Lowness and avoidance
A guide to separation

Ludovic PATEY
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Reverse mathematics
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Infinitary
mathematics

PRA
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Theorem

T

4/133



Axioms Theorem

A, . An= T
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Axioms Theorem

A, . Ap = T
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Second-order arithmetics

t:::O‘l‘X|t1+t2‘t1‘t2

f.= t1=t2|t1<t2|t1 €X|f1\/f2
| —f | Vx| 3F| VXF| 3XF

(Hilbert and Bernays)
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Robinson’s arithmetics

© N ok~

m+0=m
m+((n+1)=m+n)+1
mx0=0
mx(n+1)=(mxn)+m
m+1+#0
m+l=n+1—-m=n
—(m < 0)

m<n+1l+ (m<nvm=n)
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Comprehension scheme
IXvn(n € X < p(n))

for every formula ¢(n) where X appears freely.
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Arithmetic hierarchy

nooey) =IaVxa .. Qxy (Y, X1, .. Xn)
10 o(y) =x13xa. .. QX (Y, X1, . .., Xn)

where v contains only bounded first-order quantifiers

A setis ['if it is ['-definable
A setis Al ifitis XY and I10.
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Computability = Definability

Theorem (Godel)

A setis c.e. iff it is ©¢ and computable iff it is AY.

Theorem (Post)

Asetis )("-c.e. iff it is 9, ; and (™ -computable iff it is A, ;.
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AY comprehension scheme
vn(e(n) < ¥(n)) = 3IXVn(n € X < ¢(n))

where ¢(n) is a X2y formula where X does not occur freely, and

1 is a 119 formula.
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Induction scheme
©(0) AVN(p(n) = p(n +1)) = Vnp(n)

for every formula ¢(n)
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¥? induction scheme
p(0) AVN(p(n) = ¢(n + 1)) = Yne(n)

where ¢(n) is a X{ formula
equivalent to

¥¢ bounded comprehension scheme
VoaXvn(n €e X & n <p A p(n))

where ¢(n) is a X{ formula where X does not occur freely
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RCAq

Robinson’s arithmetics

m+1#£0
m+l=n+1—-m=n
-(m < 0)

m<n+1l< (mMm<nvm=n)

»? induction scheme

p(0) AVN(p(n) = ¢(n + 1))
= VYny(n)

where (n) is a £9 formula

m+0=m
m+n+1)=m+n)+1
mx0=20
mx(n+1)=(mxn)+m

AY comprehension scheme

vn(e(n) < (n))
= 3IXVn(n € X < ¢(n))

where ¢(n) is a 9 formula where X

does not occur freely, and v is a H‘l)
formula.
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Reverse mathematics

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

IIiCA
ATR
ACA
WKL

RCA,
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Reverse mathematics

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

Except for Ramsey’s theory...

IIiCA
ATR

ACA

v 1

RT3 WKL

N4

RCA,
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How to prove a
separation?
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Given two statements P and Q.

How to prove that RCAy +P ¥ Q?

Build a model M such that
» MEP
» MEQ
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w-structure M = {w, S, <, +, -}

is the set of standard natural numbers

(i) w
(i) < is the natural order
(i) + and - are the standard operations over natural numbers

(iv) S CPw)

An w-structure is fully specified by its second-order part S.

18/133



Turing ideal M

> (VX e M)VY <7 X)[Y € M|
» (VX,Ye M)XdY e M]

Examples
» {X:Xis computable }
» {X: X <rAAX<sB} for some sets A and B

19/133



Let M = {w, S, <, +, -} be an w-structure

M k= RCAq

S is a Turing ideal

20/133



Many theorems can be seen as problems.

Intermediate value theorem

For every continuous function f over an
interval [a, b] such that f(a) - f(b) < 0, there
is areal x € [a, b] such that f(x) = 0.

Koénig’s lemma
Every infinite, finitely branching tree admits
an infinite path.
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I13-problem

P = VX[p(X) = 3YH(X,Y)

where ¢ and 1 are arithmetic formulas

» P-instances: domP = {X: ¢(X)}
» P-solutionsto X: P(X) = {Y: ¢¥(X,Y)}
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Given two I1}-problems P and Q.

How to prove that RCAy +P ¥ Q?

Build a Turing ideal M such that
» MEP
» MEQ
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Construct an w-model of RCAg +P

Start with Mo = {Z: Z <1 0}

Given a Turing ideal M, = {Z : Z <7 U} for some set U,
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Construct an w-model of RCAg +P

Start with Mo = {Z: Z <1 0}

Given a Turing ideal M, = {Z : Z <7 U} for some set U,

1. pick an instance X € M, of P
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Construct an w-model of RCAg +P

Start with Mo = {Z: Z <1 0}

Given a Turing ideal M, = {Z : Z <7 U} for some set U,

1. pick an instance X € M, of P
2. choose a solution Yto X
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Construct an w-model of RCAg +P

Start with Mo = {Z: Z <1 0}

Given a Turing ideal M, = {Z : Z <7 U} for some set U,

1. pick an instance X € M, of P
2. choose a solution Yto X
3. define Mp1 ={Z:Z<r Yo U}
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Construct an w-model of RCAg +P

Start with Mo = {Z: Z <1 0}

Given a Turing ideal M, = {Z : Z <7 U} for some set U,

1. pick an instance X € M, of P
2. choose a solution Yto X
3. define Mp1 ={Z:Z<r Yo U}

Let M = |J, Mn. Then M k& RCAg +P
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Beware, adding sets to M
may add solutions to instances of Q!
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A weakness property is a collection of sets
closed downward under the Turing reduction.

Exemples
» {X:Xislow}
» {X:A <7 X} givenasetA
» {X: Xis hyperimmune-free}
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Let W be a weakness property.

A problem P preserves W if forevery Z e W,
every Z-computable instance X of P
admits a solution Ysuchthat Y@ Z € W

If P preserves W, then for every Z € W, there is an
w-model M £ RCAg + P withZ e M CW.

If P preserves W and Q does not, then RCAg +P ¥ Q
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Cone avoidance
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ACAq

Arithmetic Comprehension Axiom

Every increasing sequence of reals admits a supremum.

Bolzano/Weierstrass theorem: Every sequence of reals admits a converging
sub-sequence.

Every countable commutative ring admits a maximal ideal.
Koénig’s lemma: Every infinite, finitely branching tree admits an infinite path.
Ramsey’s theorem for colorings of [N]3.
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ACAq

Arithmetic Comprehension Axiom

X = {e: 3t ¥(e)lt] 1}

RCAg F ACA <> VX 3Y (Y = X))

Lemma
If a TI3-problem P preserves Wy = {Z: (V £7Z},
then RCA( + P t# ACA,.
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Cone avoidance

A T1i-problem P admits cone avoidance if for every set Z,
every set C £1 Z and every Z-computable P-instance X,
there is a P-solution Yto X suchthat C £7 Y ® Z.

P admits cone avoidance

P preserves W¢ = {Z : C £1 Z} for every set C
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Strategy




Forcing in Computability Theory

Partial order
P, <)

Condition
pelP
approximation

Denotation
lp] € 2
class of candidates

Compatibility
If g <pthen[q] C [p]
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Forcing in Computability Theory

Filter F C P

Voe FYgq>pqgeF
Vp,qe F,Ire Fr<p,q

DensesetD C P

VoePdg<pgeD

Denotation

1= MNperlP]

Forcing p I+ ¢(G)
VG € [p] ¢(G)
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Cohen forcing
2, )

2<% s the set of all finite binary strings
o = 7 means o is a prefix of 7

[l ={Xe2¥:0 <X}
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Theorem (Folklore)

Let C £+ (). For every sufficiently Cohen generic G, C £1 G.

For every non-computable set C and Turing functional &, the
following set is dense in (2<%, <).

D={oce2<: 0l d¢ +£C}
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Given o € 2<%, define the %! set

W= {(x,v):3r = o ®;(x) |= v}
» Case 1: (x,1 —C(x)) € W for some x
Then 7 is an extension forcing (I)eG #C

» Case 2: (x,C(x)) & W for some x
Then o forces ®¢ # C

» Case 3: WisaXx{ graphof C
Impossible, since C £7 ()
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Weak Koénig’s lemma

2<% js the set of all finite binary strings
A binary tree is a set T C 2<% closed under prefixes

A path through T is an infinite sequence P such that every
initial segmentisin T

VVK |_ Every infinite binary tree admits
an infinite path.

38/133



Jockusch-Soare forcing
(T, <)

T is the collection of infinite computable binary trees

[T={Xe€2¥: Vo <XoeT}
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Let C £1 ). For every infinite computable binary tree T C 2<%,
there is a path P € [T] such that C £7 P.

For every non-computable set C and Turing functional ®., the
following set is dense in (7, C).

D={TeT:TIa+C}
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Given T € T, define the X{ set

W= {(x,v): 3 e NVo € 2!NT I (x) |=v}
» Case 1: (x,1 —C(x)) € W for some x
Then T forces ¢ # C

» Case 2: (x,C(x)) & W for some x
Then {o € T: =(®Z(x) |=v)} forces ®¢ + C

» Case 3: WisaXx{ graphof C
Impossible, since C £7 ()
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Forcing question

p 7= o(G)

where p € P and ¢(G) is 3¥

Let p € P and »(G) be a X formula.
(@ Ifp?-p(G), then q I- (G) for some g < p;
(b) If p72¥ ©(G), then g IF —p(G) for some g < p.
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Jockusch-Soare Cohen
forcing question forcing question

Forcing 9 Forcing I19
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Fix a notion of forcing (P, <).

A forcing question is I'-preserving if for every p € P and every
I'-formula ¢(G, x), the relation p 7+ ¢ (G, x) is in ' uniformly in x.

Suppose ?- is X{-preserving. For every non-computable set C and
Turing functional @, the following set is dense in (P, <).

D={peP:pl &¢ +£C}
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Given p € P, define the X9 set

W={(x,v):p?o¢(x) |=v}
» Case 1: (x,1 —C(x)) € W for some x
Then there is an extension forcing (I)S #C

» Case 2: (x,C(x)) & W for some x
Then there is an extension forcing (I)eG #C

» Case 3: WisaXx{ graphof C
Impossible, since C £7 ()
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Pigeonhole principle

RTl Every k-partition of N admits
k an infinite subset of a part.

01 2 3 4 2

5 6 7 8 9 5 6 9
10 11 12 13 14 — 12

15 16 17 18 19 15 17 18

20 21 22 23 24 24

25 26 27 28 ... 26 27
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For every set C £+ () and every 2-partition Ag LIA; = N,
there is some i < 2 and an infinite set G C A; such that C 47 G.
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For every set C £+ () and every 2-partition Ag LIA; = N,
there is some i < 2 and an infinite set G C A; such that C 47 G.

Input : aset C £7 () and a 2-partition Ag LUA; = N

Output : an infinite set G C A; such that C £+ G
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F05F11X

/ \

Initial segment Reservoir
» F;is finite, X is infinite, max F; < min X (Mathias condition)
» C«Lr X (Weakness property)

» Fi CA (Combinatorics)
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Extension Denotation

(Eo,E1,Y) < (Fo,F1,X) (Go, G1) € [Fo,F1,X]
» F; CE; > [ CG;
» YCX » Gi\FiCX
> Ei\FCX

[Eo,E1,Y] C [Fo,F1,X]
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(FO!FhX) In SO(GO! Gl)
/ ™

Condition Formula

©(Go, G1) holds for every (Gy, G1) € [Fo, F1,X]
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Input : aset C £7 () and a 2-partition Ag LUA; = N

Output : an infinite set G C A; such that C £+ G
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Input : aset C £7 () and a 2-partition Ag LUA; = N

Output : an infinite set G C A; such that C £+ G

S0 L CV PG #C
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Input : aset C £7 () and a 2-partition Ag LUA; = N

Output : an infinite set G C A; such that C £+ G
Gy G,
Qe #CV O #C

Theset {p e P:pI- ®5° £ C Vv @' + C} is dense
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Disjunctive forcing question

P 7 o(Go) V ¢1(G1)

where p € P and ¢y(Go), »1(G1) are 3¥

Let p € P and ¢0(Go), ¢1(G1) be X formulas.
@ Ifp?=p0(Go)Ve1(Gi), thenq I- o (Go)V ¢1(G) for some g < p;

(0) If p 2% ©o(Go) V 1(G1), then q Ik —po(Go) V —1(G1) for some
g <p.
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Suppose the following relation is uniformly ©9(X) whenever
©0(Go), ¢1(G1) are X9

(Fo, F1,X) ?=00(Go) V ¢1(G1)

For every non-computable set C and Turing functionals
e, , Pe,, the following set is dense in (P, <).

D={peP:plka £Cval +£C}

Consider the X9(X) set

W= {(x,v): p?2-®5°(x) |=v Vv &F°(x) |= v}

€o
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Problem: complexity of the instance

“Can we find an extension for this instance of RT}?”

(Fos F1,X) 7= 00(Go) V ¢1(G1)

(E|I < 2)(E|E, - XﬂA,’)QO,‘(F,‘ U E,)

The formula is $9(X @ A;)
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Idea: make an overapproximation

“Can we find an extension for every instance of RT;?”

(Fos F1,X) 7= 00(Go) V ¢1(G1)

(VBO UB; = N)(HI < 2)(E|E, C XN B,')(,O,‘(F,‘ U E,)

The formula is X{(X)
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Case 1: p 7 po(Go) V 91(G1)

Letting B; = A, there is an extension g < p forcing

©0(Go) V ¢1(G1)

Case 2: p %% po(Go) V 1(G1)
(HBQ UB; = N)(VI < 2)(VE, cXn B,‘)—WO,'(F,' U E,)
The condition (Fy, F1,X N B;) < p forces

—p0(Go) V —p1(G1)
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What we know so far...

Forcing question 7+

Notion of forcing (P, <)

¥9-preserving

cone avoidance
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Preservation of
hyperimmunity



A function g : N — N dominates f: N — N if V*x g(x) > f(x).

A function f: N — N is a modulus for a set A C N if every
function dominating f computes A.

A function f: N — N is hyperimmune if it is not dominated by
any computable function.

An infinite set A C N is hyperimmune if there is no infinite
computable sequence of pairwise disjoint blocs intersecting A.
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Computation
Al (hyperarithmetic) sets

High degrees (d' > 0”)

Hyperimmune sets

Function growth
Sets admitting a modulus

Functions dominating every
computable function

Hyperimmune functions
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A set G is weakly 1-generic if for every c.e. dense set of strings
We C 2<N | there is some o < G in W.

Every weakly 1-generic set is
hyperimmune.

Given a computable sequence of
pairwise disjoint blocs (Bp)nen
the following set is dense:

{o:3n|o| > maxBy, ABpNo =0}

Every hyperimmune function
computes a weakly 1-generic set.

Given a hyperimmune function f, build an
f-computable sequence op < o1 < ...
Having defined op, wait until time f(|on|)
to see if some We enumerates an
extension

(I cheat, slightly more complicated)
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Preservation of hyperimmunity

A I13-problem P admits preservation of hyperimmunity if
for every set Z, every Z-hyperimmune function f and every
Z-computable P-instance X, there is a P-solution Y to X
such that fis Y & Z-hyperimmune.

P admits preservation of Z-hyperimmunity

P preserves Wy = {Z : fis Z-hyperimmune }
for every function f
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Cohen forcing
(2<w, _<)

2<% js the set of all finite binary strings
o = 7 means o is a prefix of 7

[l ={Xe2¥:0 <X}
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Let f: N — N be hyperimmune. For every sufficiently Cohen
generic G, f is G-hyperimmune.

For every hyperimmune function f: N — N and Turing
functional @, the following set is dense in (2<%, <).

D={oe2%: gl d(x) 1 vax % (x) < f(x)}
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Given o € 2<%, define the partial computable function:

h(x) = y for the least y such that

Ir =0 BL(x) b=y
» Case 1: h(x) < f(x) for some x € domh.
Then 7 is an extension forcing ®¢(x) < f(x)

» Case 2: x ¢ domh for some x
Then o forces ®Z(x) 1t

» Case 3: h is total and dominates f.
Impossible, since fis hyperimmune
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Fix a notion of forcing (PP, <).

A forcing question is I'-compact if for every p € P and every
I'-formula ¢(G, x), if p 7 3x ¢(G, x) then there is a finite set
F C Nsuchthat p?-3x € F ¢(G, x).

Suppose 7+ is X{-preserving and %9-compact. For every
hyperimmune function f : N — N and Turing functional ®., the
following set is dense in (P, <).

D={pecP:pl3xd%(x) 1+ vix &% (x) < f(x)}
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Given p € P, define the partial computable function:
h(x) = 1+ maxF for the least F such that

p?3y e FOZ(x) l=y
» Case 1: h(x) < f(x) for some x € domh.
Then there is an extension forcing ®¢(x) < maxF < f(x)

» Case 2: x ¢ domh for some x
Then p 7% 3y ®¢(x) |=y. There is an extension forcing ®¢ (x) +

» Case 3: h is total and dominates f.
Impossible, since fis hyperimmune
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A 11}-problem admits cone avoidance iff it admits preservation
of hyperimmunity.

» If a problem admits cone avoidance,
it can avoid w cones simultaneously.

» There are problems which admit preservation of k
hyperimmunities, but not k 4 1 simultaneously.

68/133



What we know so far...

Forcing question 7+ Notion of forcing (P, <)

»9-preserving cone avoidance

¥.0-preserving and X{-compact | preservation of hyperimmunity
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Compactness avoidance
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WKL

Weak Kénig’s lemma

Every infinite binary tree admits an infinite path

Heine/Borel cover lemma: Every cover of the [0, 1] interval by a sequence of
open sets admits a finite sub-cover.

Every real-valued function over [0, 1] is bounded.

Godel’s completeness theorem: every countable set of statements in predicate
calculus admits a countable model.

Every countable commutative ring admits a prime ideal.
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A function f: N — N is diagonally non-computable (DNC) if

ve fle) # Pe(e)

There exists a computable infinite binary tree T C 2<N such that [T]
are the {0, 1}-valued DNC functions.

> T={ocec2<N:Ve < |o|o(e) # De(e)]|0]]}.

For every computable infinite binary tree T, every {0, 1}-valued DNC
function computes a path.

» Giveno € Tand x € N, let $¢_ explore the branches below o - 0 and ¢ - 1.
» If the branch below ¢ - i is the first to die, then halt and output /.
» For every o extensible in T, o - f(es) is extensible in T.
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Cohen forcing
(2<w, _<)

2<% js the set of all finite binary strings
o = 7 means o is a prefix of 7

[l ={Xe2¥:0 <X}
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Every sufficiently Cohen generic G computes no {0, 1}-valued
DNC function.

For every {0, 1}-valued Turing functional @, the following set is
dense in (2<%, <).

D={0e2 0l IxdG(x) 1+ Vvix B(x) |= By(x)}
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Given o € 2<%, define the XY set

W={(x,v): 31 = o P (x) |=v}
» Case 1: (x, Dx(x)) € W for some x such that &, (x) |
Then 7 is an extension forcing ®¢(x) = &, (x)

» Case 2: (x,0),(x,1) ¢ W for some x
Then o forces ®Z(x) t

» Case 3: Wis a XY graph of a DNC function
Impossible, since no DNC function is computable.
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Fix a notion of forcing (PP, <).

A forcing question is I19-merging if for every p € P
and every pair of ¥0-formulas ¢(G), 1/(G) such that
p ¥ »(G) and p 7¥ ¢ (G), there is an extension g < p
such that g IF —¢(G) A —9(G).

Suppose ?- is X{-preserving and I1{-merging. For every
{0, 1}-valued functional @, the following set is dense in (P, <).

D={pecP:plxd(x) 1+ vix ®%(x) = By(x)}
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Jockusch-Soare Cohen
forcing question forcing question

Forcing 9 Forcing I19
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Solovay forcing

(€, <)

C is the collection of closed classes of positive measure in 2"
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For every sufficiently Solovay generic G, G computes no
{0, 1}-valued DNC function.

For every {0, 1}-valued Turing functional ®., the following set is
dense in C.

D={PeC:PlI3xd(x) 1+ Vvix d%(x) |= By(x)}
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Lebesgue density lemma

For every closed class P C 2" of
positive measure and every € > 0,
there is some o € 2<N such that

p(P N [a])
u(lo]) =1 —e
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Given a closed class P C 2N and o € 2<N such that
w(P) N o)) > 0.9 x u([o]), define the X set

W= {(x,v): u(Z: ®I%(x) |=v) > 0.2}

» Case 1: (x, Dx(x)) € W for some x such that &x(x) |
Then pick 7 € 2<N such that (P N [7]) > 0 and ®Z(x) |= Px(x).
The class P N [7] is an extension forcing ¢ (x) = ®,(x)

» Case 2: (x,0),(x,1) € W for some x
Then PN (o] N{Y: ®Y(x) 1} forces ®F(x) 1

» Case 3: Wis a X graph of a DNC function
Impossible, since no DNC function is computable.
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vyvyvy Vy

DNC

Diagonal Non-Computability

For every set X, there exists an X-DNC function f, that is, Ve, f(e) # ®X(e).
For every set X, there exists an X-fixpoint-free function f, that is, Ve, Wf(e) # W’e‘.

For every set X, there exists a function f such that Vn, CX(f(n)) > n.
For every set X, there exists an infinite subset of an X-random set.

RWWHKL: For every binary tree of positive measure T C 2<N, there is an infinite
homogeneous set.

\
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There is a probabilistic algorithm to compute a DNC function.

Algorithm

Probability of error

Pick f(0) at random in [0, 2?]
Pick f(1) at random in [0, 23]
Pick f(2) at random in [0, 2*]

Global probability of error: at most >~ 27772 = 0.5.
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Cohen forcing
(2<w, _<)

2<% js the set of all finite binary strings
o = 7 means o is a prefix of 7

[l ={Xe2¥:0 <X}
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Theorem (Folklore)

Every sufficiently Cohen generic G computes no DNC function.

For every Turing functional ®., the following set is dense in
(2<w,j)-

D={oe2%: gl dZ(x) 1+ vax ®Z(x) |= Dx(x)}
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Given o € 2<%, define the XY set

W={(x,v): 31 = o P (x) |=v}
» Case 1: (x, Dx(x)) € W for some x such that &, (x) |
Then 7 is an extension forcing ®¢(x) = &, (x)

» Case2: IxVy (x,y) ¢ W
Then o forces ®Z(x) t

» Case 3: Wis a XY graph of a DNC function
Impossible, since no DNC function is computable.
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Fix a notion of forcing (PP, <).

A forcing question is countably I1Y-merging if for every p € P
and every countable sequence of X9-formulas (¢n(G))nen
such that for every n, p 7% ¢, (G), there is an extension g < p
such that for every n, g I —¢n(G).

Suppose ?- is X{-preserving and countably I19-merging. For every
Turing functional ®, the following set is dense in (P, <).

D={pecP:plxd(x) 1+ vix ®%(x) |= By(x)}

87/133



What we know so far...

Forcing question 7+ Notion of forcing (P, <)

»9-preserving cone avoidance

¥9-preserving and X{-compact | preservation of hyperimmunity

¥9-preserving and I19-merging PA avoidance

¥9-preserving and w-I1{-merging DNC avoidance
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Conservation theorems
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Induction scheme

p(0) ANVX(p(X) = p(x + 1)) = Vye(y)

for every formula o(x)

Collection scheme

(Wx <a)(Fy)elxy) = (3b)(vx <a)(3Fy <b)p(x,y)

for every a € N and every formula ¢(x, y)
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Over Q + IAJ + exp

Induction | Collection

Least principle

Regularity

129 = 1119 LI =LxY | X9-regularity
1A BXY = BIY LAY AY-regularity
129 = 1% LI =LY | X{-regularity
IAY BX{ = BII) LAY AV-regularity

» exp: totality of the exponential

» Aset X is M-regular if every initial segment of X is M-coded

» Least principle: every non-empty set admits a minimum element
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Over Q + IAJ + exp

Induction | Collection | Least principle Regularity

1%9 = 1119 LI =LxY | X9-regularity
1A Bx9 = BIIY LAY AJ-regularity

129 = 1119 LI =19 | X9-regularity
IAY BxY = BIIY LAY Af-regularity

RCA( = Q + AY-comprehension + 133




Over Q + IAJ + exp

Induction | Collection | Least principle Regularity

1%9 = 1119 LI =LxY | X9-regularity
1A Bx9 = BIIY LAY AJ-regularity

129 = 1% LI =Ly | X{-regularity
IAY BX9 = BII) LAY AY-regularity

RCA; = Q + AY-comprehension + IA) + exp
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First-order part of T:

set of its first-order sentences

Induction System First-order part

1X9 =119 | RCAq + %9 Q+1%
1A RCA, + BX) Q+ 1A,

X9 = I1Y RCA, Q+ 1%

IAY + exp RCA} Q+ 1A +exp
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Fix a family of formulas I

A theory T, is I'-conservative over T if every I"-sentence
provable over T, is provable over Ty.

If T is a [1}-conservative extension of Ty,
then they have the same first-order part.
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A second-order structure N' = (N, T) is an w-extension of
M=(M,S)ifN=M,T2S,+" =+Mand <N=<M,

If every countable model of M E T, admits an w-extension N E Ty,
then T; is H}—conservative over Ty.

» Suppose Ty ¥ VX¢(X). Let M E Ty A IX=¢(X).
» Let N E T; be an w-extension of M.
» Then N E Ti A IX=¢(X). So Ty ¥ VX(X).
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Let M = (M, S) be a second-order structure, and G C M.
M(G] is the smallest w-extension containing the AY(M U {G})
sets.

Let P be a ITi-problem and T be a theory. If for every countable
model M T and every X € M such that M k (X € domP), there is
aset Y C Msuchthat M[Y] E T+ (Y€ P(X)),thenT+Pis
II}-conservative over T.

M C M[Yo] € M[YolY1] C ...
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WKL

Weak Kdnig’s lemma

» Every infinite binary tree admits an infinite path

WKL is H%-conservative over RCA
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Let M = (M, S) E RCA, be a countable model and T C 2<M be an
infinite tree in S. There is a path G € [T] such that M[G] E RCA,.

(P, <) T Jyyly, G 1y)

The set of all infinite there is some ¢ € M such that
binary trees in S for every o € T of length ¢,
ordered by inclusion Y(y,o | y) forsomey < /.
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T 3ydy, G 1y)

there is some ¢ € M such that
for every o € T of length ¢,
Y(y,o | y) forsomey < £.

Let T be a condition and ¢(G) be a ¥¢(M)-formula.
1. If T?+¢(G) then T forces ¢(G)
2. If T?¥ ¢(G) then there is an extension T; C T forcing —¢(G)
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Let M = (M, S) E RCA; and G C M be such that M U {G} £ I139.
Then M[G] E RCA,.

Let T be a condition and ¢(x, X) be a %9(M)-formula such that T
forces —p(b, G) for some b € M. Then there is an extension T; C T
such that

» Either T, forces —¢(0,G)
» Or T, forces ¢(a,G) and —p(a + 1, G) forsomea e M
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Given T € P, define the %¢(M) set

W={xeM: T oxG)}
» Case1: 0 & W.
Then there is an extension forcing —¢(0, G)

» Case2:acWanda+1¢ WforsomeaeM
Then there is an extension forcing ¢(a,G) and —p(a + 1,G)

» Case3: 0cWandVaeM@acW —a+1ecW)
Impossible, since M 12 butb ¢ W.
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Every set can be A}
from the viewpoint of RCA,.

Let M = (M, S) £ RCA, be a countable model and A C M be
an arbitrary set. There is a set G C M such that A is AY(G) and
MIG] E RCA,.
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Towsner forcing

IP: set of pairs (g,/) in M such that
» g C M? — 2is a finite partial function;
» | C M is a finite set of “locked” columns.

[9,]: class of all partial functions h € M? — 2 such that
» gCh;
» forall (x,y) € domh\ domg, if x € | then h(x,y) = A(x).

(h,J) < (g,)ifd D land h € [g,]]
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there is some h € [g, /] and some y such that ¢ (y,h [).

Let (g,/) be a condition and (G) be a 3¢ (M)-formula.
1. If (g,1) 7 ¢(G) then there is an extension forcing ¢(G)
2. If (g,1) 7% »(G) then (g, /) forces —¢(G)
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Let M = (M, S) E RCA; and G C M be such that M U {G} £ I139.
Then M[G] E RCA,.

Let (g,/) be a condition and ¢(x, X) be a £¢(M)-formula such that
(g,1) forces (b, G) for some b € M. Then there is an extension
(h,J) < (g,!) such that

» Either (h,J) forces —¢(0, G)
» Or (h,J) forces ¢(a,G) and —p(a+ 1,G) for somea € M
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Given (g,/) € P, define the ¥9(M) set

W={xeM:(g9,)?FoxG)}
» Case1: 0 & W.
Then there is an extension forcing —¢(0, G)

» Case2:acWanda+1¢ WforsomeaeM
Then there is an extension forcing ¢(a,G) and —p(a + 1,G)

» Case3: 0cWandVaeM@acW —a+1ecW)
Impossible, since M 12 butb ¢ W.
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Fix a notion of forcing (PP, <).

A forcing question is (39, I19)-merging if for every p € P
and every pair of ¥0-formulas ¢(G), 1/(G) such that
p7-¢(G) and p 7% 1¢(G), there is an extension g < p
such that g IF ¢(G) A —9¥(G)..

Suppose 7+ is X9-preserving and (X9, I19)-merging. For every
{0, 1}-valued functional @, the following set is dense in (P, <).

D={pecP:plxd(x) 1+ vix ®%(x) |= By(x)}
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Jockusch-Soare Toswner
forcing question forcing question

Forcing 9 Forcing I19
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What we know so far...

Forcing question 7+

Notion of forcing (P, <)

»9-preserving

cone avoidance

¥9-pres. and X{-compact

pres. of hyperimmunity

¥9-pres. and I19-merging

PA avoidance

¥9-pres. and w-119-merging

DNC avoidance

¥9-pres. and (29, I19)-merging

129 preservation
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Higher jump control
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An infinite set C is cohesB/e for a sequence Ry, Ry, ... if for
every i, C C*RjorC C*R;

COH

Cohesiveness principle
Every sequence of sets admits a cohesive set

Cohesiveness is about
jump computation
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Let Ry, R1, ... be an infinite sequence of sets

Given o € 2<N let

Let C(R) be the IT(()') class of all P such that for every o < P,
R, is infinite
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Let R be a uniformly computable sequence of sets.
A set computes an infinite R-cohesive set iff its jump computes
a member of C(R).

For every I19(()') class P C 2, there is a uniformly computable
sequence of sets R such that C(R) = P.
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A function f : N — N is diagonally non-X-computable (X-DNC) if

ve fle) # @5 (e)

There exists an X-computable infinite binary tree T C 2<N such that
[T] are the {0, 1}-valued X-DNC functions.

> T={oec2N:ve < |o| oe) # DL(e)[lo]]}.

For every X-computable infinite binary tree T, every {0, 1}-valued
X-DNC function computes a path.

» Giveno e Tandx € N, let <I>§d explore the branches below ¢ -0 and o - 1.
» If the branch below o - i is the first to die, then halt and output i.
» For every o extensible in T, o - f(es) is extensible in T.
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Let R be a uniformly computable sequence of sets.
Every set whose jump computes a {0, 1}-valued (-DNC
function computes an infinite R-cohesive set.

There is aquniformly computable sequence of sets R such that
for every R-cohesive set, its jump computes a {0, 1}-valued
(/~-DNC function.

116/133



Fix a notion of forcing (P, <).

A forcing question is I19-merging if for every p € P
and every pair of ¥9-formulas ¢(G), 1/(G) such that
p 7% »(G) and p 7¥ ¢ (G), there is an extension g < p
such that g IF —p(G) A ~9(G).

Suppose 7+ is ¥0-preserving and I19-merging. For every
{0, 1}-valued functional @, the following set is dense in (P, <).

D={peP:plrxa""(x)tvaxaf" " (x) 1= 2" " (x)}
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Given p € P, define the X0 set

W={(x,v):p? 5" " (x) I=v}

» Case 1: (x, 82" (x)) € W for some x such that
" 00 L

Then 7 is an extension forcing Q)eG("ﬂ) (x) = @Q(”’” (x)

» Case 2: (x,0), (x,1) ¢ W for some x
Then o forces ®8" " (x) 1

» Case3: Wisa X! graph of a )»~1)-DNC function

Impossible, since no ("~ -DNC function is "~ -computable.
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Cohen forcing
(2<w, _<)

2<% js the set of all finite binary strings
o = 7 means o is a prefix of 7

[l ={Xe2¥:0 <X}
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Every sufficiently Cohen generic G computes no {0, 1}-valued
DNC function.

For every {0, 1}-valued Turing functional @, the following set is
dense in (2<%, <).

D={0e2 0l IxdG(x) 1+ Vvix B(x) |= By(x)}
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Let o € 2<N and »(G) = Ixt)(G, x) be a XY formula for n > 1.

o 7+ p(G)

X 37 = o Y(1,X) forn=1
X ITr = oW (G,x) forn>1

The forcing question for $9-formulas is ¥3-preserving
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Pigeonhole principle

RTI Every k-partition of N admits
k an infinite subset of a part.

01 2 3 4 2

5 6 7 8 9 5 6 9
10 11 12 13 14 — 12

15 16 17 18 19 15 17 18

20 21 22 23 24 24

25 26 27 28 ... 26 27
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For every set C £+ () and every 2-partition Ag LIA; = N,
there is some i < 2 and an infinite set G C A; such that C «£7 G.

For every set C <7 (") and every 2-partition Ag LIA; = N,
there is some j < 2 and an infinite set G C A; such that
C %7 GO,
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F05F11X

/ \

Initial segment Reservoir
» F;is finite, X is infinite, max F; < min X (Mathias condition)
» C«Lr X (Weakness property)

» Fi CA (Combinatorics)
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Extension Denotation

(Eo,E1,Y) < (Fo,F1,X) (Go, G1) € [Fo,F1,X]
» F; CE; > [ CG;
» YCX » Gi\FiCX
> Ei\FCX

[Eo,E1,Y] C [Fo,F1,X]
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Mathias condition

(F, X)

4 \

Initial segment Reservoir

F is finite, X is infinite,
maxF < minX

Mathias extension

(E,Y) < (F,X)
FCEYCXE\FCX

Cylinder
F,X|={G:FCGCFUX}
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A function g : N — N dominates f: N — N if V*x g(x) > f(x).

The principal function of an infinite set X = {xo <x; < ...} is
the function px : n — xp.

A Turing degree d is high if d’ > 0.
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A degree is high iff it computes a function dominating every
computable function

If G is sufficiently Mathias generic, then pg dominates every
computable function

» Letf: N — N be a total computable function and (F, X) be a Mathias
condition

» Let Y C X be such that pry dominates f
» The extension (F,Y) forces pg to dominate f

128/133



Mathias forcing produces sparse sets
which computes fast-growing functions
even when using computable reservoirs

Solution: restrict reservoirs
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The only operations on the reservoirs
are partitioning and trimming.

A non-empty class P C 2V is partition regular if
(1) Forevery XePand YD X,YeP

(2) Forevery X € P and every Z, UZ; = X, there is some i < 2
such that Z; € P
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Conclusion

The computability-theoretic properties

of forcing notions are consequences of

combinatorial and definitional features
of their forcing questions.
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