FORMULAS

Language

The language \mathcal{L}_{Z_2} of second order arithmetic consists of:

- first order variable symbols: x, y, z, ...
- second order variable symbols: X, Y, Z, ...
- logicals symbols: $\land, \lor, \rightarrow, \neg, \exists, \forall$
- parenthesis: ()
- two binary function symbols on the integers: + and \times
- two binary relation symbols on the integers: = and <
- the membership relation symbol: \in
- two constant symbols: 0 and 1

First-order terms

The *first-order terms* of Z_2 are defined inductively as follows :

- A first-order variable or constant is a firstorder term.
- If t_1 and t_2 are first-order terms, then so are $(t_1 + t_2)$ and $(t_1 \times t_2)$

Second-order terms

The *second-order terms* of Z_2 are simply the secondorder variables.

Atomic formulas

The atomic formulas of second-order arithmetic consists of all the $t_1 = t_2$, $t_1 < t_2$ and $t_1 \in X$ for all t_1, t_2 first-order terms and X second order term.

Formulas

The *formulas* of second-order arithmetic are defined inductively as follows :

- Every atomic formula is a formula.
- If F_1 and F_2 are formulas, then so are $(F_1 \land F_1)$ F_2), $(F_1 \lor F_2)$, $(F_1 \to F_2)$ and $\neg F_1$.
- If *F* is a formula, *x* a first-order symbol and X a second-order symbol then $\forall xF$, $\exists xF$, $\forall XF \text{ and } \exists XF \text{ are formulas.}$

SECOND-ORDER ARITHMETIC

QUENTIN LE HOUEROU AND LUDOVIC PATEY

Z_2 THEORY

Robinson arithmetic

Robinson's theory of arithmetic denoted by Q consists of the following eight axioms :

1. $\forall x \neg (x + 1 = 0)$

2. $\forall x(x = \dot{0} \lor \exists y \ (x = y + \dot{1}))$

3. $\forall x \forall y \ (x + \dot{1} = y + \dot{1} \rightarrow x = y)$

4. $\forall x (x + 0 = x)$ 5. $\forall x \forall y \ (x + (y + \dot{1}) = (x + y) + \dot{1})$

6. $\forall x \ (x \times \dot{0} = \dot{0})$

7. $\forall x \forall y \ (x \times (y+1) = (x \times y) + x)$

8. $\forall x \forall y \ (x < y \leftrightarrow (\exists z \ (z \neq \dot{0} \land x + z = y)))$

Comprehension scheme

The *comprehension scheme* consists of all the formulas of the form:

$$\exists X \forall y \ (y \in X \leftrightarrow F(y))$$

for any formula F(x) with X not free in F.

Induction axiom

The *induction axiom* is the following :

$$\forall X ([\dot{0} \in X \land \forall y (y \in X \to y + \dot{1} \in X)] \to \forall z \ z \in X)$$

Combined with the comprehension scheme, the induction axiom gives us the induction scheme :

$$(F(\dot{0}) \land (\forall x \ (F(x) \rightarrow F(x + \dot{1})))) \rightarrow \forall x \ F(x)$$

for any formula F(x).

Z_2 theory

We note by Z_2 the theory of second-order arithmetic composed of Q, the comprehension scheme and the induction axiom.

SEMANTICS Henkin structure

(Non)-standard integers

A model with non-standard integers is itself called non-standard.

A full model of Z_2 contains no non-standard integers and is isomorphic to the standard integers.

There is no completeness theorem for full structures.

ω -structure

An
$$\omega$$

, 0, 1)
 $\mathcal{P}(\omega)$,
 ω and

A (*Henkin*) structure in \mathcal{L}_{Z_2} is given by a tuple $\mathcal{M} = (M, S, +^{\mathcal{M}}, \times^{\mathcal{M}}, <^{\mathcal{M}}, 0^{\mathcal{M}}, 1^{\mathcal{M}})$ where : • *M* and *S* are disjoints sets with $S \subseteq \mathcal{P}(M)$. $+^{\mathcal{M}}, \times^{\mathcal{M}}$ are functions from $M \times M$ to M. $<^{\mathcal{M}}$ is a binary relation on M.

- $0^{\mathcal{M}}$ and $1^{\mathcal{M}}$ are two elements from M.
- = is the equality on M

A *model* of Z_2 is an Henkin structure in which the axioms of Z_2 are verified.

Let $\mathcal{M} = (M, S, +^{\mathcal{M}}, \times^{\mathcal{M}}, <^{\mathcal{M}}, 0^{\mathcal{M}}, 1^{\mathcal{M}})$ be a model of Z_2 .

The elements of $\omega = \{\dot{0}^{\mathcal{M}}, \dot{1}^{\mathcal{M}}, \dot{1}^{\mathcal{M}} + \dot{1}^{\mathcal{M}}, \dots\} \subseteq S$ are called the standard integers. The elements not in ω are the non-standard integers.

Full structure

A Henkin structure $\mathcal{M} = (M, S, +^{\mathcal{M}}, \times^{\mathcal{M}}, <^{\mathcal{M}})$ $, 0^{\mathcal{M}}, 1^{\mathcal{M}})$ is said to be *full* if $S = \mathcal{P}(M)$.

 ω -structure is a structure $\mathcal{M} = (\omega, S, +, \times, <)$ where ω is the set of standard integers, $S \subseteq$, + and \times the addition on multiplication on < the natural order.

MAIN SUBSYSTEMS

RCA_0

We denote by RCA_0 the theory composed of Robinson arithmetic Q, the induction scheme for Σ_1^0 formulas, and the following Δ_1^0 -comprehension scheme:

 WKL_0

ACA_0

We denote by ACA₀ the theory RCA₀ augmented with the comprehension scheme for arithmetic formulas.

ATR_0

We denote by ATR₀ the theory RCA₀ augmented with the *transfinite recursion scheme*:

 Π^1_1 -CA $_0$

We denote by Π_1^1 -CA₀the theory RCA₀ augmented with the comprehension scheme for Π_1^1 formulas.

 $\forall y(F(y) \leftrightarrow G(y)) \rightarrow \exists X \forall y(y \in X \leftrightarrow F(y))$

for any Σ_1^0 formula F(y) and any Π_1^0 formula G(y)with *X* not free in *F*.

We denote by WKL_0 the theory RCA_0 augmented with Weak König's lemma:

Every infinite binary tree has an infinite path.

For every arithmetic formula $\theta(x, X)$ and every well-ordered set $(A, <_A)$, the set $\bigoplus_{a \in A} Y_a$ exists, where Y_a is defined by

$$Y_a = \Theta(\bigoplus_{b < Aa} Y_b)$$

and $\Theta(X) = \{x \in \mathbb{N} : \theta(x, X)\}.$