{ARITHMETIC HIERARCHY CHEAT SHEET}

Σ^0_n , Π^0_n and Δ^0_n sets

Definitions

Let $n \geq 1$. A set $A \subset \mathbb{N}$ is Σ_n^0 if, for some computable $R \subset$ \mathbb{N}^{n+1} ,

$$A = \{ y : \exists x_1 \forall x_2 \cdots Q_n x_n (x_1, \cdots x_n, y) \in R \},\$$

where Q_n is \exists if *n* is odd, \forall else.

A set $A \subset \mathbb{N}$ is Π^0_n if, for some computable $R \subset$ \mathbb{N}^{n+1} ,

$$A = \{ y : \forall x_1 \exists x_2 \cdots Q_n x_n (x_1, \cdots x_n, y) \in R \},\$$

where Q_n is \forall if *n* is odd, \exists else. A set $A \subset \mathbb{N}$ is Δ_n^0 if it is both Π_n^0 and Σ_n^0 .

Stability

The class of Σ_n^0 sets is stable under finite unions, finite intersections, uniform bounded quantifications, and uniform countable unions.

The class of Π_n^0 sets is stable under finite unions, finite intersections, uniform bounded quantifications, and uniform countable intersections.

Computability

A set is Σ_1^0 iff it is computably enumerable. A set is Δ_1^0 iff it is computable.

MANY-ONE DEGREES

Reduction

Let A, B be two sets. We write $A \leq_m B$ if there exists a total computable function *f* such that

$$n \in A \iff f(n) \in B$$

If $A \leq_m B$ and $B \leq_m A$, we write $A \equiv_m B$. This is an equivalence relation, and we call *many-one degrees* its classes.

Compatibility with the hierarchy

Let $A \subset \mathbb{N}$ be a Σ_n^0 (resp. Π_n^0) set, and let $B \leq_m A$. Then B is Σ_n^0 (resp. Π_n^0).

Completeness of the halting set

A set A is Σ_1^0 iff $A \leq_m \emptyset'$.

AHMED MIMOUNI AND LUDOVIC PATEY

POST'S THEOREM

Definition

Given a set *X*, we define recursively on $n \ge 0$: • $X^{(0)} = X$,

• $X^{(n+1)} = X^{(n)'}$.

Completeness

A set A is Σ_n^0 -hard (resp. Π_n^0 -hard) if, for any Σ_n^0 (resp. $\Pi_n^0(X)$) set *B*, we have $B \leq_m A$.

A set A is Σ_n^0 -complete (resp. Π_n^0 -complete) if it is Σ_n^0 and Σ_n^0 -hard (resp. Π_n^0 and Π_n^0 -hard).

The set $X^{(n)}$ is $\Sigma_n^0(X)$ -complete. In particular, for all n > 0, the set $\emptyset^{(n)}$ is Σ_n^0 -complete.

A set A is $\Sigma_n^0(X)$ iff $A \leq_m X^{(n)}$.

Post's theorem

Let *A* be a set and $n \ge 0$.

- $A ext{ is } \Sigma_{n+1}^0 ext{ iff } A ext{ } \Sigma_1^0(\emptyset^{(n)}), ext{ iff } A ext{ is } \emptyset^{(n)} ext{-c.e.}$
- $A \text{ is } \Delta_{n+1}^0 \text{ iff } A \Delta_1^0(\emptyset^{(n)}), \text{ iff } A \leq_T \emptyset^{(n)}\text{-c.e.}$

Corollary

The arithmetic hierarchy is strict. In other words,

- for all n > 0, there exists a Σ_n^0 set which is not Π_n^0 and a Π_n^0 set which is not Σ_n^0 .
- for all n > 0, there exists a Δ_{n+1}^0 set which is neither Σ_n^0 nor Π_n^0 .

Index set \mathbb{N} ,

Rice's theorem

ARITHMETIC CODES

 Δ_1^0 code

Uniform computability

RICE'S THEOREM

An *index set* is a set $A \subset \mathbb{N}$, such that for all $x, y \in$

 $x \in A \land \phi_x = \phi_y \implies y \in A.$

Index set theorem

If *A* is a non-trivial (i.e. not \emptyset nor \mathbb{N}) index set, then either $\emptyset' \leq_m A$ or $\emptyset' \leq_m \overline{A}$.

Let C be a class of partial computable functions $\mathbb{N} \to \mathbb{N}$. Then, the set $A = \{x : \phi_x \in \mathcal{C}\}$ is noncomputable unless $\mathcal{C} = \emptyset$ or \mathcal{C} is all partial computable functions.

A Δ_1^0 code of a computable set A is an integer e such that $\phi_e = A$ (i.e. $\forall n \phi_e(n) \downarrow = A(n)$).

A sequence X_0, X_1, \cdots of sets is *uniformly com*putable iff there exists a computable sequence e_0, e_1, \cdots such that e_s is a Δ_1^0 code of X_s for all

Σ_{n+1}^0 and Δ_{n+1}^0 codes

A Σ_{n+1}^0 (resp. Δ_{n+1}^0) *code* of a set *A* is an integer *e* such that $W_e(\emptyset^{(n)}) = A$ (resp. $\Phi_e(\emptyset^{(n)}) = A$).

Lowness code

A *lowness code* of a set *A* is an integer *e* such that $\Phi_e(\emptyset') = A'.$

Canonical code

The *canonical code* of a finite set *F* is the natural number $\sum_{i \in F} 2^i$.

 Σ_3^0

 Σ_2^0

 Σ_1^0

