Intro RAND & DNC WWKL & RWWKL RAND(0') RRT22 & EM RCOLOR Conclusion

New results in the reverse mathematics analysis of Ramsey theory

Laurent Bienvenu Ludovic Patey

Paul Shafer

LIAFA, Université Paris 7

April 12, 2013

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 1 / 49

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Summary

Introduction

Randomness and Diagonally Non-Computable functions

König's Lemma & Ramsey-Type König's Lemma

Stronger notions of randomness

Rainbows and Tournaments

Ramsey Graph Coloring

Conclusion

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 2 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Plan

Introduction

Randomness and Diagonally Non-Computable functions

König's Lemma & Ramsey-Type König's Lemma

Stronger notions of randomness

Rainbows and Tournaments

Ramsey Graph Coloring

Conclusion

Bienvenu - Patey - Shafer

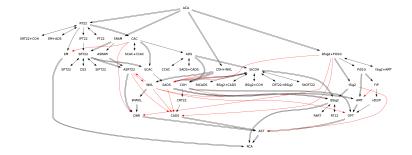
New results in Ramsey Theory

April 12, 2013 3 / 49

イロト イロト イヨト イヨト 三日

Intro RAND & DNC WWKL & RWWKL RAND(0') RRT22 & EM RCOLOR Conclusion

The "big five" subsystems

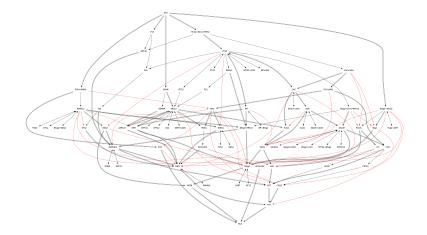

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 4 / 49

<ロ> (四) (四) (三) (三) (三) (三)

Previous reverse mathematics zoo



Bienvenu - Patey - Shafer New results in Ramsey Theory

April 12, 2013 5 / 49

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

Current reverse mathematics zoo

Bienvenu - Patey - Shafer New results in Ramsey Theory

April 12, 2013 6 / 49

《曰》 《聞》 《臣》 《臣》 三臣 -

Plan

Introduction

Randomness and Diagonally Non-Computable functions

König's Lemma & Ramsey-Type König's Lemma

Stronger notions of randomness

Rainbows and Tournaments

Ramsey Graph Coloring

Conclusion

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 7 / 49

イロト イロト イヨト イヨト 三日

Martin-Löf Randoms & D.N.C functions

Definition (Martin-Löf Random)

An infinite sequence S is Martin-Löf random if and only if

$$(\exists c)(\forall \sigma \prec S)(K(\sigma) \geq |\sigma| - c)$$

Definition (Diagonally Non-Computable function) A function f is DNC if

 $(\forall e)(f(e) \neq \Phi_e(e))$

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 8 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Martin-Löf Randoms vs D.N.C functions

Theorem (Kjos-Hanssen, Miller)

The following are equivalent.

- A computes a DNC function.
- A computes an infinite subset of a 1-random set.

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 9 / 49

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Plan

Introduction

Randomness and Diagonally Non-Computable functions

König's Lemma & Ramsey-Type König's Lemma

Stronger notions of randomness

Rainbows and Tournaments

Ramsey Graph Coloring

Conclusion

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 10 / 49

Trees

Definition (Tree)

A tree T is a set closed under prefixes:

$$\forall \sigma \in T, \, \tau \prec \sigma \Rightarrow \tau \in T$$

Definition (Measure of a tree)

$$\mu(T) \stackrel{def}{=} \lim_{n \to \infty} \frac{\operatorname{card} \left\{ \sigma \in T \ : \ |\sigma| = n \right\}}{2^n}$$

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 11 / 49

(中) (월) (분) (분) (분)

Path & Homogeneous set

Definition (Path in a tree) A set P is a path in a tree T if $(\forall \sigma \prec P)(\sigma \in T)$

Definition (Set homogeneous for a path in a tree) A set H is homogeneous for a path trough a tree T with color c if

 $(\forall n)(\exists \sigma \in T)(\forall x)(x \in H \upharpoonright n \to \sigma(x) = c)$

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 12 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

König's Lemma & Ramsey-Type König's Lemma

Definition (Weak Weak König's Lemma)

Every subtree of $2^{<\omega}$ of positive measure has a path.

Definition (Ramsey-Type Weak Weak König's Lemma) Every subtree of $2^{<\omega}$ of positive measure has a set homogeneous for a path.

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 13 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Some results

Theorem (A. Kucera, 1985)

A Martin-Löf random is a path (up to prefix) in a tree iff the tree has positive measure.

Theorem

There is a tree of positive capturing only Martin-Löf randoms.

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 14 / 49

イロト イロト イヨト イヨト 三日

Intro RAND & DNC WWKL & RWWKL RAND(0') RRT22 & EM RCOLOR Conclusion

Over **RCA**₀...

Does this still hold over \mathbf{RCA}_0 ?

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 15 / 49

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Over \mathbf{RCA}_0 ...

RAND (Martin Lof Random) \mathbf{RCA}_0 + "For every X there is a random relative to X".

DNC (Diagonally Non-Computable) \mathbf{RCA}_0 + "For every X there is a function DNC relative to X".

 $\label{eq:WWKL} \begin{array}{l} \mbox{(Weak Weak König's Lemma)} \\ \mbox{RCA}_0 + \mbox{"Every binary tree of positive measure has a path"}. \end{array}$

RWWKL (Ramsey-Type Weak Weak König's Lemma) \mathbf{RCA}_0 + "Every binary tree *T* of positive measure has an infinite set homogeneous for a path in *T*".

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 16 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Over \mathbf{RCA}_0 ...

Theorem (Avigad, Dean, & Rute) $\mathbf{RCA}_0 \vdash \mathbf{RAND} \leftrightarrow \mathbf{WWKL}_0$

Theorem (Giusto, Simpson) $\mathbf{RCA}_0 \vdash \mathbf{WWKL}_0 \rightarrow \mathbf{DNC}$

Theorem (Ambos-Spies, Kjos-Hanssen, Lempp & Slaman) $\mathbf{RCA_0} \not\vdash \mathbf{DNC} \rightarrow \mathbf{WWKL_0}$

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 17 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

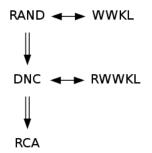
Over \mathbf{RCA}_0 ...

Theorem (Flood) $\mathbf{RCA}_{\mathbf{0}} \vdash \mathbf{WWKL}_{\mathbf{0}} \rightarrow \mathbf{RWWKL}_{\mathbf{0}}$

Theorem (Flood) $\mathbf{RCA}_0 \vdash \mathbf{RWWKL}_0 \rightarrow \mathbf{DNC}$

Theorem (Bienvenu, Patey & Shafer) $\mathbf{RCA}_0 \vdash \mathbf{DNC} \rightarrow \mathbf{RWWKL}_0$

Bienvenu - Patey - Shafer


New results in Ramsey Theory

April 12, 2013 18 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Intro RAND & DNC WWKL & RWWKL RAND(0') RRT22 & EM RCOLOR Conclusion

Over \mathbf{RCA}_0 ...

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 19 / 49

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Plan

Introduction

Randomness and Diagonally Non-Computable functions

König's Lemma & Ramsey-Type König's Lemma

Stronger notions of randomness

Rainbows and Tournaments

Ramsey Graph Coloring

Conclusion

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 20 / 49

0'-randoms and 0'-computable trees

Definition

A set S is 0'-random if it is random relative to 0'.

WWKL[0']

Every subtree of $2^{<\omega}$ of positive measure, computable in 0' has a path.

RWWKL[0']

Every subtree of $2^{<\omega}$ of positive measure, computable in 0' has a set homogeneous for a path.

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 21 / 49

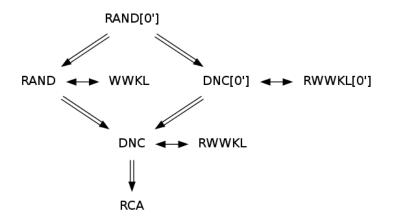
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

0'-randoms and 0'-computable trees

 $\mathbf{RAND}[\mathbf{0}']$ and $\mathbf{WWKL}[\mathbf{0}']$ are almost equal (up to $\mathbf{B}\Sigma_2$).

Theorem (Avigad, Dean, & Rute) $\mathbf{RCA}_0 \vdash \mathbf{RAND}[0'] \rightarrow \mathbf{DNC}[0']$

Theorem (Bienvenu, Patey & Shafer) $\mathbf{RCA}_0 \vdash \mathbf{RWWKL}[0'] \leftrightarrow \mathbf{DNC}[0']$


Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 22 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

0'-randoms and 0'-computable trees

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 23

◆□▶ ◆御▶ ◆理▶ ◆理▶ = 臣 = の�@

23 / 49

Randomized algorithms

How powerful is randomness ?

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 24 / 49

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Plan

Introduction

Randomness and Diagonally Non-Computable functions

König's Lemma & Ramsey-Type König's Lemma

Stronger notions of randomness

Rainbows and Tournaments

Ramsey Graph Coloring

Conclusion

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 25 / 49

Rainbow Ramsey Theorem

Definition (k-bounded function)

A coloring function $\mathbb{N}^n \to \mathbb{N}$ is k-bounded if $\operatorname{card} \{x \in \mathbb{N}^n : f(x) = c\} \le k$ for every color c.

$\mathbf{RRT}^{\mathbf{n}}_{\mathbf{k}}$ (Rainbow Ramsey Theorem)

For every k-bounded coloring function $f : \mathbb{N}^n \to \mathbb{N}$ there is an infinite set H such that $f \upharpoonright H^n$ is injective.

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 26 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Rainbow Ramsey Theorem

Theorem (Miller) $\mathbf{RCA}_0 \vdash \mathbf{DNC}[0'] \leftrightarrow \mathbf{RRT}_2^2$

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 27 / 49

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 -

Erdös-Moser Theorem

Definition (Tournament)

A tournament is a set $T \subseteq \mathbb{N} \times \mathbb{N}$ such that

 $(x, y) \in T \leftrightarrow (y, x) \notin T$

Definition (Transitive tournament)

A tournament T is transitive if

$$(x,y)\in T\wedge (y,z)\in T\rightarrow (x,z)\in T$$

Definition (Stable tournament) A tournament T is stable if

$$(\forall x)(\exists y)[(\forall z > y)((x, z) \in T) \lor (\forall z > y)((x, z) \notin T)]$$

Bienvenu - Patev - Shafer

New results in Ramsey Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの April 12, 2013

28 / 49

Erdös-Moser Theorem

EM (Erdös-Moser Theorem)

 \mathbf{RCA}_0 + "Every infinite tournament has an infinite transitive subtournament".

SEM (Stable Erdös-Moser Theorem)

 $\mathbf{RCA}_{\mathbf{0}}$ + "Every stable infinite tournament has an infinite transitive subtournament".

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 29 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Erdös-Moser Theorem

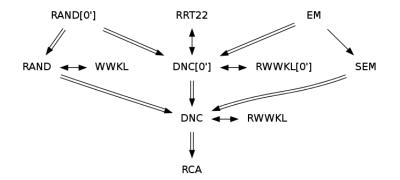
Theorem (Bienvenu, Patey & Shafer)

The following statements are true over $\mathbf{RCA_0}$

- $\mathbf{EM} \to \mathbf{DNC}[\mathbf{0'}]$
- SEM \rightarrow DNC

Idea: Diagonalize (modulo encoding) against finite 0'-c.e. sets using tournaments (respectively finite c.e. sets using stable tournaments).

Question


Is there a direct proof of $\mathbf{RCA_0} \vdash \mathbf{EM} \to \mathbf{RRT_2^2}$?

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 30 / 49

Revised zoo

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 31 / 49

◆□▶ ◆□▶ ◆注≯ ◆注≯ ─ 注

Intro RAND & DNC WWKL & RWWKL RAND(0') RRT22 & EM RCOLOR Conclusion

Revised zoo

Does EM imply WWKL₀ over RCA₀ ?

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 32 / 49

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Ramsey Theorem

$\mathbf{RT}_{\mathbf{k}}^{\mathbf{n}}$ (Ramsey theorem)

 $\mathbf{RCA}_{\mathbf{0}}$ + "For every coloring function $f : \mathbb{N}^n \to \{0, ..., k\}$ there is an infinite set H such that $f \upharpoonright H^n$ is monochromatic."

Bienvenu - Patey - Shafer

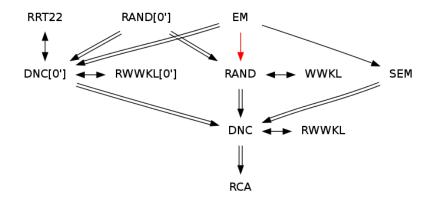
New results in Ramsey Theory

April 12, 2013 33 / 49

Ramsey Theorem

Theorem (Lerman, Solomon, Towsner) $\mathbf{RCA}_0 \vdash \mathbf{RT}_2^2 \to \mathbf{EM}$

Theorem (Liu) $\mathbf{RCA_0} \not\vdash \mathbf{RT_2^2} \rightarrow \mathbf{WWKL_0}$


Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 34 / 49

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 ̄

Revised zoo

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 35 / 49

< □ > < □ > < □ > < □ > < □ > < □ > = □

Intro RAND & DNC WWKL & RWWKL RAND(0') RRT22 & EM RCOLOR Conclusion

Revised zoo

Does **SEM** imply DNC[0'] over RCA_0 ?

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 36 / 49

(日) (部) (E) (E) (E)

Stable Ramsey Theorem

Definition (Stable function)

A function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is stable if

$$(\forall x)(\exists y)(\forall z > y)(f(x, z) = f(x, y))$$

$\mathbf{SRT}^{\mathbf{n}}_{\mathbf{k}}$ (Stable Ramsey theorem)

 \mathbf{RCA}_0 + "For every stable coloring function $f : \mathbb{N}^n \to \{0, .., k\}$ there is an infinite set H such that $f \upharpoonright H^n$ is monochromatic."

Bienvenu - Patey - Shafer

New results in Ramsey Theory

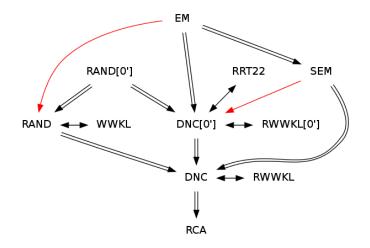
April 12, 2013 37 / 49

Stable Ramsey Theorem

Theorem (Lerman, Solomon, Towsner) $\mathbf{RCA_0} \vdash \mathbf{SRT_2^2} \rightarrow \mathbf{SEM}$

Theorem (Chong, Slaman, Yang)

There exists a non-standard model of \mathbf{SRT}_2^2 with only low sets.


Corollary $\mathbf{RCA_0} \not\vdash \mathbf{SRT_2^2} \to \mathbf{DNC}[0']$

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 38 / 49

Revised zoo

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 39

◆□▶ ◆□▶ ◆注≯ ◆注≯ □注

39 / 49

Intro RAND & DNC WWKL & RWWKL RAND(0') RRT22 & EM RCOLOR Conclusion

Revised zoo

Does RAND[0'] imply SEM over RCA_0 ?

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 40 / 49

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 -

No Randomized Algorithm Property

Definition

A principle has the *NRA property* if adding randoms to the standard model (almsot surely) doesn't realize the principle.

Tip: A way to prove that a principle has the NRA property consist of creating an instance whose class of solutions is almost surely non-computed by an oracle.

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 41 / 49

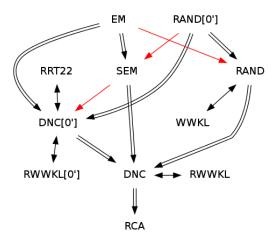
No Randomized Algorithm Property

In particular, if a principle ${\bf P}$ has the NRA property, then

 $\mathbf{RCA_0} \not\vdash \mathbf{RAND}[\mathbf{0'}] \to \mathbf{P}$

Theorem (Bienvenu, Patey, Shafer) **SEM** has the NRA property

Idea: A "measure-risking argument" (like Antoine's talk) combined with a priority construction with finite injury.


Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 42 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Revised zoo

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 43 / 49

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Plan

Introduction

Randomness and Diagonally Non-Computable functions

König's Lemma & Ramsey-Type König's Lemma

Stronger notions of randomness

Rainbows and Tournaments

Ramsey Graph Coloring

Conclusion

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 44 / 49

イロト イロト イヨト イヨト 三日

Ramsey Graph coloring

Definition (Ramsey Graph coloring)

 $\mathbf{RCOLOR}_{\mathbf{k}}$: Every locally k-colorable graph has an infinite monochromatic set.

Theorem (Bienvenu, Patey, Shafer) **RCOLOR₂** has the NRA property

Tip: Still a "measure-risking argument" combined with a priority construction with finite injury + a combinatorial argument.

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 45 / 49

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Ramsey Graph coloring

Theorem (Bienvenu, Patey, Shafer) $\mathbf{RCA}_{\mathbf{0}} \vdash \mathbf{RCOLOR}_{\mathbf{3}} \rightarrow \mathbf{DNC}$

Tip: Tricky proof involving coding via widgets.

Question

Does RCOLOR₂ imply DNC over RCA₀ ?

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 46 / 49

Plan

Introduction

Randomness and Diagonally Non-Computable functions

König's Lemma & Ramsey-Type König's Lemma

Stronger notions of randomness

Rainbows and Tournaments

Ramsey Graph Coloring

Conclusion

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 47 / 49

イロト イロト イヨト イヨト 三日

References

Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A Slaman. Comparing dnr and wwkl.
Journal of Symbolic Logic, pages 1089–1104, 2004.
Jeremy Avigad, Edward T Dean, and Jason Rute. Algorithmic randomness, reverse mathematics, and the dominated convergence theorem. Annals of Pure and Applied Logic, 2012.
CT Chong, Theodore A Slaman, and Yue Yang.
The metamathematics of stable ramsey's theorem for pairs. To appear.
Stephen Flood.
Reverse mathematics and a ramsey-type könig's lemma. 2011.
Jiavi Liu.
Journal of Symbolic Logic, 77(2):609–620, 2012.
Henry Towsner Manuel Lerman, Reed Solomon.
Separating principles below ramsey's theorem for pairs. 2013.
S.G. Simpson, Association for Symbolic Logic, and Inc ebrary.
Subsystems of second order arithmetic, volume 42. Springer Berlin, 1999.
<ロ> < 母> < 注> < 注> < 注

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 48 / 49

Intro RAND & DNC WWKL & RWWKL RAND(0') RRT22 & EM RCOLOR Conclusion

Questions

Thank you for listening !

Bienvenu - Patey - Shafer

New results in Ramsey Theory

April 12, 2013 49 / 49

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 -