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SHAPE OF OUR THEOREMS

Consider “ordinary” theorems

I (König’s lemma) Every infinite tree finitely branching has
an infinite path.

I (Ramsey theorem) Every coloring of tuples into finitely
many colors has an infinite monochromatic subset.

I (Atomic model theorem) Every complete atomic theory has
an atomic model.

I ...
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OBSERVATION

Many theorems are of the form

(∀X)(∃Y)Φ(X,Y)

where Φ is an arithmetical formula.
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SHAPE OF OUR THEOREMS

Theorems usually come with a natural class of instances.

I In König’s lemma, the infinite trees finitely branching
I In Ramsey theorem, the colorings of tuples into finitely

many colors
I In AMT, the complete atomic theories

Given an instance X, a Y such that Φ(X,Y) holds is called a
solution (of X).
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EFFECTIVENESS

I Theorems are not all effective.
I Some theorems have computable instances with no

computable solution.

Theorem (Kreisel)
There exists an infinite computable binary tree with no infinite
computable path.
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EFFECTIVENESS

Question
Are there instances harder to solve than any other ?

We need to give a precise definition of “harder”.
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EFFECTIVENESS

Definition
A instance I is harder than another instance J if every solution of I
computes a solution to J.

A computable instance harder than every computable instance
is called a universal instance.
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UNIVERSAL INSTANCE

Which principles admit a
universal instance ?
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DEFINITIONS

Definition (Tree)

I A tree is a downward closed subset of N<N under �.
I A tree T is finitely branching if for every σ ∈ T, there are finitely

many n such that σn ∈ T.
I A tree is binary if it is a subset of 2<N.

Definition (Path)
A path on a tree T is a set X ∈ NN such that X � n ∈ T for each n. [T]
is the collection of paths of T.
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KÖNIG’S LEMMA

Definition (König’s lemma)
Every infinite tree finitely branching has a path.

Definition (Weak König’s lemma)
Every infinite binary tree has a path.



INTRODUCTION PRINCIPLES ADMITTING A UNIVERSAL INSTANCE PRINCIPLES ADMITTING NO UNIVERSAL INSTANCE

WEAK KÖNIG’S LEMMA

Theorem (Solovay)
Weak König’s lemma admits a universal instance.

Definition
A function f is d.n.c. relative to X if (∀e)f (e) 6= ΦX

e (e).

Proof.
I For every infinite computable binary tree T, every
{0, 1}-valued d.n.c. function computes a path in T.

I There exists a computable binary tree whose paths are
exactly {0, 1}-valued d.n.c. functions.
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KÖNIG’S LEMMA

Theorem (Jockusch & al.)
König’s lemma admits a universal instance.

Proof.
I For every infinite, computable, finitely branching tree T,

there exists an infinite ∅′-computable binary tree U whose
paths have the same degrees as the degrees of the paths
through T.

I Relativize previous theorem.
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WEAK WEAK KÖNIG’S LEMMA

Definition
A binary tree T has positive measure if

lim
n

|{σ ∈ T : |σ| = n}|
2n > 0

Definition (Weak weak König’s lemma)
Every binary tree of positive measure has a path.
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WEAK WEAK KÖNIG’S LEMMA

Theorem (Kucera)
Weak weak König’s lemma admits a universal instance.

Definition
A Martin-Löf random is a set X such that K(X � n) ≥ n− c for
some constant c, where K is prefix-free Kolmogorov complexity.

Proof.
I For every computable binary tree T of positive measure,

every Martin-Löf random is, up to prefix, a path in T.
I There exists a computable binary tree of positive measure

whose paths are all Martin-Löf randoms.
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RAINBOW RAMSEY THEOREM FOR PAIRS

Definition
A coloring function f : [N]n → N is k-bounded if for each color i,
|f−1(i)| ≤ k. An infinite set H is a rainbow for f if f is injective
over [H]n.

Definition (Rainbow Ramsey theorem for pairs)
Every 2-bounded function f : [N]2 → N has a rainbow.
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RAINBOW RAMSEY THEOREM FOR PAIRS

Theorem (Miller)
The rainbow Ramsey theorem for pairs admits a universal instance.

Proof.
I For every computable 2-bounded function f : [N]2 → N,

every function d.n.c. relative to ∅′ computes a rainbow
for f .

I There exists a computable 2-bounded function f : [N]2 → N
such that every rainbow for f computes a function d.n.c.
relative to ∅′.
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OTHER PRINCIPLES

There exists a few other principles admitting a universal
instance.

I Finite Intersection Property (Downey & al.)
I Ramsey-type weak weak König’s lemma (Bienvenu & al.)
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A SIMPLE METHOD

Fix a principle P.

I Prove that every computable instance of P has a solution
satisfying some property (e.g. ∆0

2, low, ...)
I Prove that for every set X satisfying this property, there

exists a computable instance I of P such that X does not
compute a solution for I.

I Then P does not admit a universal instance.
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GENERAL METHOD

Definition (Computable reducibility)
A principle P is computably reducible to Q (P ≤c Q) if for every
instance I of P, there exists an I-computable instance J of Q such that
for every solution X of J, X ⊕ I computes a solution of I.

Almost every proof of implication between principles in
reverse mathematics is in fact a computable reduction.
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GENERAL METHOD

Fix two principles P and Q.

I Prove that every computable instance of P has a solution
satisfying some property.

I Prove that for every set X satisfying this property, there
exists a computable instance I of Q such that X does not
compute a solution for I.

I Then no principle R such that Q ≤c R ≤c P admit a
universal instance.
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ASCENDING DESCENDING SEQUENCE

Definition (Ascending Descending sequence)
Every linear order has an infinite ascending or descending sequence.

Definition (Stable ascending Descending sequence)
Every linear order of order type ω + ω∗ has an infinite ascending or
descending sequence.
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ASCENDING DESCENDING SEQUENCE

Theorem (Hirschfeldt & al.)
Fix a principle P such that SADS ≤c P. If every computable instance
of P admits a low solution, then P admits no universal instance.

Proof.
For every low set X, there exists a computable linear order of
order type ω + ω∗ having no X-computable infinite ascending
or descending sequence.

Corollary
SADS, but also SCAC (every stable partial order has an infinite chain
or antichain) admit no universal instance.
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Definition
A function f dominates a function g is f (x) ≥ g(x) for cofinitely
many x.

Definition (Atomic model theorem)
For every ∆0

2 function f , there exists a function g which is not
dominated by f .
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Theorem (Martin)
Fix a principle P such that AMT ≤c P. If every computable instance
of P admits a ∆0

2 low2 solution, then P admits no universal instance.

Proof.
For any ∆0

2 set X, a function is high relative to X iff it computes
a function dominating every X-computable function.

Corollary
AMT, but also SADS and SCAC admit no universal instance.
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Definition
Given a function f : [N]n → k, a set H is homogeneous for f if there
exists a color i < k such that f ([H]n) = k.

Definition (Ramsey theorem for tuples)
Every function f : [N]n → k has an infinite homogeneous set.

We write RTn
k to denote Ramsey theorem restricted to colorings

over n-uples with k colors and SRTn
k to denote the restriction of

RTn
k to stable colorings.
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Theorem (Mileti)
Fix a principle P such that SRTn

2 ≤c P. If every computable instance
of P admits a low2 over ∅(n−2) solution then P admits no universal
instance.

Proof.
By a finite injury priority construction.

Corollary
For every n ≥ 2, RTn

2 and SRTn
2 admit no universal instance.
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Theorem (Patey)
Fix a principle P such that SADS ≤c P. If every computable instance
of P admits a low2 solution then P admits no universal instance.

Corollary
CAC, SCAC, ADS, SADS admit no universal instance.
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Definition
Given a function f : [N]n → N, an infinite set H is thin for f if
f ([H]n) 6= N.

Definition (Thin set theorem)
Every function f : [N]n → N has an infinite set thin for f .

We write TS(n) to denote thin set theorem restricted to
colorings over n-uples and STS(n) to denote the restriction of
STS(n) to stable colorings.
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Theorem (Patey)
Fix a principle P such that STS(n) ≤c P. If every computable
instance of P admits a low2 over ∅(n−2) solution then P admits no
universal instance.

Corollary
For every n ≥ 2, TS(n), STS(n), RTn

2 , SRTn
2 , FS(n) (Free set) admit

no universal instance.
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STABLE RAMSEY THEOREM FOR PAIRS

Theorem (Mileti)
Fix a principle P such that SRTn

2 ≤c P. If every computable instance
of P admits an incomplete ∆0

2 solution then P admits no universal
instance.

Proof.
By a finite injury priority construction.

Corollary
SRT2

2 admits no universal instance.
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STABLE RAINBOW RAMSEY THEOREM FOR PAIRS

Definition
A 2-bounded function f : [N]2 → N is rainbow-stable if for every x,
there is a y such that f (x, s) = f (y, s) for cofinitely many s.

Definition (Stable rainbow Ramsey theorem for pairs)
Every rainbow-stable 2-bounded function f : [N]2 → N admits a
rainbow.

SRRT2
2 is computably equivalent to the statement

“for every ∆0
2 function f , there exists a function g

such that f (x) 6= g(x) for each x.”
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STABLE RAINBOW RAMSEY THEOREM FOR PAIRS

Theorem (Patey)
Fix a principle P such that SRRTn

2 ≤c P. If every computable
instance of P admits an incomplete ∆0

2 solution then P admits no
universal instance.

Proof.
By a finite injury priority construction.

Corollary
SRRT2

2, SRT2
2, STS(2), SEM (stable Erdös Moser theorem) admit no

universal instance.
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CONCLUSION

I Few Ramseyan principles admit a universal instance.

I Previous sentence is a too short conclusion, so I add this
one.
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QUESTIONS

Thank you for listening !
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