula with constants. By abuse of notation,
we may use Rep(R) when R is a relation to denote Rep({R}). We can also define similar
relations without constants, denoted by GenNC and RepNC .

Lemma 17 (Schaefer in [9, 4.3]). At least one of the following holds:

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) [x] and [¬x] are contained in RepNC(S).
(d) [x 6= y] ∈ RepNC(S).

One easily sees that if every relation in S is 0-valid (resp. 1-valid) then RCA0 `
SAT(S) as the assignment always equal to F (resp. T) is a valid assignment and
is computable. We will now see that problems parameterized by relations either
0-default or [x] (resp. 1-default or [¬x]) are also solvable.

Lemma 18. If the only relation in S which is not 0-default is [x] or the only relation
which is not 1-default is [¬x] then RCA0 ` SAT(S).

The strategy for solving such an instance (V, C) of SAT(S) consists in defining
an assignment which given a variable x will give it the default value F unless it
finds the clause (x ∨ x) ∈ C .

Lemma 19. If [x 6= y] ∈ RepNC(S) then RCA0 `WKL0↔ SAT(S).

Lemma 19 holds because SAT([x 6= y]) can be seen as a reformulation of
COLOR2 which is equivalent to WKL0 over RCA0 [6].

Theorem 11 is proven by a case analysis using Lemma 17, by noticing that when
we are not in cases already handled by Lemma 18 and Lemma 19, we can find n-
ary formulas encoding [x] and [¬x] with n ≥ 2. Thus diagonalizing against some
values becomes a Σ0

1 event.

3 Ramsey-type Schaefer’s dichotomy theorem

Proof of Theorem 14 can be split into four steps, each of them being dichotomies
themselves. The first one, Theorem 22, states the existence of a gap between prov-
ability in RCA0 and implying RCOLOR2 over RCA0. Then we focus successively
on two classes of boolean formulas: bijunctive formulas (Theorem 29) and affine
formulas (Theorem 33) whose corresponding principles happen to be either a con-
sequence of RCOLOR2 or equivalent to the full class of bijunctive (resp. affine)
formulas. Remaining cases are handled by Theorem 34. We first state a trivial rela-
tion between a satisfaction principle and its Ramseyan version.

Lemma 20. RCA0 ` SAT(S)→ LRSAT(S)

Lemma 21. Let T be a c.e. set of Boolean relations such that [x 6= y] ∈ RepNC(T ). If
S ⊆ RepNC(T ∪ {[x], [¬x]}) then RCA0 ` LRSAT(T )→ LRSAT(S).



3.1 From provability to LRSAT([x 6= y])

Our first dichotomy for Ramseyan principles is between RCA0 and LRSAT([x 6=
y]).

Theorem 22. If S satisfies one of the conditions (a)-(d) below then RCA0 ` LRSAT(S).
Otherwise RCA0 ` LRSAT(S)→ LRSAT([x 6= y]).

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.

(c) Every relation in S is horn.
(d) Every relation in S is co-horn.

Lemma 23 (Schaefer in [9, 3.2.1]). If S contains some relation which is not horn
and some relation which is not co-horn, then [x 6= y] ∈ Rep(S).

Lemma 24. At least one of the following holds:
(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) Every relation in S is horn.

(d) Every relation in S is co-horn.
(e) [x 6= y] ∈ RepNC(S).

Proof. Assume none of cases (a), (b) and (e) holds. Then by Lemma 17, [x] and
[¬x] are contained in RepNC(S), hence RepNC(S) = Rep(S). So by Lemma 23, either
every relation in S is horn, or every relation in S is co-horn. ut

It is easy to see that LRSAT(0-valid) and LRSAT(1-valid) both hold over RCA0.
We will now prove that so do LRSAT(Horn) and LRSAT(CoHorn), but first we must
introduce the powerful tool of closure under functions.

Definition 25. We say that a relation R ⊆ {0,1}n is closed or invariant under an
m-ary function f and that f is a polymorphism of R if for every m-tuple




v1, . . . , vm
�

of vectors of R, f (v1, . . . , vm) ∈ R where f is the coordinate-wise application of the
function f .

We denote the set of all polymorphisms of R by Pol (R), and for a set Γ of
Boolean relations we define Pol (Γ ) =

�

f : f ∈ Pol (R) for every R ∈ Γ
	

. Similarly
for a set B of Boolean functions, Inv (B) = {R : B ⊆ Pol (R)} is the set of invariants
of B. For any set S of Boolean relations, Pol (R) is in Post’s lattice.

Definition 26. The conjunction function conj : {0, 1}2→ {0, 1} is defined by conj(a, b) =
a ∧ b, the disjunction function disj : {0,1}2 → {0,1} by disj(a, b) = a ∨ b, the affine
function aff : {0, 1}3→ {0, 1} by aff(a, b, c) = a⊕ b⊕ c = 1 and the majority function
maj : {0,1}3→ {0,1} by maj(a, b, c) = (a ∧ b)∨ (a ∧ c)∨ (b ∧ c).

The following theorem due to Schaefer characterizes relations in terms of clo-
sure under some functions. The proof involves finite objects and hence can be easily
proven to hold over RCA0.

Theorem 27 (Schaefer [9]). A relation is

1. horn iff it is closed under conjunction function
2. co-horn iff it is closed under disjunction function
3. affine iff it is closed under affine function



4. bijunctive iff it is closed under majority function

In other words, using Post’s lattice, a relation R is horn iff E2 ⊆ Pol (R), co-horn
iff V2 ⊆ Pol (R), affine iff L2 ⊆ Pol (R) and bijunctive iff D2 ⊆ Pol (R).

Theorem 27 is powerful because it does not only imply the closure of valid
assignments under some functions. As we will see in Theorem 37, this can be in-
terpreted as “the localized version of the principles parametrized by one of classes
1-4 is not stronger than their corresponding non-localized versions”. The closure of
valid assignments under some functions enables us to prove Theorem 28 below.

Theorem 28. If every relation in S is horn (resp. co-horn) then RSAT ` LRSAT(S).

Proof. We will prove it over RCA0 for the horn case. The proof for co-horn relations
is similar. Let (V, C , L) be an instance of LRSAT(Horn) and F ⊆ L be the collec-
tion of variables x ∈ L such that there is a finite C f in ⊆ C for which every valid
assignment ν for C f in satisfies ν(x) = T.

Case 1: F is infinite. Because F is Σ0
1 , we can take a infinite ∆0

1 subset of F as
homogeneous set for C with color T.

Case 2: F is finite. We take H = L r F as infinite set homogeneous for C with
color F. If H is not homogeneous for C , then there exists a finite C f in ⊆ C witnessing
it. Let H f in = Var(C f in) ∩ H. For every valid assignment ν for C f in, there is an
x ∈ H f in such that ν(x) = T. By definition of H, for each x ∈ H there is a valid
assignment νx such that νx(x) = F. By Theorem 27, the class valid assignments
of a finite horn formula is closed under conjunction. So ν =

∧

x∈H f in
νx is a valid

assignment for C f in such that ν(x) = F for each x ∈ H f in. Contradiction. ut

Proof (of Theorem 22). If every relation in S is 0-valid (resp. 1-valid) then LRSAT(S)
holds obviously over RCA0. If every relation in S is horn (resp. co-horn) then by
Theorem 28, LRSAT(S) holds also over RCA0. By Lemma 24, it remains the case
where [x 6= y] ∈ RepNC(S). By Lemma 21, RCA0 ` LRSAT(S)→ LRSAT([x 6= y]).

ut

3.2 Bijunctive satisfiability

Our second dichotomy theorem concerns bijunctive relations. Either the related
principle is a consequence of LRSAT([x 6= y]) over RCA0, or it has full strength
of LRSAT(Bijunctive). In the remaining of this subsection, we will assume that S
contains only bijunctive relations and [x 6= y] ∈ RepNC(S). In other words we
suppose that D2 ⊆ Pol (S)⊆ D.

Theorem 29. If S contains only affine relations then RCA0 ` LRSAT([x 6= y]) →
LRSAT(S). Otherwise RCA0 ` LRSAT(S)↔ LRSAT(Bijunctive).

Definition 30. For any set S of relations, the co-clone of S is the closure of S by
existential quantification, equality and conjunction. We denote it by 〈S〉.



Remark that in general, RepNC(S) may be different from 〈S〉 if [x = y] 6∈
RepNC(S). However in our case, we assume that [x 6= y] ∈ RepNC(S), hence [x =
y] ∈ RepNC(S) and RepNC(S) = 〈S〉. The following property will happen to be very
useful for proving that a relation R ∈ RepNC(S).

Lemma 31 (Folklore). Inv (Pol (S)) = 〈S〉

Lemma 32. One of the following holds:

(a) RepNC(S) contains all bijunctive relations.
(b) S ⊆ RepNC(

�

[x], [x 6= y]
	

).

Proof. By hypothesis, D2 ⊆ Pol (S) ⊆ D. Either D1 ⊆ Pol (S) – meaning that every
relation in S is affine – in which case S ⊆ Inv

�

D1
�

= RepNC(
�

[x], [x 6= y]
	

). Or
Pol (S) = D2. Then RepNC(S) = 〈S〉= Inv (Pol (S)) = Inv

�

D2
�

which is the set of all
bijunctive relations. ut

Proof (of Theorem 29). By Lemma 32, either RepNC(S) contains all bijunctive rela-
tions or S ⊆ RepNC(

�

[x], [x 6= y]
	

). In the latter case, by Lemma 21 LRSAT([x 6=
y]) implies LRSAT(S) over RCA0. In the former case, there exists a finite basis
S0 ⊆ S such that RepNC(S0) contains all bijunctive relations. In particular S0 is a
c.e. set, so RCA0 ` LRSAT(S0)→ LRSAT(Bijunctive). Any instance of LRSAT(S0)
being an instance of LRSAT(S), RCA0 ` LRSAT(S)→ LRSAT(Bijunctive). The re-
verse implication follows directly from the assumption that every relation in S is
bijunctive. So RCA0 ` LRSAT(S)↔ LRSAT(Bijunctive). ut

3.3 Affine satisfiability

We now suppose that L2 ⊂ Pol (S) ( D, i.e. S contains only affine relations, [x 6=
y] ∈ RepNC(S) and S contains a relation which is not bijunctive.

Theorem 33. RCA0 ` LRSAT(S)↔ LRSAT(Affine)

Proof. By assumption, every relation in S is affine. Hence RCA0 ` LRSAT(Affine)→
LRSAT(S). As L2 ⊆ Pol (S) ( D, Pol (S) is either L3 or L2. In particular, Pol(S ∪
{[x], [¬x]}) = L2. Considering the corresponding invariants, Inv

�

L2
�

⊆ Inv(Pol(S∪
{[x], [¬x]})) = 〈S ∪ {[x], [¬x]}〉 = RepNC(S ∪ {[x], [¬x]}). Inv

�

L2
�

being the set
of affine relations, by Lemma 21, RCA0 ` LRSAT(S)→ LRSAT(Affine). ut

3.4 Remaining cases

Based on Post’s lattice, the only remaining cases are Pol (S) = N2 or Pol (S) = I2.

Theorem 34. If Pol (S)⊆ N2 then RCA0 ` LRSAT(S)↔ LRSAT.

Proof. The direction RCA0 ` LRSAT → LRSAT(S) is obvious. We will prove the
converse. Because Pol (S)⊆ N2, Pol (S ∪ {[x]}) = I2. RepNC(S∪{[x]}) = 〈S ∪ {[x]}〉=
Inv (Pol (S ∪ {[x]})) ⊇ Inv

�

I2
�

. But Inv
�

I2
�

is the set of all Boolean relations. As
Inv
�

I2
�

has a finite basis, there exists a finite S0 ⊆ S such that RepNC(S0 ∪ {[x]})
contains all Boolean relations. By Lemma 21, RCA0 ` LRSAT(S0)→ LRSAT. Hence
RCA0 ` LRSAT(S)↔ LRSAT. ut



Proof (of Theorem 14). By case analysis over Pol (S). If I1, I0, V2 and E2 are in-
cluded in Pol (S) then by Theorem 22, RCA0 ` LRSAT(S). If D1 ⊆ Pol (S) ⊆ D
then RCA0 ` LRSAT(S)↔ LRSAT([x 6= y]) by Theorem 29. By the same the-
orem, if Pol (S) = D2 then RCA0 ` LRSAT(S) ↔ LRSAT(Bijunctive). If L2 ⊆
Pol (S) ⊆ L3 then by Theorem 33, RCA0 ` LRSAT(S)↔ LRSAT(Affine). Other-
wise, I2 ⊆ Pol (S)⊆ N2 in which case RCA0 ` LRSAT(S)↔ LRSAT. ut

In fact, LRSAT([x 6= y]) coincides with an already existing principle about
bipartite graphs. For k ∈ N, we say that a graph G = (V, E) is k-colorable if there is
a function f : V → k such that (∀(x , y) ∈ E)( f (x) 6= f (y)), and we say that a graph
is finitely k-colorable if every finite induced subgraph is k-colorable.

Definition 35. Let G = (V, E) be a graph. A set H ⊆ V is homogeneous for G if every
finite V0 ⊆ V induces a subgraph that is k-colorable by a coloring that colors every
v ∈ V0 ∩ H color 0. LRCOLORk is the following statement: for every infinite, finitely
k-colorable graph G = (V, E) and every infinite L ⊆ V there is an infinite H ⊆ L that
is homogeneous for G. RCOLORk is the restriction of LRCOLORk with L = V . An
instance of LRCOLORk is a pair (G, L). For RCOLORk, it is simply the graph G.

Theorem 36. RCA0 ` RCOLOR2↔ LRSAT([x 6= y])

4 The strength of satisfiability

Localized principles are relatively easy to manipulate as they can express relations
defined using existential quantifier by restricting the localized set L to the variables
not captured by any quantifier. However we will see that when the set of relations
has some good closure properties, the unlocalized version of the principle is as
expressive as its localized one.

Theorem 37. Let S be a c.e. co-clone. RCA0 ` RSAT(S)↔ LRSAT(S)

Noticing that affine (resp. bijunctive) relations form a co-clone, we immediately
deduce the following corollary.

Corollary 38. RSAT(Affine) and RSAT(Bijunctive) are equivalent to their local ver-
sion over RCA0.

A useful principle below WKL0 for studying the strength of a statement is the
notion of diagonally non-computable function.

Definition 39. A total function f is diagonally non-computable if (∀e) f (e) 6= Φe(e).
DNR is the corresponding principle, i.e. for every X , there exists a function d.n.c.
relative to X .

DNR is known to coincide with the restriction of RWKL to trees of positive
measure ([5,2]). On the other side, there exists an ω-model of DNR which is not
a model of RCOLOR2 ([2]). We will now prove that we can compute a diagonally
non-computable function from any infinite set homogeneous for a particular set of
affine formulas. As RSAT implies LRSAT(Affine) over RCA0, it gives another proof
of RCA0 ` RWKL→DNR.



Theorem 40. There exists a computable set C of affines formulas over a computable
set V of variables such that every infinite set homogeneous for C computes a diagonally
non-computable function.

Corollary 41. RCA0 ` RSAT(Affine)→DNR.

5 Conclusions

Satisfaction principles happen to collapse in the case of a full assignment existence
statement. The definition is not robust and the conditions of the corresponding di-
chotomy theorem evolve if we make the slight modification of allowing conjunctions
in our definition of formulas.

However, the proposed Ramseyan version leads to a much more robust di-
chotomy theorem with four main subsystems. The conditions of “tractability” – here
provability over RCA0 – differ from those of Schaefer dichotomy theorem but the
considered classes of relations remain the same. We obtain the surprising result that
infinite versions of Horn and co-Horn satisfaction problems are provable over RCA0
and strictly weaker than bijunctive and affine corresponding principles, whereas the
complexity classification of [1] has shown that Horn satisfiability was P-complete
under AC0 reduction, hence at least as strong as Bijunctive satisfiability which is
NL-complete.

Question 42. Does RCOLOR2 imply DNR over RCA0 ? Does it imply RWKL ?
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