INDUCTION HIERARCHY

lopen

*I*_{open} denotes the induction scheme :

 $(F(0) \land \forall x (F(x) \to F(x+1))) \to \forall x F(x)$

restricted to quantifier free formulas.

 $Q + I_{open}$ allows us to prove the most basic facts about +, \times and <.

$\mathbf{I}\Delta_0^0$

 $I\Delta_0^0$ denotes the induction scheme restricted to Δ_0^0 formulas.

 $Q + I\Delta_0^0$ proves the basic properties of divisibility, and proves that substraction and Cantor's bijection are total functions.

$\mathbf{I}\Sigma_n^0$ and $\mathbf{I}\Pi_n^0$

 $I\Sigma_n^0$ (resp. $I\Pi_n^0$) denotes the induction scheme restricted to Σ_n^0 (resp. Π_n^0) formulas.

We have $Q \vdash I\Sigma_n^0 \leftrightarrow I\Pi_n^0$

 $\mathbf{I}\Delta_n^0$

For n > 0, we denote by $I\Delta_n^0$ the scheme :

 $\forall x(F(x) \leftrightarrow G(x)) \rightarrow$ $(F(0) \land \forall x (F(x) \to F(x+1))) \to \forall x F(x)$

with $F \Sigma_n^0$ and $G \Pi_n^0$.

MINIMUM SCHEME

$\mathbf{L}\Sigma_n^0$ and $\mathbf{L}\Pi_n^0$

We call *minimum scheme* for a formula F(x) the statement :

$$\exists x \ F(x) \to \exists x (F(x) \land \forall y < x \neg F(y))$$

For n > 0, we denote by $L\Sigma_n^0$ (resp. $L\Pi_n^0$) the minimum scheme restricted to Σ_n^0 (resp. Π_n^0) formulas.

Minimum and induction We have $Q \vdash I\Sigma_n^0 \leftrightarrow L\Pi_n^0$ and $Q \vdash I\Pi_n^0 \leftrightarrow L\Sigma_n^0$. This gives us $Q \vdash L\Sigma_n^0 \leftrightarrow L\Pi_n^0$.

$\{INDUCTION\}$

QUENTIN LE HOUÉROU AND LUDOVIC PATEY

BOUNDED COLLECTION

$\mathbf{B}\Sigma_n^0$ and $\mathbf{B}\Pi_n^0$

We call bounded collection scheme for a formula F(x, y) the statement :

 $\forall n((\forall x < n \,\exists y F(x, y)) \to \exists b \,\forall x < n \,\exists y < b \,F(x, y))$

For n > 0, we denote by $B\Sigma_n^0$ (resp. $B\Pi_n^0$) the bounded collection scheme restricted to Σ_n^0 (resp. Π_n^0) formulas.

We have $Q + I\Delta_0^0 \vdash B\Pi_n^0 \leftrightarrow B\Sigma_{n+1}^0$

Closure by bounded quantification of Σ_n^0/Π_n^0

 $Q + I\Delta_0^0 + B\Sigma_n^0$, as well as $Q + I\Delta_0^0 + B\Pi_n^0$ proves the stability of Σ_n^0 (resp. Π_n^0) by \wedge , \vee , bounded quantification and \exists (resp. \forall).

Bounded collection and induction

We have :

- $\mathbf{Q} \vdash \mathbf{I}\Sigma_n^0 \to \mathbf{B}\Sigma_n^0$
- $\mathbf{Q} + \mathbf{I}\Delta_0^0 \vdash \mathbf{B}\Sigma_{n+1}^0 \to \mathbf{I}\Sigma_n^0$
- $\mathbf{Q} + \mathbf{I}\Delta_0^0 \vdash \mathbf{B}\Sigma_n^0 \to \mathbf{I}\Delta_n^0$
- $\mathbf{Q} + \mathbf{I}\Sigma_1^0 \vdash \mathbf{B}\Sigma_n^0 \leftrightarrow \mathbf{I}\Delta_n^0$

FINITE / INFINITE SETS

Bounded / Unbounded predicates

A predicate P(x) is said to be *bounded* (or *finite*) if there exists an x such that for all y > x, $\neg P(y)$. Otherwise, P(x) is said to be *unbounded* (or *infi*nite).

A set *A* is *finite* if its ownership predicate is finite. Otherwise, it is *infinite*.

Coding of finite sets

It is possible to define a *canonical code* for all finite sets in RCA_0 :

There exists a Δ_0^0 formula $\phi(x, y)$, which we will write " $x \in y$ " such that RCA₀ proves the following properties :

- Every *y* codes a unique finite set *A* : the set of all x satisfying $x \in y$. We say that y is the *canonical code* of *A*.
- Every finite set has a canonical code.

BOUNDED COMPREHENSION

 $\mathbf{BC}\Delta_n^0$

 $\forall x$

PROVABLY TOTAL FUNCTIONS

Characterization The RCA₀-provably computable functions are exactly the primitive recursive functions.

$\mathbf{BC}\Sigma_n^0$ and $\mathbf{BC}\Pi_n^0$

We call *bounded comprehension scheme* for a formula F(x) the statement :

 $\forall t \exists n \forall y (y \in n \leftrightarrow (y < t \land F(y)))$

For n > 0, we denote by $BC\Sigma_n^0$ (resp. $BC\Pi_n^0$) the bounded comprehension scheme restricted to Σ_n^0 (resp. Π_n^0) formulas.

We have : $\operatorname{RCA}_0 \vdash \operatorname{BC}\Sigma_n^0 \leftrightarrow \operatorname{BC}\Pi_n^0$.

For n > 0 we denote by $BC\Delta_n^0$ the scheme :

$$c(F(x) \leftrightarrow G(x)) \rightarrow (\forall t \exists n \forall y (y \in n \leftrightarrow (y < t \land F(y))))$$

with $F \Sigma_n^0$ and $G \Pi_n^0$.

Bounded comprehension and induction

We have : • $\operatorname{RCA}_0 \vdash \operatorname{BC}\Sigma_n^0 \leftrightarrow \operatorname{I}\Sigma_n^0$ • $\operatorname{RCA}_0 \vdash \operatorname{BC}\Delta_n^0 \leftrightarrow \operatorname{I}\Delta_n^0$

Provably functional

A formula F(x, y) is RCA₀-provably functional if

 $\mathsf{RCA}_0 \vdash \forall x \exists ! y F(x, y)$

A function $f: \omega \to \omega$ is RCA₀-provably computable if there is a RCA₀-provably functional Σ_1^0 formula F(x, y) such that F(n, f(n)) holds for every $n \in \omega$.

Induction, collection and bounded comprehension hierarchies. Arrows denote implications over RCA_0 .

In a non-standard model *M*, a *cut* is a proper initial segment of *M*, non-empty and closed by suc-

Cuts and induction

For a second order structure (M, S), we have :

 $(M,S) \models \neg I\Sigma_n^0 \Leftrightarrow$ there is a Σ_n^0 formula F such that $\{x : F(x)\}$ is a cut

If (M, S) is an ω -model, we have for all n:

 $(M,S) \models \mathrm{I}\Sigma_n^0$