INDUCTION HIERARCHY

{INDUCTION}

QUENTIN LE HOUEROU AND LUDOVIC PATEY

BOUNDED COLLECTION

BOUNDED COMPREHENSION

SUMMARY

Iopen

Iopen denotes the induction scheme :
(F(0) AVz(F(x) — F(x+1))) = Vx F(x)
restricted to quantifier free formulas.

Q + Lypen allows us to prove the most basic facts
about +, x and <.

IAD

I A} denotes the induction scheme restricted to Ap
formulas.

Q + IAJ proves the basic properties of divisibility,
and proves that substraction and Cantor’s bijec-
tion are total functions.

I>) and III)

139 (resp. ITIY) denotes the induction scheme
restricted to X)) (resp. I19) formulas.

We have Q - IXY <« 1119
IAY

For n > 0, we denote by IA" the scheme :

Ve(F(z) < G(z)) —
(F(0) AVx(F(x) —» F(x+1))) = Vo F(x)

with F' X? and G I1Y.

MINIMUM SCHEME

Lx? and LIT°

We call minimum scheme for a formula F'(x) the
statement :

I F(z) — Ja(F(x) AVy < 2 —F(y))

For n > 0, we denote by LY} (resp. LII?) the mini-
mum scheme restricted to ) (resp. I1Y) formulas.

Minimum and induction

We have Q F IXY « LIIY and Q + IIT) < LX),
This gives us Q - LYY «» LIT.

BX) and BIIY

We call bounded collection scheme for a formula
F(x,y) the statement :

Vn((Ve < nIyF(x,y)) — IbVer <ndy <bF(x,y))

For n > 0, we denote by BX? (resp. BII?) the

bounded collection scheme restricted to X9 (resp.

I1%) formulas.

We have Q + IA] + BII, <> BX; .,

Closure by bounded quantification of X! /I

Q + IAD + BXY, as well as Q + IA] + BIIY proves
the stability of X9 (resp. IIY) by A, V, bounded
quantification and 3 (resp. V).

Bounded collection and induction

We have :

e QFIXY — BX?
-TAD BE%Jr1 — IV
-TIAD F BXY — TAY
-IX0 F BYY « TAY

FINITE / INFINITE SETS

Bounded / Unbounded predicates

A predicate P(x) is said to be bounded (or finite) if

there exists an x such that for all y > =, = P(y).
Otherwise, P(x) is said to be unbounded (or infi-
nite).

A set A is finite it its ownership predicate is finite.
Otherwise, it is infinite.

Coding of finite sets

[t is possible to define a canonical code tor all finite
sets in RCAg :
There exists a Ay formula ¢(x,y), which we will
write "z € y" such that RCA( proves the following
properties :
 Every y codes a unique finite set A : the set
of all x satistying = € y. We say that y is the
canonical code of A.
e Hvery finite set has a canonical code.

BCX? and BCIIY

We call bounded comprehension scheme for a formula
F(x) the statement :

ViInVy(lyen < (y<tAF(y)))

For n > 0, we denote by BCX? (resp. BCII?) the

bounded comprehension scheme restricted to 39

(resp. I1Y) formulas.
We have : RCAq - BCX?Y «+ BCII.

BCAY
For n > 0 we denote by BCA! the scheme :
Ve(F(x) < G(x)) —
(Vt InVy(y €n < (y <t AF(y))))
with F' XY and G II).

Bounded comprehension and induction

We have :
o RCAyHF BCZ?L VAN IEQL
o RCAyF BCA% VAN IA%

PROVABLY TOTAL FUNCTIONS

Provably functional

A formula F'(x,y) is RCAg-provably functional if
RCAg F VzdlyF(x,y)

A function f : w — w is RCAg-provably computable
if there is a RCAy-provably functional X7 formula
F(x,y) such that F'(n, f(n)) holds for every n € w.

Characterization

The RCAp-provably computable functions are ex-
actly the primitive recursive functions.
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Induction, collection and bounded
comprehension hierarchies. Arrows denote

Cut

implications over RCA,.

In a non-standard model M, a cut is a proper ini-
tial segment of M, non-empty and closed by suc-

CESSOLT.

Cuts and induction

For a second order structure (M, S), we have :

(M, 5)

— —I¥Y & thereisa XY formula F

such that{x : F'(x)} is a cut

If (M,S)is an w-model, we have for all n :

(M, S) EIx;,




