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Abstract. We prove the following result: there is a family R = 〈R0, R1, . . .〉
of subsets of ω such that for every stable coloring c : [ω]2 → k hyperarithmeti-
cal in R and every finite collection of Turing functionals, there is an infinite
homogeneous set H for c such that none of the finitely many functionals map
R⊕H to an infinite cohesive set for R. This provides a partial answer to a ques-
tion in computable combinatorics, whether COH is omnisciently computably
reducible to SRT2

2.

1. Introduction

The SRT2
2 vs. COH problem is a question in computable combinatorics that aims

to clarify the relationship between two well-studied combinatorial consequences of
Ramsey’s theorem for pairs in terms of their effective content. Recently solved in its
original form by Monin and Patey [15], it has given rise to several related and more
general problems, as we detail further below. In this article, we establish a new
partial results towards the resolution of one of the principal outstanding questions
in this inquiry.

For completeness, and also to fix some notation, we begin by briefly reviewing
the most relevant definitions below. We refer the reader to Hirschfeldt [11, Chapter
6] for a more thorough discussion and overview of computable combinatorics. We
assume familiarity with computability theory and reverse mathematics, and refer
to Soare [21] and Simpson [20], respectively, for background on these subjects. We
also assume the basics of Weihrauch reducibility and computable reducibility, and
refer, e.g., to Brattka, Gherardi, and Pauly [1] for a detailed survey, or, e.g., to
Cholak, Dzhafarov, Hirschfeldt, and Patey [3, Section 1] for an introduction aimed
more specifically at the kinds of questions we will be dealing with here.

Definition 1.1. Fix numbers n, k ≥ 1.

(1) For every set X ⊆ ω, let [X]n = {〈x0, . . . , xn−1〉 ∈ ωn : x0 < · · · < xn−1}.
(2) A k-coloring of [ω]n is a map c : [ω]n → {0, . . . , k − 1}.
(3) A set H ⊆ ω is homogeneous for c if c ↾[H]n is constant.
(4) A k-coloring of [ω]2 is stable if limy c(〈x, y〉) exists for all x ∈ ω.
(5) A set L ⊆ ω is limit-homogeneous for a stable c : [ω]2 → k if limy c(x, y) is

the same for all x ∈ L.

When n = 2, we call c : [ω]2 → k a k-coloring of pairs, or simply a coloring of pairs
if k is understood. We will write c(x, y) in place of c(〈x, y〉).
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The following definition is somewhat nonstandard and technical, but it will sim-
plify the presentation in the sequel.

Definition 1.2. Let R = 〈r0, r1, . . .〉 be a family of functions ri : ω → ω.

(1) R is a bounded family of functions if for all n there is a k so that ran(rn) < k.
(2) For k ∈ ω, R is a k-bounded family of functions if rn(x) < k for all n and x.
(3) A set X is cohesive for R if for each n there is a y ∈ ω such that fn(x) = y

for all but finitely many x ∈ X.

The more typical definition of cohesiveness is with respect to a family 〈R0, R1, . . .〉
of subsets of ω, for which a set X is cohesive if for each n, either X ∩Rn or X ∩Rn

is finite. Of course, if we identify sets with their characteristic functions then we
see that this is just the same as being cohesive for a 2-bounded family of functions.
We return to this below.

We follow the now-standard practice of regarding Π1
2 statements of second-order

arithmetic as problems, equipped with a set of instances, and for each instance, a
set of solutions, all coded or represented by subsets of 2ω (see [3], Definition 1.1).
This facilitates their study both in the framework of reverse mathematics and in
terms of Weihrauch and computable reducibilities. We shall not be explicit about
this identification moving forward, as it is obvious for all of the principles we will
be looking at. These are the following.

Definition 1.3.

(1) Ramsey’s theorem is the statement that for all n, k ≥ 1, every c : [ω]n → k
has an infinite homogeneous set.

(2) Stable Ramsey’s theorem for pairs, denoted SRT2
<∞, is the restriction of

Ramsey’s theorem to stable colorings of pairs.
(3) The ∆0

2 subset principle, denoted D2
<∞, is the statement for all k ≥ 1, every

stable c : [ω]2 → k has an infinite limit-homogeneous set.
(4) The cohesiveness principle for bounded families, denoted COHω, is the prin-

ciple that every bounded family of functions has an infinite cohesive set.
(5) For fixed n, k ≥ 1, RTn

k denotes the restriction of Ramsey’s theorem to
k-colorings of [ω]n.

(6) For fixed k ≥ 1, SRT2
k and D2

k denote the restrictions of SRT2
<∞ and D2

<∞,
respectively, to k-colorings.

(7) For fixed k ≥ 1, COHk is the restriction of COHω to k-bounded families of
functions.

For n = 2, the traditional notation for COH2 is COH, and we shall follow this
below. However, we can really use the various restrictions of COHω defined above
interchangeably, as the following lemma shows.

Lemma 1.4. For all k ≥ 2, we have COH ≡sW COHk ≡sW COHω.

Proof. Obviously, COH ≤sW COHk ≤sW COHω. It remains only to show that
COHω ≤sW COH. For all k, y ∈ ω, let yk be y written in binary, either truncated or
prepended by 0s to have exactly ┌log2 k┐ many digits. We view yk as a string, and
write yk(i) for its ith digit. Now fix a bounded family of functions R = 〈r0, r1, . . .〉.
Let b : ω → ω be the function b(n) = (µk)(∀x)[rn(x) < k] for all n ∈ ω. Then b is
uniformly R′-computable. So we can fix a uniformly R-computable approximation
!b : ω2 → ω to b, so that lims

!b(n, s) = b(n) for all n. Define a 2-bounded family of
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functions R′ = 〈r′0, r′1, . . .〉 as follows: for all m,x ∈ ω,

r′m(x) =

"
rn(x)!b(n,s)(i) if (∃n, s ∈ ω)(∃i < ┌log2!b(n, s)┐) m = 〈!b(n, s), i〉
0 otherwise.

Then R′ is a uniformly R-computable, and it is not difficult to see that every infinite
cohesive set for R′ is also cohesive for R. This completes the proof. □
A well-known fact about COH (in the parlance of Definitions 1.2 and 1.3) is that
if X computes an infinite cohesive set for some 2-bounded family of functions R =
〈r0, r1, . . .〉, then so does any set Y satisfying R ≤T Y and X ′ ≤T Y ′. By the
preceding lemma, we see that the same holds for any bounded family of functions.

The relationship between the stable Ramsey’s theorem and the cohesiveness
principle is the focus of a longstanding and ongoing investigation (see, e.g., [2,
3, 6, 8, 9, 10, 12, 13, 14, 16, 17]). We refer the reader to [3, Section 1] for a
discussion of some of the history of these principles, and their larger significance
in the exploration of the logical strength of combinatorial principles. For many
years, the central open question in this investigation was the so-called SRT2

2 vs.
COH problem, which asked whether every ω-model of SRT2

2 also satisfy COH. The
answer was recently shown to be no.

Theorem 1.5 (Monin and Patey [15]). There exists an ω-model of SRT2
2 in which

COH fails.

The quest to obtain this solution, by multiple authors, gave rise many related
questions, many of which hint more deeply at the combinatorial nature of the
relationship between SRT2

2 and COH, and which remain open. Our focus in this
paper will be on a question that has arguably emerged as the most central among
these. We first recall the definition of omniscient reducibility, introduced by Monin
and Patey [14, Section 1.1].

Definition 1.6. Let P and Q be problems.

(1) P is omnisciently computably reducible to Q if for every P-instance X there

is a Q-instance !X with the property that if !Y is any Q-solution to !X then

X ⊕ !Y computes a P-solution to X.
(2) P is omnisciently Weihrauch reducible to Q if there is a Turing functional Ψ

such that for every P-instance X there is a Q-instance !X with the property

that if !Y is any Q-solution to !X then Ψ(X ⊕ !Y ) is a P-solution to X.

The reductions above are strong if the relevant computation of a P-solution to X

works with just !Y as an oracle, rather than X ⊕ !Y .

Question 1.7. Is COH omnisciently computably reducible to D2
2, or to D2

<∞?

We can at first compare this to the question of whether COH is simply com-
putably reducible to D2

<∞ (or D2
k for some k). Here, the answer is no. Indeed, it is

easy to see that SRT2
<∞ ≡c D2

<∞, and that for each specific k, also SRT2
k ≡c D2

k.

Thus, in the computable reducibility question we could replace D2
<∞ by SRT2

<∞
(or D2

k by SRT2
k), and then the answer follows by Theorem 1.5 since computable

reducibility implies implication over ω-models. (Alternatively, it is easy to see that
over ω-models, D2

k, D
2
<∞, SRT2

k, and SRT2
<∞ are equivalent, for all k ≥ 2.)

Omniscient computable reducibility is more sensitive. While Question 1.7 is
open, if we replace D2

2 by SRT2
2 there then the answer is known: COH is omnisciently
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computably reducible even to SRT2
2 (see [3], Proposition 2.2). On the other hand,

we can replace D2
2 by RT1

2, as these are easily seen to be omnisciently computably
equivalent, and similarly for D2

<∞ and RT1
<∞. Here, it will be easier to work with

D2
k and D2

<∞, so the rest of our discussion is formulated in terms of these principles.
For completeness, we note also that Dzhafarov [8, Theorem 3.2 and Corollary

3.5] showed that SRT2
2 is not omnisciently Weihrauch, or strongly omnisciently

computably, reducible to D2
<∞, while Patey [17, Corollary 3.3] showed that for all

k > ℓ ≥ 1, D2
k is not strongly omnisciently computably reducible to SRT2

ℓ . Thus,
the relationships between different versions of the stable Ramsey’s theorem and the
∆0

2 subset principle in terms of known reducibilities are fully understood.
As described in [3, Sections 1 and 2], Question 1.7 seems to encompass the

true combinatorial core of the relationship between cohesiveness and homogeneity.
Adapting the techniques from Monin and Patey’s resolution of the SRT2

2 vs. COH
problem, or the techniques from earlier, partial solutions by Dzhafarov [8] and
Dzhafarov, Patey, Solomon, and Westrick [10] (who established that COH ≰W

SRT2
<∞ and COH ≰sc SRT2

<∞, respectively) has so far proved difficult. There is
thus a wide gap between the current results and Question 1.7. Our approach here is
to narrow this gap by allowing for multiple functionals in the “backward” direction.
For succinctness, we introduce the following definition:

Definition 1.8. Let P and Q be problems.

(1) P is Weihrauch reducible to Q with finitely many functionals if there is a
Turing functional Φ such that for every P-instance X there is a finite set of

Turing functionals Ψ0, . . . ,Ψt−1 such that Φ(X) is a Q-instance and if !Y is

any Q-solution to Φ(X) then there is a t < s with Ψt(X ⊕ !Y ) a P-solution
to X.

(2) P is computably reducible to Q with finitely many functionals if for every

P-instance X there is a Q-instance !X ≤T X and a finite set of Turing

functionals Ψ0, . . . ,Ψt−1 such that if !Y is any Q-solution to !X then there

is a t < s with Ψt(X ⊕ !Y ) a P-solution to X.
(3) P is hyperarithmetically computably reducible to Q with finitely many func-

tionals if for every P-instance X there is a Q-instance !X hyperarithmetical

in X and a finite set of Turing functionals Ψ0, . . . ,Ψt−1 such that if !Y is

any Q-solution to !X then there is a t < s with Ψt(X ⊕ !Y ) a P-solution to
X.

(4) P is omnisciently computably reducible to Q with finitely many functionals

if for every P-instance X there is a Q-instance !X and a finite set of Turing

functionals Ψ0, . . . ,Ψt−1 such that if !Y is any Q-solution to !X then there

is a t < s with Ψt(X ⊕ !Y ) a P-solution to X.
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The basic relationships between the above reducibilities are as follows:

P ≤W Q =⇒ P is Weihrauch reducible to Q with finitely many functionals

=⇒ P is computably reducible to Q with finitely many functionals

=⇒ P is hyperarithmetically reducible to Q with finitely many
functionals

=⇒ P is omnisciently computably reducible to Q with finitely mamy
functionals

=⇒ P is omnisciently computably reducible to Q.

Note also that while Weihrauch reducibility with finitely many functionals is a
generalization of Weihrauch reducibility, computable reducibility with finitely many
functionals is a restriction of computable reducibility. A good example here is to
look at SRT2

2 and D2
2: as mentioned, SRT2

2 ≰W D2
2, but it is easy to see that SRT2

2

is Weihrauch reducible to D2
2 with finitely many (in fact, two) functionals. We can

now state our main result:

Theorem 1.9. COH is not hyperarithmetically computably reducible to D2
<∞ with

finitely many functionals.

That is, we build a family of sets G = 〈G0, G1, . . .〉 such that for every stable
coloring hyperarithmetical in G and every finite collection of Turing functionals
Ψ0, . . . ,Ψs−1, there exists an infinite limit-homogeneous set H for c such that
Ψt(G⊕H) is not an infinite cohesive set for G, for any t < s.

Our construction will force the instance G of COH to be non-hyperarithmetical.
We do not know whether, in general, this is necessary, or whether there exists a
witness to Theorem 1.9 that is hyperarithmetical, or perhaps arithemtical or even
computable. Indeed, it is even possible that there is a computable instance of COH
witnessing a negative answer to Question 1.7.

The rest of this paper is dedicated to a proof of Theorem 1.9. For ease of
understanding, we organize this into two parts. In Section 2 we present a proof just
for the case of stable 2-colorings. Then, in Section 3, we explain how the argument
can be adapted to obtain the theorem in its full generality.

Note. The proof of Monin and Patey [15] of Theorem 1.5 was announced after
the original submission of this article. We have rewritten the introduction here to
reflect this fact.

2. Construction

Our approach uses an elaboration on the forcing methods introduced by Dzha-
farov [7] for building instances of COH, and by Cholak, Jockusch, and Slaman [4,
Section 4] for building solutions to D2

2. With respect to the latter, our proof here
has a crucial innovation. As in other applications, we force with Mathias condi-
tions, defined below. But here, our reservoirs are not computable or low, or indeed
absolute sets of any other kind. Rather, they are names for sets in the forcing
language we use to build our COH instance. This allows us to control not just the
COH instance and the D2

2 solution separately, as is done, e.g., in [7] or [10], but also
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to control their join. We refer the reader to Shore [19, Chapter 3] and Sacks [18,
Section IV.3] for background on forcing in arithmetic, and the latter specifically for
an introduction to forcing over the hyperarithmetic hierarchy.

In what follows, several notions of forcing are defined. When no confusion can
arise, we refer to the conditions and extension relation in each of these simply as
“conditions” and “extension”, without explicitly labeling these by the forcing itself.

2.1. Generic instances of COH.

Definition 2.1. Let P be the notion of forcing whose conditions are tuples p =
(σ0, . . . ,σ|p|−1, f) as follows:

• |p| ∈ ω;
• σn ∈ 3<ω for each n < |p|;
• f is a function |p| → 3 ∪ {u}.

A condition q = (τ0, . . . , τ|q|−1, g) extends p, written q ≤ p, if:

• |p| ≤ |q|;
• f ≼ g;
• σn ≼ τn for all n < |p|;
• if f(n) ∕= u for some n < |p| then τn(x) = f(n) for all x ∈ [|σn|, |τn|).

Given a P-condition p = (σ0, . . . ,σ|p|−1, f), we also write σp
n and fp for σn and

f , respectively. If G is a sufficiently generic filter on P then we can define

GG
n =

#

p∈G,|p|>n

σp
n

and GG =
$

n∈ω GG
n. Note that this is an instance of COH3, and that by genericity,

there are infinitely many n such that limx G
G
n(x) exists, and infinitely many n such

that limx G
G
n(x) does not exist.

The P forcing language and forcing relation are defined inductively as usual, and
we use Ġn and Ġ as names for GG

n and GG . More generally, we help ourselves to
names (or P-names) for all definable sets in the forcing language and use these as
parameters in other definitions.

Lemma 2.2. Let ϕ(Ġ) be a Σ0
2(Ġ) formula in the forcing language that is forced

by some condition p. Let q be the condition that is the same as p, only there is
some n < |p| such that fp(n) = u and fq(n) ∕= u. Then q forces ϕ(Ġ).

Proof. As we are employing strong forcing, it suffices to consider the case that
ϕ(Ġ) is Π0

1(Ġ). Thus, ϕ(Ġ) can be put in the form ¬(∃x)ψ(Ġ, x), where ψ has only
bounded quantifiers and has no free variables other than x. If q does not force this
formula then by definition there is some r ≤ q and some a ∈ ω such that r forces
ψ(Ġ, a). Now, as Ψ(Ġ, a) has no free variables, it can be put in quantifier-free
conjunctive normal form. But the fact that each clause in this conjunction is forced
by r depends only on the strings σr

0, . . . ,σ
r
|r|−1. So let r′ be the condition that is

the same as r, except that fr′(n) = fp(n) = u. Then r′ still forces Ψ(Ġ, a), and

hence also (∃x)ψ(Ġ, x). But r′ is an extension of p, and hence witnesses that p

could not force ¬(∃x)ψ(Ġ, x) or ϕ(Ġ), a contradiction. □

Lemma 2.3. If G is a sufficiently generic filter on P then there is no infinite
cohesive set for GG which is low over GG.
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Proof. By the remark following Lemma 1.4, it suffices to show that GG has no GG-
computable infinite cohesive set. Fix any functional ∆, and any condition p. We
exhibit an extension of p forcing that ∆(Ġ) is not an infinite cohesive set for Ġ.
This density fact and the genericity of G will yield the lemma. Let n = |p|. Let
q be any extension of p with |q| = n + 1 and fq(n) = u. If q forces that for each

i < 3 and each z ∈ ω there is an x > z such that ∆(Ġ)(x) ↓= 1 and Ġn(x) = i,
then we can take q to be the desired extension. So suppose otherwise. Then there
is an i < 3, a z ∈ ω, and an r ≤ q such that no extension of r forces that there is
an x > z with ∆(Ġ)(x) ↓= 1 and Ġn(x) = i. In this case, let s be the condition
that is the same as r, except that fs(n) = i. Then s ≤ p and forces that for all

x > max{x, |σs
n|} we have ∆(Ġ)(x) ≃ 0. □

In the next section, we assemble the pieces to diagonalize all stable colorings
hyperarithmetical in our generic instance GG of COH. We formualte the pieces for
a fixed hyperarithmetical operator Γ, and then apply them across all such operators
in the final proof. This forces our filter G to be hyperarithmetically generic, and
hence, as remarked earlier, GG to be non-hyperarithmetical.

2.2. Generic limit-homogeneous sets. Throughout this section, let Γ be a fixed
hyperarithmetical operator, and let Ψ0, . . . ,Ψs−1 be fixed Turing functionals. Let

pΓ be a fixed P-condition forcing that Γ(Ġ) is a stable coloring [ω]2 → 2 with no

infinite limit-homogeneous set which is low over Ġ. For each i < 2 we let Ȧi be a
name for the set {x ∈ ω : limy Γ(Ġ)(x, y) = i}.

Definition 2.4. Let QpΓ be the notion of forcing whose conditions are tuples

(p,D0, D1, İ) as follows:

• p is a P-condition extending pΓ;
• Di is a finite set for each i < 2, and p forces that Di ⊆ Ȧi;
• İ is a P-name, and p forces that İ is an infinite set which is low over Ġ,
and maxD0 ∪D1 < min İ.

A condition (q, E0, E1, J̇) extends (p,D0, D1, İ) if:

• q ≤ p;
• Di ⊆ Ei for each i < 2;
• q forces that Ei "Di ⊆ İ for each i < 2, and that J̇ ⊆ İ.

Thus, we can think of QpΓ -condition as p, together with a pair of Mathias condi-

tions, (D0, İ) and (D1, İ), that share a common reservoir.
For the remainder of this section, let Ψ0, . . . ,Ψs−1 be a fixed collection of Turing

functionals.

Lemma 2.5. The collection of P-conditions p∗ with the following property is dense
below pΓ: there exists a QpΓ-condition (p∗, D∗

0 , D
∗
1 , İ)∗ and a maximal subset M

of 2 × s such that for all 〈i, t〉 ∈ M , p∗ forces that there is a z ∈ ω such that

Ψt(Ġ⊕ (D∗
i ∪ F ))(x) ≃ 0 for all finite sets F ⊆ İ∗ and all x > z.

Proof. Let p ≤ pΓ be given. We exhibit a p∗ as above below p. Fix an enumeration
of all pairs 〈i, t〉 ∈ 2 × s. Define M0 = ∅, and and let (p0, D0

0, D
0
1, İ

0) be the QpΓ
-

condition (p, ∅, ∅, ω̇). By induction, suppose that we have defined Mk ⊆ 2 × s for

some k < 2s, along with some QpΓ -condition (pk, Dk
0 , D

k
1 , İ

k). Let 〈i, t〉 be the

(k+1)-st element of our enumeration of 2× s. If there is a condition (q, E0, E1, J̇)
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extending (pk, Dk
0 , D

k
1 , İ

k) such that q forces there is a z ∈ ω such that Ψt(Ġ ⊕
(Ei ∪ F ))(x) ≃ 0 for all finite sets F ⊆ J̇ and all x > z, let Mk+1 = Mk ∪ {〈i, t〉}
and let (pk+1, Dk+1

0 , Dk+1
1 , İk+1) be such a (q, E0, E1, J̇). Otherwise, let Mk+1 =

Mk and let (pk+1, Dk+1
0 , Dk+1

1 , İk+1) = (pk, Dk
0 , D

k
1 , İ

k). Clearly, M = M2s and

(p∗, D∗
0 , D

∗
1 , İ

∗) = (p2s, D2s
0 , D2s

1 , İ2s) satisfy the conclusion of the lemma. □

For the duration of this section, let (p∗, D∗
0 , D

∗
1 , İ

∗) and M as above be fixed.

Definition 2.6. Let Rp∗,D∗
0 ,D

∗
1 ,İ

∗ be the restriction of QpΓ
to conditions extending

(p∗, D∗
0 , D

∗
1 , İ

∗) of the form (p,D0, D1, İ
∗ ∩ [u,∞)).

To visually distinguish Rp∗,D∗
0 ,D

∗
1 ,İ

∗ -conditions from more general QpΓ -extensions

of (p∗, D∗
0 , D

∗
1 , İ

∗), we denote the Rp∗,D∗
0 ,D

∗
1 ,İ

∗ -condition (p,D0, D1, İ
∗ ∩ [u,∞)) by

(p,D0, D1, u). Note that (p∗, D∗
0 , D

∗
1 , İ

∗) is of course an Rp∗,D∗
0 ,D

∗
1 ,İ

∗ -condition.

We now assemble a couple of density facts that we will use to prove our theorem.

Lemma 2.7. Let (p,D0, D1, u) be an Rp∗,D∗
0 ,D

∗
1 ,İ

∗-condition. The collection of P-
condition q for which there exists an Rp∗,D∗

0 ,D
∗
1 ,İ

∗-condition (q, E0, E1, v) extending

(p,D0, D1, u), and satisfying |Ei| = |Di|+ 1 for each i < 2, is dense below p.

Proof. Fix any r ≤ p. Let q be any extension of r deciding, for each i < 2, if
there is an x ≥ u in İ∗ ∩ Ȧi. If for some i < 2, q forces that there is no such x,
then q forces that İ∗ ∩ [u,∞) ⊆ A1−i. But as q ≤ p∗, we have that q forces that

İ∗ is an infinite set which is low over Ġ, and hence that İ∗ ∩ [u,∞) is an infinite

set which is low over Ġ. But by assumption, pΓ forces that there is no such set
contained in Ȧ1−i, so since q ≤ pΓ this is a contradiction. Thus, it must be that q

forces, for each i < 2, that there is an x ≥ u in İ∗ ∩ Ȧi. We can thus fix an xi ≥ u
for each i < 2 such that q forces that xi ∈ İ∗ ∩ Ȧi. Let Ei = Di ∪ {xi} for each
i, and let v = max{x0, x1} + 1; then (q, E0, E1, v) witnesses that q is the desired
extension. □

The next lemma facilitates the crucial step of reflecting a Rp∗,D∗
0 ,D

∗
1 ,İ

∗ -condition

into P.

Lemma 2.8. Let (p,D0, D1, u) be an Rp∗,D∗
0 ,D

∗
1 ,İ

∗-condition, and assume that

fp(n) = u for some n ∈ [|p∗|, |p|). For all z ∈ ω, j < 3, and 〈0, t0〉, 〈1, t1〉 ∈
2× s"M , the collection of P-conditions q with the following property is dense be-
low p: there exists an Rp∗,D∗

0 ,D
∗
1 ,İ

∗-condition (q, E0, E1, v) extending (p,D0, D1, u)

and numbers i < 2 and x > z such that q forces that Ψti(Ġ ⊕ Ei)(x) ↓= 1 and

Ġn(x) = j.

Proof. Fix any r ≤ p. Consider the Π0
1(Ġ, İ∗) formula ψ(Ġ, İ∗, X0, X1) of two set

variables asserting:

• X0 and X1 partition İ∗ ∩ [u,∞);
• for each i < 2, each x > z, and each finite set F ⊆ Xi it is not the case
that Ψti(Ġ⊕ (Di ∪ F ))(x) ↓= 1 and Ġn(x) = j.

Let ϕ(Ġ, İ∗) be the formula (∃X0, X1)ψ(Ġ, İ∗, X0, X1). Then ϕ(Ġ, İ∗) is also

Π0
1(Ġ, İ∗), and we can thus fix some !r ≤ r that decides this formula.

Suppose first that !r forces ϕ(Ġ, İ∗). Let !r′ be the condition that is the same as

!r except that f!r′(n) = j for each i < 2. We claim that !r′ forces ϕ(Ġ, İ∗). Indeed,
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as ϕ(Ġ, İ∗) is Π0
1(Ġ, İ∗) and p∗ forces that İ∗ is low over Ġ, it follows that there

is a Σ0
2(Ġ) formula θ(Ġ) that p∗ forces is equivalent to ϕ(Ġ, İ∗). Since n ≥ |p∗|

we have that !r, !r′ ≤ p∗, and so this equivalence is still forced by !r and !r′. Thus,
!r forces θ(Ġ), and hence so does !r′ by Lemma 2.2. Now it follows that !r′ forces
ϕ(Ġ, İ∗), as desired.

By the uniformity of the low basis theorem, we can fix names Ẋ0 and Ẋ1 and a
condition !r′′ ≤ !r′ forcing that Ẋ0 ⊕ Ẋ1 is low over Ġ and ψ(Ġ, İ∗, Ẋ0, Ẋ1) holds.

We may further assume that !r′′ decides, for each i < 2, whether or not Ẋi is
infinite. Since !r′′ forces that İ∗ is infinite and Ẋ0 ∪ Ẋ1 = İ∗ ∩ [u,∞), we can fix

i < 2 such that !r′′ forces that Ẋi is infinite. But now consider the QpΓ -condition

(!r′′, D0, D1, Ẋi). This is an extension (in QpΓ) of (p∗, D∗
0 , D

∗
1 , İ

∗), and !r′′ forces
that Ψti(Ġ ⊕ (Di ∪ F ))(x) ↓≃ 0 for all finite subset F of Ẋi and all x > z. By
maximality of M , this means that 〈i, ti〉 should be in M , even though we assumed
it was not. This is a contradiction.

We conclude that !r actually forces ¬ϕ(Ġ, İ∗), and so some q ≤ !r must force

¬ψ(Ġ, İ∗, İ∗ ∩ [u,∞) ∩ Ȧ0, İ
∗ ∩ [u,∞) ∩ Ȧ1).

In particular, there is an i < 2, an x > z, and a finite set F such that q forces that
F ⊆ İ∗ ∩ [u,∞) ∩ Ȧi and that Ψti(Ġ ⊕ (Di ∪ F ))(x) ↓= 1 and Ġn(x) = j. Let
Ei = Di ∪F and E1−i = Ei, and let v = maxF . Then q is the desired extension of
r, as witnessed by (q, E0, E1, v). □

2.3. Putting it all together. We are now ready to prove the main theorem of
this section, which is Theorem 1.9 for stable 2-colorings. In fact, we prove following
stronger result which clearly implies it.

Theorem 2.9. Let G be a hyperarithmetically generic filter on P. Then for every
stable coloring c : [ω]2 → 2 hyperarithmetical in GG, and every finite collection of
Turing functionals Ψ0, . . . ,Ψs−1, there exists an infinite limit-homogeneous set L
for c such that Ψt(G

G ⊕ L) is not an infinite cohesive set for GG, for any t < s.

Proof. Let c and Ψ0, . . . ,Ψs−1 be given. Fix a hyperarithmetical operator Γ such
that c = Γ(GG). If c has an infinite limit-homogeneous set which is low over GG ,
then we can take this to be L and then we are done by Lemma 2.3. So assume
otherwise, and choose pΓ ∈ G forcing that Γ(Ġ) is a stable coloring [ω]2 → 2 with

no infinite limit-homogeneous set which is low over Ġ. Define Ȧ0, Ȧ1, and QpΓ
as

in the previous section. Since G is generic, we may fix a p∗ ∈ G, a QpΓ -condition

(p∗, D∗
0 , D

∗
1 , İ

∗), and a maximal subset M of 2 × s as in Lemma 2.5. We define a
sequence of Rp∗,D∗

0 ,D
∗
1 ,İ

∗ -conditions

(p0, D0,0, D0,1, u0) ≥ (p1, D1,0, D1,1, u1) ≥ (p2, D2,0, D2,1, u2) ≥ · · ·

with pz ∈ G for all z ∈ ω.
If there is an i < 2 such that 〈i, t〉 ∈ M for all t < s, let (p0, D0,0, D0,1, u0) =

(p∗, D∗
0 , D

∗
1 , İ

∗). Now given (pz, Dz,0, Dz,1, uz) for some z, apply Lemma 2.7 to find
an extension (pz+1, Dz+1,0, Dz+1,1, uz+1) with pz+1 ∈ G and |Dz+1,i| = |Dz,i| + 1
for each i < 2. Thus, L =

%
z∈ω Dz,i is an infinite limit homogeneous set for Γ(GG),

and by assumption, and the definition of M , we have Ψt(G
G⊕L)(x) ≃ 0 for all t < s

and all sufficiently large x. In particular, Ψt(G
G ⊕L) is not an infinite cohesive set

for GG , as desired.
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Now suppose that for each i < 2 there is at least one t < s with 〈i, t〉 /∈ M .
Let p0 be any extension of p∗ in G such that fp0(n) = u for some n ∈ [|p∗|, |p0|),
and denote the least such n by n0. Let D0

i = D∗
i for each i < 2, and u0 = 0,

so that (p0, D0,0, D0,1, u0) = (p0, D
∗
0 , D

∗
1 , İ

∗). Assume next that we have defined
(pz, Dz,0, Dz,1, uz) for some z. If z is even, define (pz+1, Dz+1,0, Dz+1,1, uz+1) as in
the preceding case, thereby ensuring that |Dz+1,i| = |Dz,i|+1 for each i < 2. Next,
suppose z is odd. Assume we have a fixed map h from the odd integers onto the
set

[({0}× s)× ({1}× s)"M2]× 3,

in which the pre-image of every element in the range is infinite. Say h(z) =
〈〈0, t0〉, 〈1, t1〉, j〉. We then apply Lemma 2.8 to find (pz+1, Dz+1,0, Dz+1,1, uz+1)
extending (pz, Dz,0, Dz,1, uz) with pz+1 ∈ G such that for some i < 2 and x > z we

have that pz+1 forces Ψti(Ġ⊕Dz+1,i)(x) ↓= 1 and Ġn0(x) = j.
Now, let Li =

%
z∈ω Dz,i for each i < 2, which is an infinite limit-homogeneous

set for Γ(GG). If, for each i < 2, there is ti < s such that Ψti(G
G ⊕ Li) is an

infinite cohesive set for GG , then by genericity of G and the definition of M , it
must be that 〈i, ti〉 /∈ M . For each j < 3, there are infinitely many odd numbers
z such that h(z) = 〈〈0, t0〉, 〈1, t1〉, j〉, and by construction, for each such z, there is
an i < 2 and an x > z such that Ψti(G

G ⊕ Li)(x) ↓= 1 and GG
n0
(x) = j. Denote

the least such i by iz. Thus, for each j < 3 there must be a kj < 2 such that
iz = kj for infinitely many z with h(z) = 〈〈0, t0〉, 〈1, t1〉, j〉. Fix j, j′ < 3 with
j ∕= j′ and kj = kj′ , and denote the latter by i. Then there are infinitely many x
such that Ψti(G

G ⊕ Li)(x) ↓= 1 and GG
n0
(x) = j, and infinitely many x such that

Ψti(G
G ⊕Li)(x) ↓= 1 and GG

n0
(x) = j′. Thus, Ψti(G

G ⊕Li) is not cohesive for G
G ,

a contradiction.
We conclude that there is an i < 2 such that Ψt(G

G ⊕ Li) is not an infinite
cohesive set for GG , for any t < s, as was to be shown. □

3. Extensions to arbitrary colorings

To prove Theorem 1.9 in full generality, we need to modify our construction of
the family G = 〈G0, G1, . . .〉. Specifically, whereas a 3-bounded family of functions
sufficed to defeat all potential stable 2-colorings, we will in general need a (k + 1)-
bounded family to defeat all stable k-colorings. For this reason, we introduce the
following modification of the forcing notion P defined earlier.

Definition 3.1. Let Pω be the notion of forcing whose conditions are tuples p =
(σ0, . . . ,σ|p|−1, b, f) as follows:

• |p| ∈ ω;
• σn ∈ ω<ω for each n < |p|;
• b is a function |p| → ω, and max ranσn < b(n) for all n < |p|;
• f is a function |p| → 3 ∪ {u}, and if f(n) ∕= u for some n < |p| then
f(n) < b(n).

A condition q = (τ0, . . . , τ|q|−1, c, g) extends p, written q ≤ p, if:

• |p| ≤ |q|;
• b ≼ c;
• f ≼ g;
• σn ≼ τn for all n < |p|;
• if f(n) ∕= u for some n < |p| then τn(x) = f(n) for all x ∈ [|σn|, |τn|).
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We write σp
n, b

p, fp for σn, b, and f , as before. It is clear that if G is a sufficiently
generic filter on Pω then GG =

$
GG

n, where again GG
n =

%
p∈G,|p|>n σ

p
n, is now an

instance of COHω. Everything else transfers from P to Pω analogously, with obvious
changes. In particular, this is true of Lemmas 2.2 and 2.3.

Now, fix a hyperarithmetical operator Γ, and Turing functionals Ψ0, . . . ,Ψs−1.

Suppose pΓ is a Pω-condition forcing, for some k ≥ 2, that Γ(Ġ) is a stable coloring

[ω]2 → k with no infinite limit-homogeneous set which is low over Ġ. For each

i < k, let Ȧi be a name for the set {x ∈ ω : limy Γ(Ġ)(x, y) = i}. We define a
suitable modification of the forcing notion QpΓ

.

Definition 3.2. Let Qω,pΓ
be the notion of forcing whose conditions are tuples

(p,D0, . . . , Dk−1, İ) as follows:

• p is a P-condition extending pΓ;
• Di is a finite set for each i < k, and p forces that Di ⊆ Ȧi;
• İ is a Pω-name, and p forces that İ is an infinite set which is low over Ġ,
and max

%
i<k Di < min İ.

A condition (q, E0, . . . , Ek−1, J̇) extends (p,D0, . . . , Dk−1, İ) if:

• q ≤ p;
• Di ⊆ Ei for each i < k;
• q forces that Ei "Di ⊆ İ for each i < k, and that J̇ ⊆ İ.

We get an analogue of Lemma 2.5, stated below. The proof is entirely the same.

Lemma 3.3. The collection of Pω-conditions p∗ with the following property is
dense below pΓ: there exists a Qω,pΓ

-condition (p∗, D∗
0 , . . . , D

∗
k−1, İ

∗) and a maximal
subset M of k × s such that for all 〈i, t〉 ∈ M , p∗ forces that there is a z ∈ ω such

that Ψt(Ġ⊕ (D∗
i ∪ F ))(x) ≃ 0 for all finite sets F ⊆ İ∗ and all x > z.

Fixing (p∗, D∗
0 , . . . , D

∗
k−1, İ)∗ and M as above, we can define an analogue of the

restricted forcing of Definition 2.6, and obtain analogues of Lemmas 2.7 and 2.8.
For clarity, we include the definition and statements, and omit the proofs, which
carry over from above, mutatis mutandis.

Definition 3.4. Let Rω,p∗,D∗
0 ,...,D

∗
k−1,İ

∗ be the restriction of Qω,pΓ
to conditions

extending (p∗, D∗
0 , . . . , D

∗
k−1, İ

∗) of the form (p,D0, . . . , Dk−1, İ
∗ ∩ [u,∞)).

As before, we write (p,D0, . . . , Dk−1, u) for (p,D0, . . . , Dk−1, İ
∗ ∩ [u,∞)).

Lemma 3.5. Let (p,D0, . . . , Dk−1, u) be an Rω,p∗,D∗
0 ,...,D

∗
k−1,İ

∗-condition. The col-

lection of Pω-conditions q for which there exists an Rω,p∗,D∗
0 ,...,D

∗
k−1,İ

∗-condition

(q, E0, . . . , Ek−1, v) extending (p,D0, . . . , Dk−1, u), and satisfying |Ei| = |Di| + 1
for each i < k, is dense below p.

Lemma 3.6. Let (p,D0, . . . , Dk−1, u) be an Rω,p∗,D∗
0 ,...,D

∗
k−1,İ

∗-condition., and as-

sume that bp(n) = k+1 and fp(n) = u for some n ∈ [|p∗|, |p|). For all z ∈ ω, j < 3,
and 〈0, t0〉, . . . , 〈k− 1, tk−1〉 ∈ k× s"M , the collection of Pω-conditions q with the
following property is dense below p: there exists an Rω,p∗,D∗

0 ,...,D
∗
k−1,İ

∗-condition

(q, E0, . . . , Ek−1, v) extending (p,D0, . . . , Dk−1, u) and numbers i < k and x > z

such that q forces that Ψti(Ġ⊕ Ei)(x) ↓= 1 and Ġn(x) = j.
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Everything can now be put together as in the proof of Theorem 2.9 above, to
prove the theorem below, from which Theorem 1.9 follows.

Theorem 3.7. Let G be a hyperarithmetically generic filter on Pω. Then for every
k ≥ 2 and every stable coloring c : [ω]2 → k hyperarithmetical in GG, and every
finite collection of Turing functionals Ψ0, . . . ,Ψs−1, there exists an infinite limit-
homogeneous set L for c such that Ψt(G

G ⊕ L) is not an infinite cohesive set for
GG, for any t < s.
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