Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

On combinatorial weaknesses of Ramseyan principles

Ludovic PATEY PPS, Paris 7

June 24, 2014

SUMMARY

INTRODUCTION Reverse mathematics ω -structures Non-implication and avoidance

Notions of avoidance Cone avoidance PA avoidance Path avoidance

Conclusion

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

WHAT IS REVERSE MATHEMATICS ?

Definition

Reverse mathematics is program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics.

- Weak system (RCA₀)
- ► Prove equivalence of theorems and axioms over RCA₀

Applications

- Deeper undestanding
- Search for more elementary proofs

What is RCA_0 ?

- ► basic Peano axioms
- ► the comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \Rightarrow \exists X. \forall n. (x \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is any Σ_1^0 formula and $\psi(n)$ is any Π_1^0 formula.

the induction scheme

$$(\varphi(0) \land \forall n.(\varphi(n) \Rightarrow \varphi(n+1))) \Rightarrow \forall n.\varphi(n)$$

where $\varphi(n)$ is any Σ_1^0 formula

- ロト - (日) - (1)

$\omega\text{-}\mathsf{STRUCTURES}$

Definition An ω -structure is a tuple $(\omega, S, <, +, \times)$ where S is a collection of reals.

An ω -structure is characterized by its second order part S.

ω -models of RCA₀

Definition A *Turing ideal* if a collection S such that

- 1. If $X \in S$ and $Y \leq_T X$ then $Y \in S$
- 2. If $X, Y \in S$ then $X \oplus Y \in S$

Theorem (Friedman 1975) An ω -structure is a model of RCA₀ iff its second order part is a Turing ideal.

There is a minimal ω -model of RCA₀ with second order part

 $\mathcal{S} = \{X : X \text{ is computable } \}$

RCA₀ captures "computational mathematics".

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

SHAPE OF OUR STATEMENTS

Most of principles studied in reverse mathematics are of the form

 $(\forall X)(\exists Y)\Phi(X,Y)$

where Φ is an arithmetical formula.

Think about $(\forall X)(\exists Y)\Phi(X,Y)$ as a problem.

- The set *X* is called an *instance*.
- Every *Y* such that $\Phi(X, Y)$ holds is called a *solution* (of *X*).

BUILDING ω -MODELS

Consider the statement RT_k^n : Every function $f : [\omega]^n \to k$ has an infinite *f*-homogeneous set *H* (*i.e.* $|f([H]^n)| = 1$).

You want to build an ω -model of $\mathsf{RCA}_0 + \mathsf{RT}_k^n$.

You want to build a Turing ideal S such that if $f \in S$ is a code for a function $[\omega]^n \to k$, there exists $H \in S$ which is an infinite *f*-homogeneous set.

=

BUILDING ω -MODELS

- 1. Start with $S_0 = \{X : X \text{ is computable from } \emptyset\}$
- 2. At stage *i*, $S_i = \{X : X \text{ is computable from } Z_i\}$. Take the *i*th infinite function $f \in S_i$. Choose an infinite *f*-homogeneous set *H* and set $S_{i+1} = \{X : X \text{ is computable from } Z_i \oplus H\}$.
- 3. Iterate step 2.

The ω -structure with second order part $\bigcup_i S_i$ is model of $\mathsf{RCA}_0 + \mathsf{RT}_k^n$.

NON-IMPLICATION

Consider the statement

ACA: Every set has a jump, i.e. $(\forall X)(\exists Y)[Y = \{e : \Phi_e(e)^X \downarrow\}].$

You want to show that RT_2^2 does not imply ACA over RCA₀.

You want to build a Turing ideal S such that

- 1. if $f \in S$ is a code for a function $[\omega]^2 \to 2$, there exists $H \in S$ which is an infinite *f*-homogeneous set.
- 2. there exists a set $X \in S$ such that $X' \notin S$

NON-IMPLICATION

Suppose you have the following property:

For every $Z \geq_T \emptyset'$ and every infinite Z-computable function $f : [\omega]^2 \to 2$, there exists an infinite *f*-homogeneous set H such that $H \oplus Z \geq_T \emptyset'$.

Then you can create a model of $RCA_0 + RT_2^2$ not model of ACA.

BUILDING ω -MODELS

- 1. Start with $S_0 = \{X : X \text{ is computable from } \emptyset\}$
- 2. At stage i, $S_i = \{X : X \text{ is computable from } Z\}$ with $Z \not\geq_T \emptyset'$. Take the *i*th infinite function $f \in S_s$. Choose an infinite *f*-homogeneous set *H* such that $Z \oplus H \not\geq_T \emptyset'$ and set $S_{i+1} = \{X : X \text{ is computable from } Z \oplus H\}.$
- 3. Iterate step 2.

The ω -structure with second order part $\bigcup_i S_i$ is model of $\mathsf{RCA}_0 + \mathsf{RT}_2^2$ but $\emptyset' \notin \bigcup_i S_i$.

AVOIDANCE

- Is RT_2^2 able to *avoid* \emptyset' ?
- ► What classes of sets can a principle avoid ?

We need to define formally the notion of avoidance.

AVOIDANCE

Definition Fix a principle *P*.

- 1. *P* admits *C*-avoidance for a class of reals *C* upward closed (by Turing reducibility) if for every $X \notin C$, there exists a solution *Y* of *X* such that $Y \oplus X \notin C$.
- *P* admits *C*-avoidance for an arbitrary class *C* if it admits *D*-avoidance where *D* is the upward-closure of *C*.

AVOIDANCE

Lemma *If a principle P admits* $\{\emptyset'\}$ *-avoidance then there exists an* ω *-model of* RCA₀ + *P not model of* ACA.

SUMMARY

INTRODUCTION Reverse mathematics ω -structures Non-implication and avoidance

Notions of avoidance Cone avoidance PA avoidance Path avoidance

Conclusion

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へ⊙

CONE AVOIDANCE

Definition A principle admits *cone avoidance* if it admits $\{A_0, A_1, ...\}$ -avoidance for every countable sequence of non-computable sets $A_0, A_1, ...$

In particular, if *P* has cone avoidance, then $\mathsf{RCA}_0 \not\vdash P \to \mathsf{ACA}$.

CONE AVOIDANCE

Theorem (Jockusch, 1972) RT_2^3 does not admit cone avoidance. (In fact, $RCA_0 \vdash RT_2^n \leftrightarrow ACA$ for every $n \ge 3$)

Theorem (Seetapun, 1995) RT_2^2 admits cone avoidance.

AVOIDANCE VS STRONG AVOIDANCE

Avoidance expresses the *effective* weakness of a principle.

What if the instance is not required to be computable?

AVOIDANCE VS STRONG AVOIDANCE

Definition Fix a principle *P*.

- 1. *P* admits *strong C*-*avoidance* for an upward-closed class *C* if for every *X* (in *C* or not) and every $Z \notin C$, there exists a solution *Y* of *X* such that $Y \oplus Z \notin C$.
- P admits strong C-avoidance for an arbitrary class C if it admits strong D-avoidance where D is the upward-closure of C.

AVOIDANCE VS STRONG AVOIDANCE

Strong avoidance expresses the *combinatorial* weakness of a principle.

Which Ramseyan principles admit strong cone avoidance ?

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

STRONG CONE AVOIDANCE

Theorem (Dzhafarov and Jockusch, 2009) RT_2^1 *admits strong cone avoidance.*

Theorem (Jockusch, 1972) RT_2^2 does not admit strong cone avoidance.

STRONG CONE AVOIDANCE

When slightly relaxing the constraints...

Definition $ART^n_{k,d}$: Every function $f : [\omega]^n \to k$ has an infinite set H such that $|f([H]^n)| \le d$.

Theorem (Wang, 2013)

 $ART^n_{<\infty,d_n}$ admits strong cone avoidance for every $n \ge 1$ and sufficiently large d_n .

In particular $ART^2_{<\infty,2}$ admits strong cone avoidance.

STRONG CONE AVOIDANCE

Various consequences of Ramsey theorem have been proven to admit strong cone avoidance.

- ► Free sets, thin sets, rainbow Ramsey theorem (Wang, 2013)
- Erdös Moser (Patey)

Other consequences do not

Ascending descending sequence (Wang)

WKL AND PA DEGREES

Definition WKL: Every infinite binary tree has an infinite path.

Theorem (Jockusch and Soare, 1972)

There exists a universal instance of WKL, i.e. there exists an infinite computable binary tree such that every infinite path computes a path in every infinite computable binary tree.

WKL AND PA DEGREES

The computable tree whose paths are $\{0, 1\}$ -valued completions of the partial function $e \mapsto \Phi_e(e)$ is universal.

Definition A principle *P* admits (strong) PA avoidance if its admits (strong) $\{X : \Phi_e(e) \downarrow \rightarrow X(e) = \Phi_e(e)\}$ -avoidance.

In particular if a principle admits PA avoidance, then $\mathsf{RCA}_0 \not\vdash P \to \mathsf{WKL}$.

PA AVOIDANCE

$As \: \mathsf{RCA}_0 \vdash \mathsf{RT}_2^3 \to \mathsf{ACA} \to \mathsf{WKL}$

- ► RT³₂ does not admit PA avoidance.
- RT_2^2 does not admit strong PA avoidance.

Theorem (Liu, 2012)

- \mathbf{RT}_2^2 admits PA avoidance.
- ► RT¹₂ admits strong PA avoidance.

PA AVOIDANCE

Theorem (Patey)

The principle "For every Π_1^0 class of functions $[\omega]^2 \rightarrow 2$, there exists an infinite set homogeneous for one of the functions" admits PA avoidance.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

STRONG PA AVOIDANCE

Still slightly relaxing the constraints...

Theorem (Patey)

 $\operatorname{ART}_{<\infty,d_n}^n$ admits strong PA avoidance for every $n \ge 1$ and sufficiently large d_n .

In particular $ART^2_{<\infty,2}$ admits strong PA avoidance.

STRONG PA AVOIDANCE

Various consequences of Ramsey's theorem admit strong PA avoidance

- ► Rainbow Ramsey theorem for pairs (Wang, 2013)
- Free sets, thin sets, rainbow Ramsey theorem, Erdös Moser (Patey)

PATH AVOIDANCE

Question Can RT_2^2 avoid computing a path in any infinite binary tree with no computable member ?

....no

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PATH AVOIDANCE

Theorem (Patey)

There exists a infinite (non-computable) binary tree with no computable member, together with a computable function $f : [\omega]^2 \rightarrow 2$ such that every infinite *f*-homogeneous set computes an infinite path in the tree.

Also the case for

- ► stable thin set for pairs
- ► stable ascending descending sequence
- rainbow Ramsey theorem for triples

CONCLUSION

- RT²₂ and ascending descending sequence are effectively weak but not combinatorially weak.
- ► Free sets, thin sets, Erdös moser and rainbow Ramsey theorem are combinatorially weak.
- Many Ramseyan principles have the ability to compute paths in binary trees with no computable paths.

References

Damir D Dzhafarov and Carl G Jockusch. Ramsey's theorem and cone avoidance. The Journal of Symbolic Logic, 74(02):557–578, 2009.

Jiayi Liu et al.

RT²₂ does not imply WKL₀. Journal of Symbolic Logic, 77(2):609–620, 2012.

Wei Wang.

Some logically weak ramseyan theorems. arXiv preprint arXiv:1303.3331, 2013.

Wei Wang.

Cohesive sets and rainbows.

Annals of Pure and Applied Logic, 165(2):389-408, 2014.

Thank you for listening !

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで