Conclusion

Reverse mathematics: Classifying principles by the no randomized algorithm property.

Laurent Bienvenu Ludovic Patey

Paul Shafer

LIAFA, Université Paris 7

July 26, 2013

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 1 / 23

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Classification

Conclusion

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 2 / 23

・ロト ・四ト ・ヨト ・ヨト ・ヨ

NRA property

Classification

Conclusion

Plan

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 3 / 23

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Conclusion

The "Big Five" subsystems

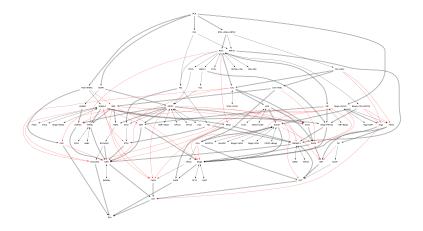
Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 4 / 23

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

Reverse mathematics zoo



Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 5 / 23

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Conclusion

ω -structure

Definition (ω -structure)

$$\mathcal{M}_S = (\omega, S, +_\omega, \times_\omega, <_\omega)$$

Example (Minimal ω -model of RCA₀) COMP is the ω -structure where

 $S = \{ X \in 2^{\omega} : X \text{ is computable} \}$

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 6 / 23

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Classification

Conclusion

Plan

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 7 / 23

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Definition

Let \vec{X}_i be a sequence of sets. $COMP(\vec{X}_i)$ is the ω -structure where

$$S = \bigcup_{i \in \omega} \left\{ Y : Y \leq_T X_0 \oplus \cdots \oplus X_i \right\}.$$

Question

Fix a system P and pick a sequence $\vec{X_i}$ at random. What is the probability that $COMP(\vec{X_i}) \models P$?

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 8 / 23

No randomized algorithm property

Definition

A system P has the no randomized algorithm property if when picking a sequence of sets $\vec{X_i}$, the probability that $COMP(\vec{X_i}) \models P$ is null.

Question

Which systems have the NRA property ?

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 9 / 23

Why no randomized algorithm property ?

- Consider a principle $P = \forall Y \exists Z \Phi(Y, Z)$.
- If P has the NRA property, then for almost every sequence \vec{X}_i there is a $Y \in COMP(\vec{X}_i)$ such that no probabilistic algorithm computes a Z such that $\Phi(Y, Z)$.

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 10 / 23

n-RAN (*n*-randomness)

For every X, there is a set Y which is n-random relative to X.

n-WWKL (*n*-weak weak König's lemma)

Every subtree of $2^{<\omega}$ of positive measure computable in $\emptyset^{(n-1)}$ has an infinite path.

Theorem (Avigdad, Dean & Rute)

For every standard n,

$\mathrm{RCA}_0 + \mathrm{B}\Sigma_n \vdash \mathrm{n}\text{-}\mathrm{RAN} \leftrightarrow \mathrm{n}\text{-}\mathrm{WWKL}$

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 11 / 23

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Theorem

If a system S has the NRA property

$\forall n \quad \text{RCA}_0 \not\vdash \text{n-WWKL} \rightarrow \text{S}$

Proof.

Pick the \vec{X}_i at random. With probability 1, for all i, X_{i+1} is *n*-random relative to the join of the X_k , k < i. Therefore, with probability 1, $COMP(\vec{X}_i)$ is a model of n-WWKL.

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 12 / 23

Classification

Conclusion

Plan

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 13 / 23

æ

・ロト ・西ト ・ヨト ・ヨト

Classification

Conclusion

No randomized algorithm property

Which systems have the NRA property ?

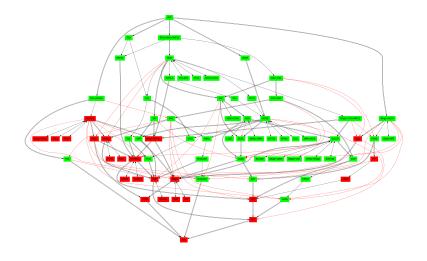
Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 14 / 23

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Reverse mathematics zoo



Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 15 / 23

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Conclusion

Ordering

SADS (Stable ascending descending sequence)

Every linear order of order type $\omega + \omega^*$ has an infinite suborder of order type ω or ω^* .

Theorem (Csima & Mileti) SADS has the NRA property

Proof.

There is a computable linear order of order type $\omega + \omega^*$ such that the measure of oracles computing an infinite suborder of order type ω or ω^* is null.

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 16 / 23

Conclusion

Ordering

CADS (Cohesive ascending descending sequence) Every linear order has a suborder of order type $\omega + \omega^*$ or ω or ω^* .

Theorem (Bienvenu, Patey & Shafer) CADS has the NRA property

Proof.

There is a computable linear order such that the measure of oracles computing an infinite suborder of order type $\omega + \omega^*$ or ω or ω^* is null.

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 17 / 23

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Conclusion

Genericity

$\Pi_1^0 G (\Pi_1^0 \text{ genericity})$

Any uniformly Π_1^0 collection of dense sets $D_i \subseteq 2^{<\omega}$ has a G such that $\forall i \exists s (G \upharpoonright s \in D_i)$.

Theorem (Kurtz)

The upward closure of the weakly 2-generic degrees has measure 0.

Theorem (Bienvenu, Patey & Shafer) Π_1^0 G has the NRA property

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 18 / 23

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Conclusion

Genericity

1-GEN (1-genericity)

For any set X, there exists a set 1-generic relative to X.

Theorem (Kurtz)

Almost every set computes a 1-generic set.

Corollary 1-GEN does not have the NRA property.

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 19 / 23

Classification

Conclusion

Plan

Introduction

NRA property

Classification

Conclusion

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 20 / 23

æ

・ロト ・西ト ・ヨト ・ヨト

Conclusion

Conclusion

- The following principles have the NRA property: Π_1^0 G, CADS, SEM, RRT₂³, POS, STS(2) RCOLOR₂.
- Any principle below n-WWKL for some n does not have the NRA property.
- It suffices to classify the whole zoo.

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 21 / 23

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

References

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 22 / 23

Classification

Conclusion

Thank you for listening !

Bienvenu - Patey - Shafer

Classifying by the NRA property

July 26, 2013 23 / 23

(日) (四) (王) (王) (王)