TREES

Tree

A *binary tree* is a set $T \subseteq 2^{<\mathbb{N}}$ closed under prefix, i.e., for all $\sigma \in T$, and $\tau \preceq \sigma, \tau \in T$.

Path

A *path* through a binary tree $T \subseteq 2^{<\mathbb{N}}$ is a sequence $P \in 2^{\mathbb{N}}$ such that for all $n \in \mathbb{N}$, $P(n) \in T$. We denote by [T] the class of paths of T.

Weak König's lemma

Let $T \subseteq 2^{<\mathbb{N}}$ be an infinite binary tree. Then, [T] is non-empty.

EXTENDIBLE NODES

Extendible node

A node σ of a binary tree *T* is *extendible* in *T* if the set { $\tau \in T : \sigma \leq \tau$ } is infinite.

Computable vs Π_1^0 **binary tree**

Let T be a Π_1^0 binary tree. There exists a computable binary tree S such that [T] = [S].

The set of extendible nodes of a computable binary tree $T \subseteq 2^{<\mathbb{N}}$ is a Π_1^0 binary tree $S \subseteq T$ such that [S] = [T].

PERFECT TREES

Perfect trees

A non empty binary tree *T* is *perfect* if any node in T has two incompatible extensions in T, i.e., extensions incomparable w.r.t. the partial order \prec .

Isolated points

Let $\mathcal{A} \subseteq 2^{\mathbb{N}}$. An element $X \in \mathcal{A}$ is *isolated* in \mathcal{A} if there is a $\sigma \prec X$ such that $[\sigma] \cap \mathcal{A} = \{X\}$.

Perfect classes

A non-empty class $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is perfect if it is closed and has no isolated point, or equivalently, $\mathcal{F} = [T]$ for a perfect tree T.

{ Π_1^0 CLASSES AND PA DEGREES}

Ahmed Mimouni and Ludovic Patey

TOPOLOGY ON CANTOR SPACE

Notations

Given a string $\sigma \in 2^{<\mathbb{N}}$ we write $[\sigma]$ for the class $\{X \in 2^{\mathbb{N}} : \sigma \preceq X\}$. We call *cylinder* a class of the form $|\sigma|$.

Given a set $W \subseteq 2^{<\mathbb{N}}$ we will write [W] to denote its corresponding open class i.e., the class $\bigcup_{\sigma \in W} [\sigma].$

Open classes

The open classes of Cantor space are arbitrary unions of cylinders, i.e., sets of the form $\bigcup_{\sigma \in W} [\sigma]$ for a set $W \subseteq 2^{<\mathbb{N}}$.

Closed classes

A class $\mathcal{P} \subseteq 2^{\mathbb{N}}$ is *closed* iff it is the complement of an open class, or equivalently iff $\mathcal{P} = [T]$ for a binary tree T.

Compactness

In the Cantor Space, the compact classes are exactly the closed classes. In particular, the intersection of any decreasing sequence of non-empty closed classes is non-empty.

Continuous functions

A (possibly partial) function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is *continuous* in $X \in \text{dom } f$ if for any cylinder $[\tau]$ containing f(X), there exists a cylinder $[\sigma]$ containing X such that $f([\sigma]) \subseteq [\tau]$.

Σ_1^0 CLASSES

Definition

A class $\mathcal{U} \subseteq 2^{\mathbb{N}}$ is Σ_1^0 if there exists a Σ_1^0 set $W \subseteq$ $2^{<\mathbb{N}}$ such that $\mathcal{U} = [W]$.

Characterization

A class $\mathcal{P} \subseteq 2^{\mathbb{N}}$ is Σ_1^0 iff \mathcal{P} can be written of the form $\{X \in 2^{\mathbb{N}} : \exists n R(X \upharpoonright_n)\}$ for a computable predicate $R \subseteq 2^{<\mathbb{N}}$.

Closure properties

The Σ_1^0 are closed under finite intersection, and uniform countable unions.

Π_1^0 CLASSES

A class $\mathcal{P} \subseteq 2^{\mathbb{N}}$ is Π_1^0 if its complement is Σ_1^0 .

Characterizations

 $2^{<\mathbb{N}}$

Closure properties

The Π_1^0 are closed under finite unions, and uniform countable intersections.

There are non-empty Π_1^0 classes that do not contain any computable set.

Let $\mathcal{P} = \{X\}$ be a Π_1^0 class. Then, X is computable and is called a Π_1^0 singleton. The isolated points of any Π_1^0 class are computable.

Any non-empty countable Π_1^0 class has a computable member.

BASIS THEOREMS

Low basis theorem Every non-empty Π_1^0 class contains a member of low degree.

Every non-empty Π_1^0 class contains a member of computably dominated degree.

Cone avoidance basis theorem Suppose $C \not\leq_T \emptyset$. Every non-empty Π_1^0 class contains a member X such that $C \not\leq_T X$.

Definition

A class $\mathcal{P} \subseteq 2^{\mathbb{N}}$ is Π_1^0 iff $\mathcal{P} = [T]$ for a computable binary tree $T \subseteq 2^{<\mathbb{N}}$, or equivalently iff $\mathcal{P} = \{X \in$ $2^{\mathbb{N}} : \forall n R(X \upharpoonright_n) \}$ for a computable predicate $R \subseteq$

Computable members of Π_1^0 **classes**

Computably dominated basis theorem

PA DEGREES

PA degree

A set is of *PA degree* if and only if it computes a set in each non-empty Π_1^0 class.

DNC₂ characterization A set *X* is of PA degree iff it computes a function $f: \mathbb{N} \to 2$ such that $f(n) \neq \phi_n(n)$ for all n.

Degree spectrum

The degree spectrum of a class $\mathcal{P} \subseteq 2^{\mathbb{N}}$ is the class $\deg \mathcal{P} = \{\deg_T X : X \in [P]\}.$

There is a Π_1^0 class whose degree spectrum correspond to the PA degrees.

PA or high

A set is of PA or high degree iff it computes a sequence containing all the computable sets.

FINITELY-BRANCHING TREES

Tree

A *tree* is a set $T \subseteq \mathbb{N}^{<\mathbb{N}}$ closed under prefix, i.e., for all $\sigma \in T$, and $\tau \preceq \sigma, \tau \in T$.

A tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is finitely-branching if every $\sigma \in T$ has finitely many immediate successors in T.

König's lemma

Let $T \subseteq \mathbb{N}^{<\mathbb{N}}$ be an infinite, finitely-branching tree. Then, [T] is non-empty.

Δ_2^0 binary trees

The degree spectra of finitely-branching computable trees and those of Δ_2^0 binary trees coincide.

A tree T is computably bounded if there exists a computable function $g : \mathbb{N} \to \mathbb{N}$ such that for all $\sigma \in T$ and $n < |\sigma|, \sigma(n) < g(n)$.

The degree spectra of computably bounded computable trees and those of computable binary trees coincide.

Computably bounded trees