IMMUNITY

Definition

An infinite set $A \subseteq \mathbb{N}$ is *immune* if it contains no infinite c.e. subset, or equivalently no infinite computable subset.

Degrees of immune sets

Every non-zero Turing degree contains an immune set : $A \equiv_T \{ \sigma \in 2^{<\mathbb{N}} : \sigma \prec A \}.$

DNC

Effective immunity

A set $A \subseteq \mathbb{N}$ is effectively immune if $\forall e, |W_e| \ge$ $h(e) \Rightarrow W_e \not\subseteq A$ for some computable function h: $\mathbb{N} \to \mathbb{N}.$

Diagonally non-computable

A function $f : \mathbb{N} \to \mathbb{N}$ is diagonally non-computable (DNC) if $\forall n, f(n) \neq \Phi_n(n)$.

Fixpoint free

A function $f : \mathbb{N} \to \mathbb{N}$ is fixpoint-free (FPF) if $\forall n, \Phi_{f(n)} \neq \Phi_n.$

Equivalences

The following statements are equivalent:

- *X* computes a DNC function
- *X* computes a fixpoint free function
- *X* computes an effectively immune set
- *X* computes a function $h : \mathbb{N}^2 \to \mathbb{N}$ s.t. $\forall e, n, |W_e| \leqslant n \Rightarrow h(e, n) \notin W_e$

DNC degree

A Turing degree **d** is DNC if it contains a DNC function, or equivalently if it computes a DNC function.

Existence

There is a non-zero Δ_2^0 non-DNC degree.

Arslanov's completeness criterion

A c.e. degree is Turing complete iff it computes a DNC function.

{IMMUNITY AND FUNCTION GROWTH}

WILLIAM GAUDELIER AND LUDOVIC PATEY

HYPERIMMUNITY

Hyperimmune set

Fix a canonical listing of all finite sets: D_0, D_1, \ldots A c.e. array is a sequence of mutually disjoint finite sets $\{D_{f(n)} : n \in \mathbb{N}\}$ where $f : \mathbb{N} \to \mathbb{N}$ is a computable function.

An infinite set $X \subseteq \mathbb{N}$ is *hyperimmune* if for every c.e. array $\{D_{f(n)} : n \in \mathbb{N}\}$, there is some $n \in \mathbb{N}$ such that $D_{f(n)} \cap X = \emptyset$.

Hyperimmune function

A function $g : \mathbb{N} \to \mathbb{N}$ dominates $f : \mathbb{N} \to \mathbb{N}$ if $\forall x \ g(x) \ge f(x).$

A function $f : \mathbb{N} \to \mathbb{N}$ is hyperimmune is not dominated by any computable function.

Set vs function

An infinite set $X = \{x_0 < x_1 < ...\}$ is hyperimmune iff its *principal* function $n \mapsto x_n$ is hyperimmune.

Hyperimmune degree

A Turing degree is *hyperimmune* iff it contains an hyperimmune function, or equivalently iff it computes a hyperimmune function.

Weak 1-genericity

A set $D \subseteq 2^{<\mathbb{N}}$ is *dense* if for every $\sigma \in 2^{<\mathbb{N}}$, there is some $\tau \succeq \sigma$ such that $\tau \in D$.

A set $X \in 2^{\mathbb{N}}$ is *weakly 1-generic* iff for every c.e. dense set $D \subseteq 2^{<\mathbb{N}}$, there is some $\sigma \prec X$ such that $\sigma \in D.$

Hyperimmunity vs genericity

A Turing degree is hyperimmune iff it computes a weakly 1-generic set.

Proposition

Every non-zero Δ_2^0 degree is hyperimmune. There is a non-zero Δ_3^0 non-hyperimmune degree.

COMPUTABLY DOMINATED

Definition

ting f.

Existence

There exists a non-zero Δ_3^0 computably dominated degree.

Truth table reduction

HIGH

A set is of high or DNC degree iff it computes a function which is different almost everywhere from any computable function.

A set X is computably dominated or hyperimmune*free* if for every *X*-computable function $f : \mathbb{N} \to \mathbb{N}$, there is a computable function $g : \mathbb{N} \to \mathbb{N}$ domina-

A set Y is truth-table reducible to X ($Y \leq_{tt} X$) if there is a total functional Φ s.t. $\Phi(X) = Y$

Characterization

A set X is computably dominated iff for every set $Y, \forall Y \subseteq \mathbb{N}, Y \leq_{tt} X \Leftrightarrow Y \leq_T X$

High degree

A degree **d** is *high* if $\mathbf{d}' \ge \mathbf{0}''$.

Dominant function

A function $f : \mathbb{N} \to \mathbb{N}$ is *dominant* if it dominates, almost everywhere, all the computable functions.

Martin's domination theorem

The following statements are equivalent:

- X is high
- *X* computes a dominant function
- X computes a list containing exactly the computable sets (possibly with repetition)

High or DNC degree

BOUNDED DNC

DNC_f degree

Given $f : \mathbb{N} \to \mathbb{N}$, a set is of DNC_f degree iff it computes a DNC function g dominated by f.

A set is of DNC_k degree iff it computes a *k*-valued DNC function.

Hierarchy theorem

Given $f : \mathbb{N} \to \mathbb{N}$, there exists $g : \mathbb{N} \to \mathbb{N}$ such that $\mathsf{DNC}_f \varsubsetneq \mathsf{DNC}_q$

PA degree

A degree is DNC_k iff it is PA, that is, computes a member of every non-empty Π_1^0 class.

MODULUS

Definition

A function $f : \mathbb{N} \to \mathbb{N}$ is a *modulus* of a set $X \subseteq \mathbb{N}$ if every function dominating *f* computes *X*.

Δ_1^{\perp} set

A set *X* is Σ_1^1 if $X = \{n : \exists YR(Y, n)\}$ for an arithmetic predicate R. A set X is Π_1^1 if $X = \{n :$ $\forall YR(Y,n) \}$ for an arithmetic predicate R. A set X is Δ_1^1 if it is both Σ_1^1 and Π_1^1 .

Σ_1^1 singleton

A class $\mathcal{C} \subseteq 2^{\mathbb{N}}$ is Σ_1^1 if it can be written of the form $C = \{X : \exists YR(Y, X)\}$ for an arithmetic predicate R.

Computable encodability

A set $X \subseteq \mathbb{N}$ is computably encodable if for every infinite set $Y \subseteq \mathbb{N}$, there is an infinite subset $Z \subseteq$ *Y* such that $X \leq_T Z$.

Equivalences

- $X \text{ is } \Delta_1^1$

A set X is a Σ_1^1 singleton if $\{X\}$ is a Σ_1^1 class.

```
The following statements are equivalent:
 • X admits a modulus
• X is a \Sigma_1^1 singleton
• X is computably encodable
```