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From theorems to principles
Effectiveness of principles
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SHAPE OF OUR THEOREMS

Consider “ordinary” theorems

v

(Konig’s lemma) Every infinite tree finitely branching has
an infinite path.

v

(Ramsey theorem) Every coloring of tuples into finitely
many colors has an infinite monochromatic subset.

v

(Atomic model theorem) Every complete atomic theory has
an atomic model.
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OBSERVATION

Many theorems are of the form

(VX)(FY)P(X,Y)
where ® is an arithmetical formula.
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SHAPE OF OUR THEOREMS

Theorems usually come with a natural class of instances.

» In Konig’s lemma, the infinite trees finitely branching

» In Ramsey theorem, the colorings of tuples into finitely
many colors

» In AMT, the complete atomic theories

Given an instance X, a Y such that ®(X, Y) holds is called a
solution (of X).
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EFFECTIVENESS

» Theorems are not all effective.

» Some theorems have computable instances with no
computable solution.

Theorem (Kreisel)

There exists an infinite computable binary tree with no infinite
computable path.
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INSTANCE

Question

Are there instances harder to solve than any other ?

We need to give a precise definition of “harder”.
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EFFECTIVENESS
Definition

A instance I is harder than another instance | if every solution of 1
computes a solution to .

A computable instance harder than every computable instance
is called a universal instance.
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UNIVERSAL INSTANCE

Which principles admit a
universal instance ?
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DEFINITIONS

Definition (Tree)

» A tree is a downward closed subset of N <N ynder <.

» A tree T is finitely branching if for every o € T, there are finitely
many n such that on € T.

> A tree is binary if it is a subset of 2<N.

Definition (Path)
Apathonatree T isaset X € N such that X [ n € T for each n. [T]
is the collection of paths of T.
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INSTANCE

Definition (Konig’s lemma)

Every infinite tree finitely branching has a path.

Definition (Weak Konig’s lemma)
Every infinite binary tree has a path.
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WEAK KONIG’S LEMMA

Theorem (Solovay)

Weak Konig's lemma admits a universal instance.

Definition
A function f is d.n.c. relative to X if (Ve)f (e) # ®X(e).

Proof.
» For every infinite computable binary tree T, every
{0,1}-valued d.n.c. function computes a path in T.

» There exists a computable binary tree whose paths are
exactly {0, 1}-valued d.n.c. functions.
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KONIG’S LEMMA

Theorem (Jockusch & al.)

Konig’s lemma admits a universal instance.

Proof.

» For every infinite, computable, finitely branching tree T,
there exists an infinite (/'-computable binary tree U whose
paths have the same degrees as the degrees of the paths
through T.

» Relativize previous theorem.
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WEAK WEAK KONIG’S LEMMA

Definition
A binary tree T has positive measure if

lim|{U€T:|J\:n}| -0
n on

Definition (Weak weak Konig’s lemma)

Every binary tree of positive measure has a path.
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WEAK WEAK KONIG’S LEMMA

Theorem (Kucera)

Weak weak Konig's lemma admits a universal instance.

Definition

A Martin-Lof random is a set X such that K(X [ n) > n — ¢ for
some constant ¢, where K is prefix-free Kolmogorov complexity.

Proof.

» For every computable binary tree T of positive measure,
every Martin-Lof random is, up to prefix, a pathin T.

» There exists a computable binary tree of positive measure
whose paths are all Martin-Lof random:s.

O]
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RAINBOW RAMSEY THEOREM FOR PAIRS

Definition

A coloring function f : [N]* — N is k-bounded if for each color i,
If~1(i)| < k. An infinite set H is a rainbow for f if f is injective
over [H]".

Definition (Rainbow Ramsey theorem for pairs)
Every 2-bounded function f : [N]> — N has a rainbow.
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RAINBOW RAMSEY THEOREM FOR PAIRS

Theorem (Miller)
The rainbow Ramsey theorem for pairs admits a universal instance.

Proof.

» For every computable 2-bounded function f : [N]> — N,
every function d.n.c. relative to () computes a rainbow
for f.

» There exists a computable 2-bounded function f : [N]? — N
such that every rainbow for f computes a function d.n.c.
relative to (/.
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OTHER PRINCIPLES

There exists a few other principles admitting a universal
instance.

» Finite Intersection Property (Downey & al.)

» Ramsey-type weak weak Konig’s lemma (Bienvenu & al.)
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SUMMARY

PRINCIPLES ADMITTING NO UNIVERSAL INSTANCE
General method
Lowness and SADS
Ag lows sets and AMT
Lowjness, STS(2) and SADS
A sets and SRRT;
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A SIMPLE METHOD

Fix a principle P.

» Prove that every computable instance of P has a solution
satisfying some property (e.g. A, low, ...)

» Prove that for every set X satisfying this property, there
exists a computable instance I of P such that X does not
compute a solution for I.

» Then P does not admit a universal instance.
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GENERAL METHOD

Definition (Computable reducibility)

A principle P is computably reducible to Q (P <. Q) if for every
instance I of P, there exists an I-computable instance | of Q such that
for every solution X of ], X & I computes a solution of I.

Almost every proof of implication between principles in
reverse mathematics is in fact a computable reduction.
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GENERAL METHOD

Fix two principles P and Q.

» Prove that every computable instance of P has a solution
satisfying some property.

» Prove that for every set X satisfying this property, there
exists a computable instance I of Q such that X does not
compute a solution for I.

» Then no principle R such that Q <, R <. P admit a
universal instance.
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ASCENDING DESCENDING SEQUENCE

Definition (Ascending Descending sequence)

Every linear order has an infinite ascending or descending sequence.

Definition (Stable ascending Descending sequence)

Every linear order of order type w + w* has an infinite ascending or
descending sequence.
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ASCENDING DESCENDING SEQUENCE

Theorem (Hirschfeldt & al.)

Fix a principle P such that SADS <. P. If every computable instance
of P admits a low solution, then P admits no universal instance.

Proof.

For every low set X, there exists a computable linear order of
order type w + w* having no X-computable infinite ascending
or descending sequence. O

Corollary

SADS, but also SCAC (every stable partial order has an infinite chain
or antichain) admit no universal instance.
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Definition

many Xx.

A function f dominates a function g is f(x) > g(x) for cofinitely

Definition (Atomic model theorem)

For every A function f, there exists a function g which is not
dominated by f.
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Theorem (Martin)

Fix a principle P such that AMT <. P. If every computable instance
of P admits a Ag lowy solution, then P admits no universal instance.

Proof.

For any Ag set X, a function is high relative to X iff it computes
a function dominating every X-computable function. O
Corollary

AMT, but also SADS and SCAC admit no universal instance.
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Definition
Given a function f : [N]" — k, a set H is homogeneous for f if there
exists a color i < k such that f([H]") = k.

Definition (Ramsey theorem for tuples)
Every function f : [N]" — k has an infinite homogeneous set.

We write RT} to denote Ramsey theorem restricted to colorings
over n-uples with k colors and SRT} to denote the restriction of
RT} to stable colorings.
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Theorem (Mileti)

Fix a principle P such that SRTY <. P. If every computable instance
of P admits a low, over )\"~2) solution then P admits no universal
instance.

Proof.
By a finite injury priority construction. O

Corollary
For every n > 2, RT% and SRT} admit no universal instance.
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Theorem (Patey)

Fix a principle P such that SADS <. P. If every computable instance
Corollary

of P admits a low, solution then P admits no universal instance.

CAC, SCAC, ADS, SADS admit no universal instance.
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Definition
Given a function f : [N|" — N, an infinite set H is thin for f if
f(H]") #N.

Definition (Thin set theorem)
Every function f : [N]" — N has an infinite set thin for f.

We write TS(n) to denote thin set theorem restricted to
colorings over n-uples and STS(n) to denote the restriction of
STS(n) to stable colorings.
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Theorem (Patey)

Fix a principle P such that STS(n) <. P. If every computable

instance of P admits a low, over ()"=2) solution then P admits no
universal instance.

Corollary

For everyn > 2, TS(n), STS(n), RT%, SRT}, FS(n) (Free set) admit
no universal instance.
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STABLE RAMSEY THEOREM FOR PAIRS

Theorem (Mileti)

Fix a principle P such that SRT <. P. If every computable instance
of P admits an incomplete A3 solution then P admits no universal
instance.

Proof.
By a finite injury priority construction. O]

Corollary

SRT? admits no universal instance.
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STABLE RAINBOW RAMSEY THEOREM FOR PAIRS

Definition
A 2-bounded function f : [N]?> — N is rainbow-stable if for every x,
there is a y such that f(x,s) = f(y, s) for cofinitely many s.

Definition (Stable rainbow Ramsey theorem for pairs)

Every rainbow-stable 2-bounded function f : [NJ* — N admits a
rainbow.

SRRT3 is computably equivalent to the statement
“for every A9 function f, there exists a function g
such that f(x) # g(x) for each x.”
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STABLE RAINBOW RAMSEY THEOREM FOR PAIRS

Theorem (Patey)

Fix a principle P such that SRRT, <. P. If every computable
instance of P admits an incomplete A solution then P admits no
universal instance.

Proof.
By a finite injury priority construction. O

Corollary

SRRT?, SRT2, STS(2), SEM (stable Erdds Moser theorem) admit no
universal instance.
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CONCLUSION

» Few Ramseyan principles admit a universal instance.

» Previous sentence is a too short conclusion, so I add this
one.
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Thank you for listening !
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