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WHAT IS REVERSE MATHEMATICS ?

Definition
Reverse mathematics is program in mathematical logic that
seeks to determine which axioms are required to prove
theorems of mathematics.

I Weak system (RCA0)
I Prove equivalence of theorems and axioms over RCA0

Applications

I Deeper undestanding
I Search for more elementary proofs
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WHAT IS RCA0 ?

I basic Peano axioms

I the comprehension scheme

∀n(ϕ(n)⇔ ψ(n))⇒ ∃X.∀n.(x ∈ X⇔ ϕ(n))

where ϕ(n) is any Σ0
1 formula and ψ(n) is any Π0

1 formula.

I the induction scheme

(ϕ(0) ∧ ∀n.(ϕ(n)⇒ ϕ(n + 1)))⇒ ∀n.ϕ(n)

where ϕ(n) is any Σ0
1 formula
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ω-STRUCTURES

Definition
An ω-structure is a tuple (ω,S, <,+,×) where S is a collection
of reals.

An ω-structure is characterized by its second order part S.
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ω-MODELS OF RCA0

Definition
A Turing ideal if a collection S such that

1. If X ∈ S and Y ≤T X then Y ∈ S
2. If X,Y ∈ S then X ⊕ Y ∈ S

Theorem (Friedman 1975)
An ω-structure is a model of RCA0 iff its second order part is a
Turing ideal.
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RCA0

There is a minimal ω-model of RCA0 with second order part

S = {X : X is computable }

RCA0 captures “computational mathematics”.
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SHAPE OF OUR STATEMENTS

Most of principles studied in reverse mathematics are of the
form

(∀X)(∃Y)Φ(X,Y)

where Φ is an arithmetical formula.

Think about (∀X)(∃Y)Φ(X,Y) as a problem.
I The set X is called an instance.
I Every Y such that Φ(X,Y) holds is called a solution (of X).
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BUILDING ω-MODELS

Consider the statement RTn
k :

Every function f : [ω]n → k has an infinite f -homogeneous set H
(i.e. |f ([H]n)| = 1).

You want to build an ω-model of RCA0 + RTn
k .

≡

You want to build a Turing ideal S such that if f ∈ S is a code
for a function [ω]n → k, there exists H ∈ S which is an infinite
f -homogeneous set.
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BUILDING ω-MODELS

1. Start with S0 = {X : X is computable from ∅}
2. At stage i, Si = {X : X is computable from Zi}.

Take the ith infinite function f ∈ Si.
Choose an infinite f -homogeneous set H and set
Si+1 = {X : X is computable from Zi ⊕H}.

3. Iterate step 2.

The ω-structure with second order part
⋃

i Si is model of
RCA0 + RTn

k .
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NON-IMPLICATION

Consider the statement

ACA: Every set has a jump, i.e. (∀X)(∃Y)[Y = {e : Φe(e)X ↓}].

You want to show that RT2
2 does not imply ACA over RCA0.

You want to build a Turing ideal S such that
1. if f ∈ S is a code for a function [ω]2 → 2, there exists H ∈ S

which is an infinite f -homogeneous set.
2. there exists a set X ∈ S such that X′ 6∈ S
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NON-IMPLICATION

Suppose you have the following property:

For every Z 6≥T ∅′ and every infinite Z-computable function
f : [ω]2 → 2, there exists an infinite f -homogeneous set H such that
H ⊕ Z 6≥T ∅′.

Then you can create a model of RCA0 + RT2
2 not model of ACA.
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BUILDING ω-MODELS

1. Start with S0 = {X : X is computable from ∅}
2. At stage i, Si = {X : X is computable from Z}with Z 6≥T ∅′.

Take the ith infinite function f ∈ Ss.
Choose an infinite f -homogeneous set H such that
Z⊕H 6≥T ∅′ and set
Si+1 = {X : X is computable from Z⊕H}.

3. Iterate step 2.

The ω-structure with second order part
⋃

i Si is model of
RCA0 + RT2

2 but ∅′ 6∈
⋃

i Si.
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AVOIDANCE

I Is RT2
2 able to avoid ∅′ ?

I What classes of sets can a principle avoid ?

We need to define formally the notion of avoidance.
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AVOIDANCE

Definition
Fix a principle P.

1. P admits C-avoidance for a class of reals C upward closed
(by Turing reducibility) if for every X 6∈ C, there exists a
solution Y of X such that Y⊕ X 6∈ C.

2. P admits C-avoidance for an arbitrary class C if it admits
D-avoidance where D is the upward-closure of C.
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AVOIDANCE

Lemma
If a principle P admits {∅′}-avoidance then there exists an ω-model of
RCA0 +P not model of ACA.
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CONE AVOIDANCE

Definition
A principle admits cone avoidance if it admits
{A0,A1, . . . }-avoidance for every countable sequence of
non-computable sets A0,A1, . . . .

In particular, if P has cone avoidance, then RCA0 6` P→ ACA.
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CONE AVOIDANCE

Theorem (Jockusch, 1972)
RT3

2 does not admit cone avoidance.
(In fact, RCA0 ` RTn

2 ↔ ACA for every n ≥ 3)

Theorem (Seetapun, 1995)
RT2

2 admits cone avoidance.
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AVOIDANCE VS STRONG AVOIDANCE

Avoidance expresses the effective weakness of a principle.

What if the instance is not required to be computable ?
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AVOIDANCE VS STRONG AVOIDANCE

Definition
Fix a principle P.

1. P admits strong C-avoidance for an upward-closed class C if
for every X (in C or not) and every Z 6∈ C, there exists a
solution Y of X such that Y⊕ Z 6∈ C.

2. P admits strong C-avoidance for an arbitrary class C if it
admits strong D-avoidance where D is the upward-closure
of C.
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AVOIDANCE VS STRONG AVOIDANCE

Strong avoidance expresses the combinatorial weakness of a
principle.

Which Ramseyan principles admit strong cone avoidance ?
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STRONG CONE AVOIDANCE

Theorem (Dzhafarov and Jockusch, 2009)
RT1

2 admits strong cone avoidance.

Theorem (Jockusch, 1972)
RT2

2 does not admit strong cone avoidance.
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STRONG CONE AVOIDANCE

When slightly relaxing the constraints...

Definition
ARTn

k,d: Every function f : [ω]n → k has an infinite set H such
that |f ([H]n)| ≤ d.

Theorem (Wang, 2013)
ARTn

<∞,dn
admits strong cone avoidance for every n ≥ 1 and

sufficiently large dn.

In particular ART2
<∞,2 admits strong cone avoidance.
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STRONG CONE AVOIDANCE

Various consequences of Ramsey theorem have been proven to
admit strong cone avoidance.

I Free sets, thin sets, rainbow Ramsey theorem (Wang, 2013)
I Erdös Moser (Patey)

Other consequences do not

I Ascending descending sequence (Wang)
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WKL AND PA DEGREES

Definition
WKL: Every infinite binary tree has an infinite path.

Theorem (Jockusch and Soare, 1972)
There exists a universal instance of WKL, i.e. there exists an infinite
computable binary tree such that every infinite path computes a path
in every infinite computable binary tree.
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WKL AND PA DEGREES

The computable tree whose paths are {0, 1}-valued
completions of the partial function e 7→ Φe(e) is universal.

Definition
A principle P admits (strong) PA avoidance if its admits
(strong) {X : Φe(e) ↓→ X(e) = Φe(e)}-avoidance.

In particular if a principle admits PA avoidance, then
RCA0 6` P→WKL.
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PA AVOIDANCE

As RCA0 ` RT3
2 → ACA→WKL

I RT3
2 does not admit PA avoidance.

I RT2
2 does not admit strong PA avoidance.

Theorem (Liu, 2012)

I RT2
2 admits PA avoidance.

I RT1
2 admits strong PA avoidance.
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PA AVOIDANCE

Theorem (Patey)
The principle “For every Π0

1 class of functions [ω]2 → 2, there exists
an infinite set homogeneous for one of the functions” admits PA
avoidance.
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STRONG PA AVOIDANCE

Still slightly relaxing the constraints...

Theorem (Patey)
ARTn

<∞,dn
admits strong PA avoidance for every n ≥ 1 and

sufficiently large dn.

In particular ART2
<∞,2 admits strong PA avoidance.
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STRONG PA AVOIDANCE

Various consequences of Ramsey’s theorem
admit strong PA avoidance

I Rainbow Ramsey theorem for pairs (Wang, 2013)

I Free sets, thin sets,
rainbow Ramsey theorem, Erdös Moser (Patey)
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PATH AVOIDANCE

Question
Can RT2

2 avoid computing a path in any infinite binary tree with no
computable member ?

....no
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PATH AVOIDANCE

Theorem (Patey)
There exists a infinite (non-computable) binary tree with no
computable member, together with a computable function
f : [ω]2 → 2 such that every infinite f -homogeneous set computes an
infinite path in the tree.

Also the case for
I stable thin set for pairs
I stable ascending descending sequence
I rainbow Ramsey theorem for triples
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CONCLUSION

I RT2
2 and ascending descending sequence are effectively

weak but not combinatorially weak.

I Free sets, thin sets, Erdös moser and rainbow Ramsey
theorem are combinatorially weak.

I Many Ramseyan principles have the ability to compute
paths in binary trees with no computable paths.
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QUESTIONS

Thank you for listening !
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