Lowness and avoidance

A guide to separation

Ludovic PATEY

Reverse mathematics

Infinitary mathematics

Theorem

T

Second-order arithmetics

$$t ::= 0 | 1 | x | t_1 + t_2 | t_1 \cdot t_2$$

$f ::= t_1 = t_2 \mid t_1 < t_2 \mid t_1 \in X \mid f_1 \lor f_2$ $\mid \neg f \mid \forall x.f \mid \exists x.f \mid \forall X.f \mid \exists X.f$

(Hilbert and Bernays)

Robinson's arithmetics

1.
$$m + 0 = m$$

2. $m + (n + 1) = (m + n) + 1$
3. $m \times 0 = 0$
4. $m \times (n + 1) = (m \times n) + m$
5. $m + 1 \neq 0$
6. $m + 1 = n + 1 \rightarrow m = n$
7. $\neg (m < 0)$
8. $m < n + 1 \leftrightarrow (m < n \lor m = n)$

Comprehension scheme

$$\exists X \forall n (n \in X \Leftrightarrow \varphi(n))$$

for every formula $\varphi(n)$ where *X* appears freely.

Arithmetic hierarchy

$$\Sigma_n^0 \quad \varphi(\mathbf{y}) \equiv \exists \mathbf{x}_1 \forall \mathbf{x}_2 \dots \mathbf{Q} \mathbf{x}_n \ \psi(\mathbf{y}, \mathbf{x}_1, \dots, \mathbf{x}_n)$$
$$\Pi_n^0 \quad \varphi(\mathbf{y}) \equiv \forall \mathbf{x}_1 \exists \mathbf{x}_2 \dots \mathbf{Q} \mathbf{x}_n \ \psi(\mathbf{y}, \mathbf{x}_1, \dots, \mathbf{x}_n)$$

where ψ contains only bounded first-order quantifiers

A set is Γ if it is Γ -definable A set is Δ_n^0 if it is Σ_n^0 and Π_n^0 .

$Computability \equiv \text{Definability}$

Theorem (Gödel)

A set is c.e. iff it is Σ_1^0 and computable iff it is Δ_1^0 .

Theorem (Post)

A set is $\emptyset^{(n)}$ -c.e. iff it is Σ_{n+1}^0 and $\emptyset^{(n)}$ -computable iff it is Δ_{n+1}^0 .

Δ_1^0 comprehension scheme

$\forall \boldsymbol{n}(\varphi(\boldsymbol{n}) \Leftrightarrow \psi(\boldsymbol{n})) \Rightarrow \exists \boldsymbol{X} \forall \boldsymbol{n}(\boldsymbol{n} \in \boldsymbol{X} \Leftrightarrow \varphi(\boldsymbol{n}))$

where $\varphi(n)$ is a Σ_1^0 formula where X does not occur freely, and ψ is a Π_1^0 formula.

Induction scheme

$$\varphi(0) \land \forall \mathbf{n}(\varphi(\mathbf{n}) \Rightarrow \varphi(\mathbf{n}+1)) \Rightarrow \forall \mathbf{n}\varphi(\mathbf{n})$$

for every formula $\varphi(n)$

$\boldsymbol{\Sigma}_1^0$ induction scheme

$$\varphi(0) \land \forall \mathbf{n}(\varphi(\mathbf{n}) \Rightarrow \varphi(\mathbf{n}+1)) \Rightarrow \forall \mathbf{n}\varphi(\mathbf{n})$$

where $\varphi(n)$ is a Σ_1^0 formula

equivalent to

$\boldsymbol{\Sigma}_1^0$ bounded comprehension scheme

$$\forall p \exists X \forall n (n \in X \Leftrightarrow n$$

where $\varphi(n)$ is a Σ_1^0 formula where *X* does not occur freely

RCA₀

Robinson's arithmetics

$$m + 1 \neq 0$$

$$m + 1 = n + 1 \rightarrow m = n$$

$$\neg (m < 0)$$

$$m < n + 1 \leftrightarrow (m < n \lor m = n)$$

$$m + 0 = m$$

$$m + (n + 1) = (m + n) + 1$$

$$m \times 0 = 0$$

$$m \times (n + 1) = (m \times n) + m$$

$\boldsymbol{\Sigma}_1^0$ induction scheme

 $\begin{array}{l} \varphi(0) \land \forall \pmb{n}(\varphi(\pmb{n}) \Rightarrow \varphi(\pmb{n}+1)) \\ \Rightarrow \forall \pmb{n}\varphi(\pmb{n}) \end{array}$

where $\varphi(n)$ is a Σ_1^0 formula

 Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \Rightarrow \exists X \forall n (n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is a Σ_1^0 formula where X does not occur freely, and ψ is a Π_1^0 formula.

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems. $\Pi^1_1 CA$ ATR L ACA \mathbf{J} WKI **RCA**₀

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...

How to prove a separation?

Given two statements P and Q.

How to prove that $RCA_0 + P \nvDash Q$?

Build a model ${\mathcal M}$ such that

►
$$\mathcal{M} \models \mathsf{P}$$

$$\blacktriangleright \ \mathcal{M} \not\models \mathsf{Q}$$

ω -structure $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$

- (i) ω is the set of standard natural numbers
- (ii) < is the natural order
- (iii) + and \cdot are the standard operations over natural numbers (iv) $\mathcal{S}\subseteq\mathcal{P}(\omega)$

An ω -structure is fully specified by its second-order part S.

Turing ideal \mathcal{M}

Examples

- $\blacktriangleright \{X : X \text{ is computable } \}$
- $\{X : X \leq_T A \land X \leq_T B\}$ for some sets A and B

Let $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$ be an ω -structure

$\mathcal{M} \models \mathsf{RCA}_0$ \equiv \mathcal{S} is a Turing ideal

Many theorems can be seen as problems.

Intermediate value theorem

For every continuous function *f* over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.

König's lemma

Every infinite, finitely branching tree admits an infinite path.

Π_2^1 -problem

$$\mathsf{P} \equiv \forall \mathbf{X}[\varphi(\mathbf{X}) \to \exists \mathbf{Y} \psi(\mathbf{X}, \mathbf{Y})]$$

where φ and ψ are arithmetic formulas

- P-instances: dom P = { $X : \varphi(X)$ }
- P-solutions to X: $P(X) = \{Y : \psi(X, Y)\}$

Given two Π_2^1 -problems P and Q.

How to prove that $RCA_0 + P \nvDash Q$?

Build a Turing ideal ${\mathcal M}$ such that

►
$$\mathcal{M} \models \mathsf{P}$$

$$\blacktriangleright \ \mathcal{M} \not\models \mathsf{Q}$$

Start with $\mathcal{M}_0 = \{ Z : Z \leq_T \emptyset \}$

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ for some set U,

Start with $\mathcal{M}_0 = \{ Z : Z \leq_T \emptyset \}$

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ for some set U,

1. pick an instance $X \in \mathcal{M}_n$ of P

Start with $\mathcal{M}_0 = \{ Z : Z \leq_T \emptyset \}$

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ for some set U,

- 1. pick an instance $X \in \mathcal{M}_n$ of P
- 2. choose a solution Y to X

Start with $\mathcal{M}_0 = \{ Z : Z \leq_T \emptyset \}$

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ for some set U,

- 1. pick an instance $X \in \mathcal{M}_n$ of P
- 2. choose a solution Y to X
- 3. define $\mathcal{M}_{n+1} = \{Z : Z \leq_T Y \oplus U\}$

Start with $\mathcal{M}_0 = \{ Z : Z \leq_T \emptyset \}$

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ for some set U,

- 1. pick an instance $X \in \mathcal{M}_n$ of P
- 2. choose a solution Y to X
- 3. define $\mathcal{M}_{n+1} = \{Z : Z \leq_T Y \oplus U\}$

Let $\mathcal{M} = \bigcup_n \mathcal{M}_n$. Then $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{P}$

Beware, adding sets to \mathcal{M} may add solutions to instances of Q!

A weakness property is a collection of sets closed downward under the Turing reduction.

Exemples

- ► {*X* : *X* is low}
- ► ${X : A \leq_T X}$ given a set A
- $\{X : X \text{ is hyperimmune-free}\}$

Let \mathcal{W} be a weakness property.

A problem P preserves W if for every $Z \in W$, every Z-computable instance X of P admits a solution Y such that $Y \oplus Z \in W$

Lemma

If P preserves \mathcal{W} , then for every $Z \in \mathcal{W}$, there is an ω -model $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{P}$ with $Z \in \mathcal{M} \subseteq \mathcal{W}$.

Lemma

If P preserves $\mathcal W$ and Q does not, then $\mathsf{RCA}_0 + \mathsf{P} \nvDash \mathsf{Q}$

Cone avoidance

ACA_0

Arithmetic Comprehension Axiom

- ► Every increasing sequence of reals admits a supremum.
- Bolzano/Weierstrass theorem: Every sequence of reals admits a converging sub-sequence.
- Every countable commutative ring admits a maximal ideal.
- ► König's lemma: Every infinite, finitely branching tree admits an infinite path.
- ► Ramsey's theorem for colorings of $[\mathbb{N}]^3$.
- ▶ ...
ACA_0

Arithmetic Comprehension Axiom

$$\mathbf{X}' = \{\mathbf{e} : \exists t \; \Phi_{\mathbf{e}}^{\mathbf{X}}(\mathbf{e})[t] \downarrow \}$$

Lemma

$$\mathsf{RCA}_0 \vdash \mathsf{ACA}_0 \leftrightarrow \forall X \exists Y (Y = X')$$

Lemma

If a Π_2^1 -problem P preserves $\mathcal{W}_{\emptyset'} = \{Z : \emptyset' \leq_T Z\}$, then $\mathsf{RCA}_0 + \mathsf{P} \not\vdash \mathsf{ACA}_0$.

Cone avoidance

A Π_2^1 -problem P admits cone avoidance if for every set *Z*, every set $C \not\leq_T Z$ and every *Z*-computable P-instance *X*, there is a P-solution *Y* to *X* such that $C \not\leq_T Y \oplus Z$.

P admits cone avoidance

P preserves $\mathcal{W}_{C} = \{Z : C \not\leq_{T} Z\}$ for every set C

Strategy

Forcing in Computability Theory

$\begin{array}{l} \textbf{Partial order} \\ (\mathbb{P}, \leq) \end{array}$

Condition

 $oldsymbol{
ho} \in \mathbb{P}$ approximation

Denotation

 $[\mathbf{p}] \subseteq 2^{\omega}$ class of candidates

Compatibility If $q \leq p$ then $[q] \subseteq [p]$

Forcing in Computability Theory

Filter $\mathcal{F} \subseteq \mathbb{P}$ $\forall p \in \mathcal{F} \ \forall q \geq p \ q \in \mathcal{F}$ $\forall p, q \in \mathcal{F}, \exists r \in \mathcal{F} \ r \leq p, q$

Denotation $[\mathcal{F}] = \bigcap_{\boldsymbol{p} \in \mathcal{F}} [\boldsymbol{p}]$

Dense set $D \subseteq \mathbb{P}$ $\forall p \in \mathbb{P} \exists q \leq p \ q \in D$ Forcing $p \Vdash \varphi(G)$ $\forall G \in [p] \varphi(G)$

Cohen forcing $(2^{<\omega}, \preceq)$

 $2^{<\omega}$ is the set of all finite binary strings

 $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore)

Let $C \not\leq_T \emptyset$. For every sufficiently Cohen generic $G, C \not\leq_T G$.

Lemma

For every non-computable set C and Turing functional Φ_e , the following set is dense in $(2^{<\omega}, \preceq)$.

$$\mathbf{D} = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \Phi_{\mathbf{e}}^{\mathbf{G}} \neq \mathbf{C} \}$$

Given $\sigma \in 2^{<\omega},$ define the Σ^0_1 set

$$W = \{ (x, v) : \exists \tau \succeq \sigma \; \Phi_{e}^{\tau}(x) \downarrow = v \}$$

► Case 1:
$$(x, 1 - C(x)) \in W$$
 for some x
Then τ is an extension forcing $\Phi_e^G \neq C$

► Case 2:
$$(x, C(x)) \notin W$$
 for some x
Then σ forces $\Phi_e^G \neq C$

Weak König's lemma

 $2^{<\omega}$ is the set of all finite binary strings

A binary tree is a set $T \subseteq 2^{<\omega}$ closed under prefixes

A path through T is an infinite sequence P such that every initial segment is in T

WKL Every infinite binary tree admits an infinite path.

Jockusch-Soare forcing (\mathcal{T}, \subseteq)

 ${\mathcal T}$ is the collection of infinite computable binary trees

 $[\mathbf{T}] = \{ \mathbf{X} \in 2^{\omega} : \forall \sigma \prec \mathbf{X} \ \sigma \in \mathbf{T} \}$

Theorem (Jockusch-Soare)

Let $C \not\leq_T \emptyset$. For every infinite computable binary tree $T \subseteq 2^{<\omega}$, there is a path $P \in [T]$ such that $C \not\leq_T P$.

Lemma

For every non-computable set *C* and Turing functional Φ_e , the following set is dense in (\mathcal{T}, \subseteq) .

$$\boldsymbol{D} = \{\boldsymbol{T} \in \mathcal{T} : \boldsymbol{T} \Vdash \Phi_{\boldsymbol{e}}^{\boldsymbol{\mathsf{G}}} \neq \boldsymbol{C}\}$$

Given $T \in \mathcal{T}$, define the Σ_1^0 set

$$W = \{ (\mathbf{x}, \mathbf{v}) : \exists \ell \in \mathbb{N} \forall \sigma \in 2^{\ell} \cap T \Phi_{\mathbf{e}}^{\sigma}(\mathbf{x}) \downarrow = \mathbf{v} \}$$

► Case 1:
$$(x, 1 - C(x)) \in W$$
 for some x
Then T forces $\Phi_e^G \neq C$

► Case 2: $(x, C(x)) \notin W$ for some xThen $\{\sigma \in T : \neg(\Phi_e^{\sigma}(x) \downarrow = v)\}$ forces $\Phi_e^G \neq C$

Forcing question $p \mathrel{?}\vdash \varphi(G)$ where $p \in \mathbb{P}$ and $\varphi(G)$ is Σ_1^0

Lemma

Let p ∈ ℙ and φ(G) be a Σ₁⁰ formula.
(a) If p ?⊢ φ(G), then q ⊩ φ(G) for some q ≤ p;
(b) If p ?⊬ φ(G), then q ⊩ ¬φ(G) for some q ≤ p.

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is Γ -preserving if for every $p \in \mathbb{P}$ and every Γ -formula $\varphi(G, x)$, the relation $p ?\vdash \varphi(G, x)$ is in Γ uniformly in x.

Lemma

Suppose $?\vdash$ is Σ_1^0 -preserving. For every non-computable set *C* and Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$\mathcal{D} = \{ \mathcal{p} \in \mathbb{P} : \mathcal{p} \Vdash \Phi_{\mathsf{e}}^{\mathsf{G}}
eq \mathcal{C} \}$$

Given $p \in \mathbb{P}$, define the Σ_1^0 set

$$\textit{W} = \{(\textit{x},\textit{v}): \textit{p} ? \vdash \Phi_{\textit{e}}^{\textit{G}}(\textit{x}) \downarrow = \textit{v}\}$$

► Case 2: $(x, C(x)) \notin W$ for some *x* Then there is an extension forcing $\Phi_e^G \neq C$

Pigeonhole principle

$\mathsf{RT}^1_{\mathbf{k}} \qquad \begin{array}{l} \mathsf{Every} \ k \text{-partition of } \mathbb{N} \ \mathsf{admits} \\ \mathsf{an infinite subset of a part.} \end{array}$

Theorem (Dzhafarov and Jockusch)

For every set $C \not\leq_T \emptyset$ and every 2-partition $A_0 \sqcup A_1 = \mathbb{N}$, there is some i < 2 and an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$.

Theorem (Dzhafarov and Jockusch)

For every set $C \not\leq_T \emptyset$ and every 2-partition $A_0 \sqcup A_1 = \mathbb{N}$, there is some i < 2 and an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$.

Input : a set $C \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

- F_i is finite, X is infinite, max $F_i < \min X$ (Ma
- ► $C \leq_T X$
- ► $F_i \subseteq A_i$

(Mathias condition) (Weakness property) (Combinatorics)

Extension

 $(\boldsymbol{\textit{E}}_0, \boldsymbol{\textit{E}}_1, \textbf{\textit{Y}}) \leq (\boldsymbol{\textit{F}}_0, \boldsymbol{\textit{F}}_1, \textbf{\textit{X}})$

- ► $F_i \subseteq E_i$
- ► $Y \subseteq X$
- ► $E_i \setminus F_i \subseteq X$

- Denotation
- $\langle \mathbf{G}_0, \mathbf{G}_1 \rangle \in [\mathbf{F}_0, \mathbf{F}_1, \mathbf{X}]$
- ► $F_i \subseteq G_i$
- ► $G_i \setminus F_i \subseteq X$

 $[\boldsymbol{E}_0, \boldsymbol{E}_1, \boldsymbol{Y}] \subseteq [\boldsymbol{F}_0, \boldsymbol{F}_1, \boldsymbol{X}]$

 $\varphi(\mathbf{G}_0, \mathbf{G}_1)$ holds for every $\langle \mathbf{G}_0, \mathbf{G}_1 \rangle \in [\mathbf{F}_0, \mathbf{F}_1, \mathbf{X}]$

Input : a set $C \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$ Output : an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$ Input : a set $C \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$ Output : an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

$$\Phi_{\mathbf{e}_0}^{\mathbf{G}_0} \neq \mathbf{C} \lor \Phi_{\mathbf{e}_1}^{\mathbf{G}_1} \neq \mathbf{C}$$

Input : a set $C \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$ Output : an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

$$\Phi_{\mathbf{e}_0}^{\mathbf{G}_0} \neq \mathbf{C} \lor \Phi_{\mathbf{e}_1}^{\mathbf{G}_1} \neq \mathbf{C}$$

The set $\{p \in \mathbb{P} : p \Vdash \Phi_{e_0}^{G_0} \neq C \lor \Phi_{e_1}^{G_1} \neq C\}$ is dense

Disjunctive forcing question

$$p \mathrel{?}dash arphi_0(\mathbf{G}_0) \lor arphi_1(\mathbf{G}_1)$$

where $p \in \mathbb{P}$ and $\varphi_0(G_0)$, $\varphi_1(G_1)$ are Σ_1^0

Lemma

Let $p \in \mathbb{P}$ and $\varphi_0(\mathbf{G}_0), \varphi_1(\mathbf{G}_1)$ be Σ_1^0 formulas.

(a) If $p \mathrel{?}\vdash \varphi_0(\mathbf{G}_0) \lor \varphi_1(\mathbf{G}_1)$, then $q \Vdash \varphi_0(\mathbf{G}_0) \lor \varphi_1(\mathbf{G}_1)$ for some $q \le p$;

(b) If $p ? \nvDash \varphi_0(G_0) \lor \varphi_1(G_1)$, then $q \Vdash \neg \varphi_0(G_0) \lor \neg \varphi_1(G_1)$ for some $q \leq p$.

Suppose the following relation is uniformly $\Sigma_1^0(X)$ whenever $\varphi_0(G_0), \varphi_1(G_1)$ are Σ_1^0

$$(F_0, F_1, X) ? \vdash \varphi_0(\mathbf{G}_0) \lor \varphi_1(\mathbf{G}_1)$$

Lemma

For every non-computable set *C* and Turing functionals Φ_{e_0}, Φ_{e_1} , the following set is dense in (\mathbb{P}, \leq) .

$$\boldsymbol{\mathsf{D}} = \{ \boldsymbol{\mathsf{p}} \in \mathbb{P} : \boldsymbol{\mathsf{p}} \Vdash \Phi_{\boldsymbol{\mathsf{e}}_0}^{\boldsymbol{\mathsf{G}}_0} \neq \boldsymbol{\mathsf{C}} \lor \Phi_{\boldsymbol{\mathsf{e}}_1}^{\boldsymbol{\mathsf{G}}_1} \neq \boldsymbol{\mathsf{C}} \}$$

Consider the $\Sigma_1^0(X)$ set

$$W = \{(x, v) : p : \vdash \Phi_{e_0}^{G_0}(x) \downarrow = v \lor \Phi_{e_0}^{G_0}(x) \downarrow = v\}$$

Problem: complexity of the instance

"Can we find an extension for this instance of RT_2^1 ?"

The formula is $\Sigma_1^0(X \oplus A_i)$

Idea: make an overapproximation

"Can we find an extension for every instance of RT_2^1 ?"

The formula is $\Sigma_1^0(X)$

Case 1: $\rho ?\vdash \varphi_0(\mathbf{G}_0) \lor \varphi_1(\mathbf{G}_1)$

Letting $B_i = A_i$, there is an extension $q \le p$ forcing

 $\varphi_0(\mathbf{G}_0) \vee \varphi_1(\mathbf{G}_1)$

Case 2: $p \not \vdash \varphi_0(G_0) \lor \varphi_1(G_1)$ $(\exists B_0 \sqcup B_1 = \mathbb{N})(\forall i < 2)(\forall E_i \subseteq X \cap B_i) \neg \varphi_i(F_i \cup E_i)$ The condition $(F_0, F_1, X \cap B_i) \le p$ forces $\neg \varphi_0(G_0) \lor \neg \varphi_1(G_1)$ What we know so far...

Forcing question ?⊢	Notion of forcing (\mathbb{P}, \leq)
Σ_1^0 -preserving	cone avoidance

Preservation of hyperimmunity

A function $g : \mathbb{N} \to \mathbb{N}$ dominates $f : \mathbb{N} \to \mathbb{N}$ if $\forall^{\infty} x \ g(x) \ge f(x)$.

A function $f : \mathbb{N} \to \mathbb{N}$ is a modulus for a set $A \subseteq \mathbb{N}$ if every function dominating *f* computes *A*.

A function $f : \mathbb{N} \to \mathbb{N}$ is hyperimmune if it is not dominated by any computable function.

An infinite set $A \subseteq \mathbb{N}$ is hyperimmune if there is no infinite computable sequence of pairwise disjoint blocs intersecting *A*.

Computation

 Δ^1_1 (hyperarithmetic) sets

High degrees ($\mathbf{d}' \ge \mathbf{0}''$)

Hyperimmune sets

Function growth

Sets admitting a modulus

Functions dominating every computable function

Hyperimmune functions

A set G is weakly 1-generic if for every c.e. dense set of strings $W_e \subseteq 2^{<\mathbb{N}}$, there is some $\sigma \prec G$ in W_e .

Lemma

Every weakly 1-generic set is hyperimmune.

Given a computable sequence of pairwise disjoint blocs $(B_n)_{n \in \mathbb{N}}$ the following set is dense:

 $\{\sigma: \exists n \mid \sigma \mid > \max B_n \land B_n \cap \sigma = \emptyset\}$

Lemma

Every hyperimmune function computes a weakly 1-generic set.

Given a hyperimmune function *f*, build an *f*-computable sequence $\sigma_0 \prec \sigma_1 \prec \ldots$. Having defined σ_n , wait until time $f(|\sigma_n|)$ to see if some W_e enumerates an extension

(I cheat, slightly more complicated)

Preservation of hyperimmunity

A Π_2^1 -problem P admits preservation of hyperimmunity if for every set Z, every Z-hyperimmune function f and every Z-computable P-instance X, there is a P-solution Y to X such that f is $Y \oplus Z$ -hyperimmune.

> P admits preservation of Z-hyperimmunity \equiv P preserves $W_f = \{Z : f \text{ is } Z\text{-hyperimmune }\}$ for every function f
Cohen forcing $(2^{<\omega}, \preceq)$

- $2^{<\omega}$ is the set of all finite binary strings
- $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore)

Let $f : \mathbb{N} \to \mathbb{N}$ be hyperimmune. For every sufficiently Cohen generic *G*, *f* is *G*-hyperimmune.

Lemma

For every hyperimmune function $f : \mathbb{N} \to \mathbb{N}$ and Turing functional Φ_e , the following set is dense in $(2^{<\omega}, \preceq)$.

$$\mathbf{D} = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \exists \mathbf{x} \ \Phi^{\mathbf{G}}_{\mathbf{e}}(\mathbf{x}) \uparrow \lor \exists \mathbf{x} \ \Phi^{\mathbf{G}}_{\mathbf{e}}(\mathbf{x}) < \mathbf{f}(\mathbf{x}) \}$$

Given $\sigma \in 2^{<\omega}$, define the partial computable function: h(x) = y for the least *y* such that

 $\exists \tau \succeq \sigma \; \Phi_{\mathsf{e}}^{\tau}(\mathsf{x}) \downarrow = \mathsf{y}$

Case 1: h(x) < f(x) for some x ∈ dom h. Then τ is an extension forcing Φ^G_e(x) < f(x)</p>

► Case 2: $x \notin \text{dom } h$ for some xThen σ forces $\Phi_e^G(x) \uparrow$

Case 3: *h* is total and dominates *f*. Impossible, since *f* is hyperimmune Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is Γ -compact if for every $p \in \mathbb{P}$ and every Γ -formula $\varphi(G, x)$, if $p \mathrel{?}\vdash \exists x \varphi(G, x)$ then there is a finite set $F \subseteq \mathbb{N}$ such that $p \mathrel{?}\vdash \exists x \in F \varphi(G, x)$.

Lemma

Suppose $?\vdash$ is Σ_1^0 -preserving and Σ_1^0 -compact. For every hyperimmune function $f : \mathbb{N} \to \mathbb{N}$ and Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \exists x \ \Phi_e^G(x) \uparrow \lor \exists x \ \Phi_e^G(x) < f(x) \}$$

Given $p \in \mathbb{P}$, define the partial computable function: $h(x) = 1 + \max F$ for the least *F* such that

$$\rho \mathrel{?}\vdash \exists y \in F \Phi_{e}^{\mathsf{G}}(x) \downarrow = y$$

- ► Case 2: $x \notin \text{dom } h$ for some xThen $p ? \nvDash \exists y \Phi_e^G(x) \downarrow = y$. There is an extension forcing $\Phi_e^G(x) \uparrow$
- Case 3: *h* is total and dominates *f*. Impossible, since *f* is hyperimmune

Theorem

A Π_2^1 -problem admits cone avoidance iff it admits preservation of hyperimmunity.

- If a problem admits cone avoidance, it can avoid ω cones simultaneously.
- ► There are problems which admit preservation of k hyperimmunities, but not k + 1 simultaneously.

What we know so far...

Forcing question ?⊢	Notion of forcing (\mathbb{P}, \leq)
Σ_1^0 -preserving	cone avoidance
Σ_1^0 -preserving and Σ_1^0 -compact	preservation of hyperimmunity

Compactness avoidance

WKL₀

Weak König's lemma

- Every infinite binary tree admits an infinite path
- ► Heine/Borel cover lemma: Every cover of the [0, 1] interval by a sequence of open sets admits a finite sub-cover.
- ► Every real-valued function over [0, 1] is bounded.
- ► Gödel's completeness theorem: every countable set of statements in predicate calculus admits a countable model.
- Every countable commutative ring admits a prime ideal.
- ▶ ...

A function $f : \mathbb{N} \to \mathbb{N}$ is diagonally non-computable (DNC) if

$\forall \mathbf{e} \ \mathbf{f}(\mathbf{e}) \neq \Phi_{\mathbf{e}}(\mathbf{e})$

Lemma

There exists a computable infinite binary tree $T \subseteq 2^{<\mathbb{N}}$ such that [T] are the $\{0, 1\}$ -valued DNC functions.

$$\blacktriangleright \ T = \{ \sigma \in 2^{<\mathbb{N}} : \forall \mathbf{e} < |\sigma| \ \sigma(\mathbf{e}) \neq \Phi_{\mathbf{e}}(\mathbf{e})[|\sigma|] \}.$$

Lemma

For every computable infinite binary tree T, every $\{0, 1\}$ -valued DNC function computes a path.

- Given $\sigma \in T$ and $x \in \mathbb{N}$, let $\Phi_{e_{\sigma}}$ explore the branches below $\sigma \cdot 0$ and $\sigma \cdot 1$.
- If the branch below $\sigma \cdot i$ is the first to die, then halt and output *i*.
- ► For every σ extensible in *T*, $\sigma \cdot f(\mathbf{e}_{\sigma})$ is extensible in *T*.

Cohen forcing $(2^{<\omega}, \preceq)$

- $2^{<\omega}$ is the set of all finite binary strings
- $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore)

Every sufficiently Cohen generic *G* computes no $\{0, 1\}$ -valued DNC function.

Lemma

For every $\{0,1\}$ -valued Turing functional Φ_e , the following set is dense in $(2^{<\omega}, \preceq)$.

$$\mathbf{D} = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \exists \mathbf{x} \ \Phi_{\mathbf{e}}^{\mathbf{G}}(\mathbf{x}) \uparrow \lor \exists \mathbf{x} \ \Phi_{\mathbf{e}}^{\mathbf{G}}(\mathbf{x}) \downarrow = \Phi_{\mathbf{x}}(\mathbf{x}) \}$$

Given $\sigma \in 2^{<\omega}$, define the Σ_1^0 set

$$W = \{ (x, v) : \exists \tau \succeq \sigma \; \Phi_{e}^{\tau}(x) \downarrow = v \}$$

► Case 1: $(x, \Phi_x(x)) \in W$ for some x such that $\Phi_x(x) \downarrow$ Then τ is an extension forcing $\Phi_e^G(x) = \Phi_x(x)$

Case 2: (x, 0), (x, 1) ∉ W for some x Then σ forces Φ^G_e(x) ↑

► Case 3: W is a Σ⁰₁ graph of a DNC function Impossible, since no DNC function is computable. Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is Π_n^0 -merging if for every $p \in \mathbb{P}$ and every pair of Σ_n^0 -formulas $\varphi(G)$, $\psi(G)$ such that $p \not \vdash \varphi(G)$ and $p \not \vdash \psi(G)$, there is an extension $q \leq p$ such that $q \Vdash \neg \varphi(G) \land \neg \psi(G)$.

Lemma

Suppose $?\vdash$ is Σ_1^0 -preserving and Π_1^0 -merging. For every $\{0, 1\}$ -valued functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \exists x \; \Phi_e^G(x) \uparrow \lor \exists x \; \Phi_e^G(x) \downarrow = \Phi_x(x) \}$$

Solovay forcing (\mathcal{C}, \subseteq)

 ${\mathcal C}$ is the collection of closed classes of positive measure in $2^{\mathbb{N}}$

Theorem

For every sufficiently Solovay generic G, G computes no $\{0, 1\}$ -valued DNC function.

Lemma

For every $\{0,1\}$ -valued Turing functional $\Phi_{\text{e}},$ the following set is dense in $\mathcal{C}.$

$$D = \{ \mathcal{P} \in \mathcal{C} : \mathcal{P} \Vdash \exists x \; \Phi_{e}^{G}(x) \uparrow \lor \exists x \; \Phi_{e}^{G}(x) \downarrow = \Phi_{x}(x) \}$$

Lebesgue density lemma

Lemma

For every closed class $\mathcal{P} \subseteq 2^{\mathbb{N}}$ of positive measure and every $\epsilon > 0$, there is some $\sigma \in 2^{<\mathbb{N}}$ such that

$$\frac{\mu(\mathcal{P} \cap [\sigma])}{\mu([\sigma]) \ge 1 - \epsilon}$$

Given a closed class $\mathcal{P} \subseteq 2^{\mathbb{N}}$ and $\sigma \in 2^{<\mathbb{N}}$ such that $\mu(\mathcal{P}) \cap [\sigma]) > 0.9 \times \mu([\sigma])$, define the Σ_1^0 set

$$\mathbf{W} = \{(\mathbf{x}, \mathbf{v}) : \mu(\mathbf{Z} : \Phi_{\mathbf{e}}^{\sigma \cdot \mathbf{Z}}(\mathbf{x}) \downarrow = \mathbf{v}) > 0.2\}$$

► Case 1: $(x, \Phi_x(x)) \in W$ for some x such that $\Phi_x(x) \downarrow$ Then pick $\tau \in 2^{<\mathbb{N}}$ such that $\mu(\mathcal{P} \cap [\tau]) > 0$ and $\Phi_e^{\tau}(x) \downarrow = \Phi_x(x)$. The class $\mathcal{P} \cap [\tau]$ is an extension forcing $\Phi_e^G(x) = \Phi_x(x)$

Case 2: (x, 0), (x, 1) ∉ W for some x Then P ∩ [σ] ∩ {Y : Φ^Y_e(x) ↑} forces Φ^G_e(x) ↑

► Case 3: W is a ∑₁⁰ graph of a DNC function Impossible, since no DNC function is computable.

DNC

Diagonal Non-Computability

- ► For every set *X*, there exists an *X*-DNC function *f*, that is, $\forall e, f(e) \neq \Phi_e^X(e)$.
- ► For every set X, there exists an X-fixpoint-free function f, that is, $\forall e, W_{f(e)}^{X} \neq W_{e}^{X}$.
- ► For every set *X*, there exists a function *f* such that $\forall n, C^X(f(n)) \ge n$.
- For every set X, there exists an infinite subset of an X-random set.
- ▶ RWWKL: For every binary tree of positive measure $T \subseteq 2^{<\mathbb{N}}$, there is an infinite homogeneous set.
- ▶ ...

Lemma

There is a probabilistic algorithm to compute a DNC function.

Algorithm	Probability of error
Pick $f(0)$ at random in $[0, 2^2]$	$\leq 2^{-2}$
Pick $f(1)$ at random in $[0, 2^3]$	$\leq 2^{-3}$
Pick $f(2)$ at random in $[0, 2^4]$	$\leq 2^{-4}$

Global probability of error: at most $\sum_{n} 2^{-n-2} = 0.5$.

Cohen forcing $(2^{<\omega}, \preceq)$

- $2^{<\omega}$ is the set of all finite binary strings
- $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore)

Every sufficiently Cohen generic G computes no DNC function.

Lemma

For every Turing functional $\Phi_{\rm e},$ the following set is dense in $(2^{<\omega},\preceq).$

$$\mathbf{D} = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \exists \mathbf{x} \ \Phi_{\mathbf{e}}^{\mathbf{G}}(\mathbf{x}) \uparrow \lor \exists \mathbf{x} \ \Phi_{\mathbf{e}}^{\mathbf{G}}(\mathbf{x}) \downarrow = \Phi_{\mathbf{x}}(\mathbf{x}) \}$$

Given $\sigma \in 2^{<\omega}$, define the Σ_1^0 set

$$W = \{ (x, v) : \exists \tau \succeq \sigma \; \Phi_{e}^{\tau}(x) \downarrow = v \}$$

► Case 1: $(x, \Phi_x(x)) \in W$ for some x such that $\Phi_x(x) \downarrow$ Then τ is an extension forcing $\Phi_e^G(x) = \Phi_x(x)$

► Case 2: $\exists x \forall y (x, y) \notin W$ Then σ forces $\Phi_e^G(x) \uparrow$

► Case 3: W is a ∑⁰₁ graph of a DNC function Impossible, since no DNC function is computable. Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is countably Π_n^0 -merging if for every $p \in \mathbb{P}$ and every countable sequence of Σ_n^0 -formulas $(\varphi_n(G))_{n \in \mathbb{N}}$ such that for every $n, p \not\geq \varphi_n(G)$, there is an extension $q \leq p$ such that for every $n, q \Vdash \neg \varphi_n(G)$.

Lemma

Suppose $?\vdash$ is Σ_1^0 -preserving and countably Π_1^0 -merging. For every Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \exists x \; \Phi_e^G(x) \uparrow \lor \exists x \; \Phi_e^G(x) \downarrow = \Phi_x(x) \}$$

What we know so far...

Forcing question ?⊢	Notion of forcing (\mathbb{P}, \leq)
Σ_1^0 -preserving	cone avoidance
Σ_1^0 -preserving and Σ_1^0 -compact	preservation of hyperimmunity
Σ_1^0 -preserving and Π_1^0 -merging	PA avoidance
Σ_1^0 -preserving and ω - Π_1^0 -merging	DNC avoidance

Conservation theorems

Induction scheme

$$\varphi(0) \land \forall \mathbf{x} (\varphi(\mathbf{x}) \to \varphi(\mathbf{x}+1)) \to \forall \mathbf{y} \varphi(\mathbf{y})$$

for every formula $\varphi(\mathbf{x})$

Collection scheme

 $(\forall x < a)(\exists y)\varphi(x, y) \rightarrow (\exists b)(\forall x < a)(\exists y < b)\varphi(x, y)$

for every $a \in \mathbb{N}$ and every formula $\varphi(x, y)$

$\mathsf{Over} \ \mathsf{Q} + \mathsf{I} \Delta_0^0 + \mathsf{exp}$

Induction	Collection	Least principle	Regularity
$I\Sigma_2^0 \equiv I\Pi_2^0$		$L\Pi^0_2 \equiv L\Sigma^0_2$	Σ_2^0 -regularity
$I\Delta_2^0$	$B\Sigma_2^0 \equiv B\Pi_1^0$	$L\Delta^0_2$	Δ_2^0 -regularity
$I\Sigma_1^0 \equiv I\Pi_1^0$		$L\Pi^0_1 \equiv L\Sigma^0_1$	Σ_1^0 -regularity
$I\Delta^0_1$	$B\Sigma^0_1 \equiv B\Pi^0_0$	$L\Delta_1^0$	Δ_1^0 -regularity

- exp: totality of the exponential
- ► A set X is M-regular if every initial segment of X is M-coded
- ► Least principle: every non-empty set admits a minimum element

 $\mathsf{Over} \ \mathsf{Q} + \mathsf{I} \Delta_0^0 + \mathsf{exp}$

Induction	Collection	Least principle	Regularity
		-	
$I\Sigma_2^0 \equiv I\Pi_2^0$		$L\Pi^0_2 \equiv L\Sigma^0_2$	Σ_2^0 -regularity
$I\Delta_2^0$	$B\Sigma_2^0 \equiv B\Pi_1^0$	$L\Delta^0_2$	Δ_2^0 -regularity
$I\Sigma_1^0 \equiv I\Pi_1^0$		$L\Pi^0_1 \equiv L\Sigma^0_1$	Σ_1^0 -regularity
$I\Delta^0_1$	$B\Sigma^0_1 \equiv B\Pi^0_0$	$L\Delta_1^0$	Δ_1^0 -regularity

 $\mathsf{RCA}_0 \equiv \mathsf{Q} + \Delta_1^0$ -comprehension + $\mathsf{I}\Sigma_1^0$

 $\mathsf{Over} \ \mathsf{Q} + \mathsf{I} \Delta_0^0 + \mathsf{exp}$

Induction	Collection	Least principle	Regularity
$I\Sigma_2^0 \equiv I\Pi_2^0$		$L\Pi^0_2 \equiv L\Sigma^0_2$	Σ_2^0 -regularity
$\mathrm{I}\Delta_2^0$	$B\Sigma_2^0 \equiv B\Pi_1^0$	$L\Delta^0_2$	Δ_2^0 -regularity
$I\Sigma_1^0 \equiv I\Pi_1^0$		$L\Pi^0_1 \equiv L\Sigma^0_1$	Σ_1^0 -regularity
$I\Delta^0_1$	$B\Sigma_1^0 \equiv B\Pi_0^0$	$L\Delta_1^0$	Δ_1^0 -regularity

 $\mathsf{RCA}_0^* \equiv \mathsf{Q} + \Delta_1^0$ -comprehension + $\mathsf{I}\Delta_0^0$ + exp

First-order part of *T*: set of its first-order sentences

Induction	System	First-order part
÷		-
$I\Sigma_2^0 \equiv I\Pi_2^0$	$RCA_0 + I\Sigma_2^0$	$Q + I\Sigma_2$
$I\Delta_2^0$	$RCA_0 + B\Sigma_2^0$	$Q+I\Delta_2$
$I\Sigma_1^0 \equiv I\Pi_1^0$	RCA_0	$Q+I\Sigma_1$
$I\Delta_1^0+exp$	RCA^*_0	$Q+I\Delta_1+exp$

Fix a family of formulas Γ .

A theory T_1 is Γ -conservative over T_0 if every Γ -sentence provable over T_1 is provable over T_0 .

If T_1 is a Π_1^1 -conservative extension of T_0 , then they have the same first-order part.

A second-order structure $\mathcal{N} = (N, T)$ is an ω -extension of $\mathcal{M} = (M, S)$ if $N = M, T \supseteq S, +^{\mathcal{N}} = +^{\mathcal{M}}$ and $<^{\mathcal{N}} = <^{\mathcal{M}}$.

Theorem

If every countable model of $\mathcal{M} \models T_0$ admits an ω -extension $\mathcal{N} \models T_1$, then T_1 is Π_1^1 -conservative over T_0 .

- Suppose $T_0 \nvDash \forall X \phi(X)$. Let $\mathcal{M} \models T_0 \land \exists X \neg \phi(X)$.
- Let $\mathcal{N} \models T_1$ be an ω -extension of \mathcal{M} .
- ▶ Then $\mathcal{N} \models T_1 \land \exists X \neg \phi(X)$. So $T_1 \nvDash \forall X \phi(X)$.

Let $\mathcal{M} = (M, S)$ be a second-order structure, and $G \subseteq M$. $\mathcal{M}[G]$ is the smallest ω -extension containing the $\Delta_1^0(\mathcal{M} \cup \{G\})$ sets.

Theorem

Let P be a Π_2^1 -problem and *T* be a theory. If for every countable model $\mathcal{M} \models T$ and every $X \in \mathcal{M}$ such that $\mathcal{M} \models (X \in \text{dom P})$, there is a set $Y \subseteq M$ such that $\mathcal{M}[Y] \models T + (Y \in P(X))$, then T + P is Π_1^1 -conservative over *T*.

$$\mathcal{M} \subseteq \mathcal{M}[Y_0] \subseteq \mathcal{M}[Y_0][Y_1] \subseteq \dots$$

WKL_0

Weak König's lemma

Every infinite binary tree admits an infinite path

Theorem (Harrington)

 WKL_0 is Π^1_1 -conservative over RCA_0
Theorem (Harrington)

Let $\mathcal{M} = (M, S) \models \mathsf{RCA}_0$ be a countable model and $T \subseteq 2^{<M}$ be an infinite tree in *S*. There is a path $G \in [T]$ such that $\mathcal{M}[G] \models \mathsf{RCA}_0$.

(\mathbb{P},\leq)

The set of all infinite binary trees in S ordered by inclusion

$$T \mathrel{?}\vdash \exists y \psi(y, G \restriction_y)$$

there is some $\ell \in M$ such that for every $\sigma \in T$ of length ℓ , $\psi(y, \sigma \upharpoonright y)$ for some $y < \ell$.

$T \mathrel{?}\vdash \exists y \psi(y, G \restriction_y)$

there is some $\ell \in M$ such that for every $\sigma \in T$ of length ℓ , $\psi(y, \sigma \upharpoonright y)$ for some $y < \ell$.

Lemma

Let *T* be a condition and $\varphi(\mathbf{G})$ be a $\Sigma_1^0(\mathcal{M})$ -formula.

1. If $T ?\vdash \varphi(G)$ then T forces $\varphi(G)$

2. If $T \not\geq \varphi(G)$ then there is an extension $T_1 \subseteq T$ forcing $\neg \varphi(G)$

Lemma (Friedman)

Let $\mathcal{M} = (M, S) \models \mathsf{RCA}_0$ and $G \subseteq M$ be such that $\mathcal{M} \cup \{G\} \models \mathsf{I}\Sigma_1^0$. Then $\mathcal{M}[G] \models \mathsf{RCA}_0$.

Lemma

Let *T* be a condition and $\varphi(x, X)$ be a $\Sigma_1^0(\mathcal{M})$ -formula such that *T* forces $\neg \varphi(b, G)$ for some $b \in M$. Then there is an extension $T_1 \subseteq T$ such that

- Either T_1 forces $\neg \varphi(0, G)$
- Or T_1 forces $\varphi(a, G)$ and $\neg \varphi(a + 1, G)$ for some $a \in M$

Given $T \in \mathbb{P}$, define the $\Sigma_1^0(\mathcal{M})$ set

$$W = \{x \in M : T ? \vdash \varphi(x, G)\}$$

► Case 1: 0 ∉ W.

Then there is an extension forcing $\neg \varphi(0, \mathbf{G})$

Case 2: a ∈ W and a + 1 ∉ W for some a ∈ M Then there is an extension forcing φ(a, G) and ¬φ(a + 1, G)

► Case 3:
$$0 \in W$$
 and $\forall a \in M (a \in W \rightarrow a + 1 \in W)$
Impossible, since $\mathcal{M} \models I\Sigma_1^0$ but $b \notin W$.

Every set can be Δ_2^0 from the viewpoint of RCA₀.

Theorem (Towsner)

Let $\mathcal{M} = (M, S) \models \mathsf{RCA}_0$ be a countable model and $A \subseteq M$ be an arbitrary set. There is a set $G \subseteq M$ such that A is $\Delta_2^0(G)$ and $\mathcal{M}[G] \models \mathsf{RCA}_0$.

Towsner forcing

 \mathbb{P} : set of pairs (g, I) in \mathcal{M} such that

- ▶ $g \subseteq M^2 \rightarrow 2$ is a finite partial function;
- $I \subseteq M$ is a finite set of "locked" columns.

[g, I]: class of all partial functions $h \subseteq M^2 \rightarrow 2$ such that

- *g* ⊆ *h*;
- ▶ for all $(x, y) \in \text{dom } h \setminus \text{dom } g$, if $x \in I$ then h(x, y) = A(x).

 $(h, J) \leq (g, I)$ if $J \supseteq I$ and $h \in [g, I]$

$(\boldsymbol{g}, \boldsymbol{I}) ? \vdash \exists \boldsymbol{y} \psi(\boldsymbol{y}, \boldsymbol{G} \models_{\boldsymbol{y}})$

there is some $h \in [g, I]$ and some *y* such that $\psi(y, h \upharpoonright_y)$.

Lemma

Let (g, I) be a condition and $\varphi(G)$ be a $\Sigma_1^0(\mathcal{M})$ -formula.

If (g, I) ?⊢ φ(G) then there is an extension forcing φ(G)
If (g, I) ?⊬ φ(G) then (g, I) forces ¬φ(G)

Lemma (Friedman)

Let $\mathcal{M} = (M, S) \models \mathsf{RCA}_0$ and $G \subseteq M$ be such that $\mathcal{M} \cup \{G\} \models \mathsf{I}\Sigma_1^0$. Then $\mathcal{M}[G] \models \mathsf{RCA}_0$.

Lemma

Let (g, I) be a condition and $\varphi(x, X)$ be a $\Sigma_1^0(\mathcal{M})$ -formula such that (g, I) forces $\neg \varphi(b, G)$ for some $b \in M$. Then there is an extension $(h, J) \leq (g, I)$ such that

- ▶ Either (h, J) forces $\neg \varphi(0, G)$
- Or (h, J) forces $\varphi(a, G)$ and $\neg \varphi(a + 1, G)$ for some $a \in M$

Given $(g, I) \in \mathbb{P}$, define the $\Sigma_1^0(\mathcal{M})$ set

$$W = \{x \in M : (g, I) ? \vdash \varphi(x, G)\}$$

► Case 1: 0 ∉ W.

Then there is an extension forcing $\neg \varphi(0, \mathbf{G})$

Case 2: a ∈ W and a + 1 ∉ W for some a ∈ M Then there is an extension forcing φ(a, G) and ¬φ(a + 1, G)

► Case 3:
$$0 \in W$$
 and $\forall a \in M (a \in W \rightarrow a + 1 \in W)$
Impossible, since $\mathcal{M} \models I\Sigma_1^0$ but $b \notin W$.

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is (Σ_n^0, Π_n^0) -merging if for every $p \in \mathbb{P}$ and every pair of Σ_n^0 -formulas $\varphi(G), \psi(G)$ such that $p \mathrel{?}\vdash \varphi(G)$ and $p \mathrel{?}\nvDash \psi(G)$, there is an extension $q \leq p$ such that $q \Vdash \varphi(G) \land \neg \psi(G)$..

Lemma

Suppose $?\vdash$ is Σ_1^0 -preserving and (Σ_1^0, Π_1^0) -merging. For every $\{0, 1\}$ -valued functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \exists x \; \Phi_e^G(x) \uparrow \lor \exists x \; \Phi_e^G(x) \downarrow = \Phi_x(x) \}$$

What we know so far...

Forcing question ?⊢	Notion of forcing (\mathbb{P}, \leq)
Σ_1^0 -preserving	cone avoidance
Σ_1^0 -pres. and Σ_1^0 -compact	pres. of hyperimmunity
Σ_1^0 -pres. and Π_1^0 -merging	PA avoidance
Σ_1^0 -pres. and ω - Π_1^0 -merging	DNC avoidance
$\Sigma_1^0\text{-}\mathrm{pres.}$ and $(\Sigma_1^0,\Pi_1^0)\text{-}\mathrm{merging}$	$I\Sigma^0_1$ preservation

Higher jump control

An infinite set *C* is cohesive for a sequence R_0, R_1, \ldots if for every *i*, $C \subseteq^* R_i$ or $C \subseteq^* \overline{R_i}$

COH

Cohesiveness principle Every sequence of sets admits a cohesive set

Cohesiveness is about jump computation

Let R_0, R_1, \ldots be an infinite sequence of sets

Given $\sigma \in 2^{<\mathbb{N}},$ let

$$\vec{\mathsf{R}}_{\sigma} = \bigcap_{\sigma(i)=0} \overline{R}_i \bigcap_{\sigma(i)=1} R_i$$

Let $C(\vec{R})$ be the $\Pi_1^0(\emptyset')$ class of all P such that for every $\sigma \prec P$, \vec{R}_{σ} is infinite

Lemma

Let \vec{R} be a uniformly computable sequence of sets. A set computes an infinite \vec{R} -cohesive set iff its jump computes a member of $C(\vec{R})$.

Lemma

For every $\Pi_1^0(\emptyset')$ class $\mathcal{P} \subseteq 2^{\mathbb{N}}$, there is a uniformly computable sequence of sets \vec{R} such that $\mathcal{C}(\vec{R}) = \mathcal{P}$.

A function $f : \mathbb{N} \to \mathbb{N}$ is diagonally non-X-computable (X-DNC) if $\forall e \ f(e) \neq \Phi_e^{\mathsf{X}}(e)$

Lemma

There exists an X-computable infinite binary tree $T \subseteq 2^{<\mathbb{N}}$ such that [*T*] are the $\{0, 1\}$ -valued X-DNC functions.

•
$$T = \{ \sigma \in 2^{<\mathbb{N}} : \forall \mathbf{e} < |\sigma| \ \sigma(\mathbf{e}) \neq \Phi_{\mathbf{e}}^{\mathsf{X}}(\mathbf{e})[|\sigma|] \}.$$

Lemma

For every X-computable infinite binary tree T, every $\{0, 1\}$ -valued X-DNC function computes a path.

- Given $\sigma \in T$ and $x \in \mathbb{N}$, let $\Phi_{e_{\sigma}}^{\mathsf{X}}$ explore the branches below $\sigma \cdot 0$ and $\sigma \cdot 1$.
- If the branch below $\sigma \cdot i$ is the first to die, then halt and output *i*.
- ► For every σ extensible in *T*, $\sigma \cdot f(e_{\sigma})$ is extensible in *T*.

Lemma

Let \vec{R} be a uniformly computable sequence of sets. Every set whose jump computes a $\{0, 1\}$ -valued \emptyset' -DNC function computes an infinite \vec{R} -cohesive set.

Lemma

There is a uniformly computable sequence of sets \vec{R} such that for every \vec{R} -cohesive set, its jump computes a $\{0, 1\}$ -valued \emptyset' -DNC function.

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is Π_n^0 -merging if for every $p \in \mathbb{P}$ and every pair of Σ_n^0 -formulas $\varphi(G)$, $\psi(G)$ such that $p \not \vdash \varphi(G)$ and $p \not \vdash \psi(G)$, there is an extension $q \leq p$ such that $q \Vdash \neg \varphi(G) \land \neg \psi(G)$.

Lemma

Suppose $?\vdash$ is Σ_n^0 -preserving and Π_n^0 -merging. For every $\{0, 1\}$ -valued functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \exists x \; \Phi_{e}^{G^{(n-1)}}(x) \uparrow \lor \exists x \; \Phi_{e}^{G^{(n-1)}}(x) \downarrow = \Phi_{x}^{\emptyset^{(n-1)}}(x) \}$$

Given $p \in \mathbb{P}$, define the Σ_n^0 set

$$W = \{(x, v) : p : \vdash \Phi_{e}^{\mathsf{G}^{(n-1)}}(x) \downarrow = v\}$$

► Case 1: $(x, \Phi_x^{\emptyset^{(n-1)}}(x)) \in W$ for some x such that $\Phi_x^{\emptyset^{(n-1)}}(x) \downarrow$ Then τ is an extension forcing $\Phi_e^{G^{(n-1)}}(x) = \Phi_x^{\emptyset^{(n-1)}}(x)$

- ► Case 2: $(x, 0), (x, 1) \notin W$ for some x Then σ forces $\Phi_e^{G^{(n-1)}}(x)$ \uparrow
- ► Case 3: W is a ∑_n⁰ graph of a Ø⁽ⁿ⁻¹⁾-DNC function Impossible, since no Ø⁽ⁿ⁻¹⁾-DNC function is Ø⁽ⁿ⁻¹⁾-computable.

Cohen forcing $(2^{<\omega}, \preceq)$

- $2^{<\omega}$ is the set of all finite binary strings
- $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore)

Every sufficiently Cohen generic *G* computes no $\{0, 1\}$ -valued DNC function.

Lemma

For every $\{0,1\}$ -valued Turing functional Φ_e , the following set is dense in $(2^{<\omega}, \preceq)$.

$$\mathbf{D} = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \exists \mathbf{x} \ \Phi_{\mathbf{e}}^{\mathbf{G}}(\mathbf{x}) \uparrow \lor \exists \mathbf{x} \ \Phi_{\mathbf{e}}^{\mathbf{G}}(\mathbf{x}) \downarrow = \Phi_{\mathbf{x}}(\mathbf{x}) \}$$

Let $\sigma \in 2^{<\mathbb{N}}$ and $\varphi(\mathbf{G}) \equiv \exists x \psi(\mathbf{G}, x)$ be a Σ_n^0 formula for $n \ge 1$.

$$\sigma \mathrel{?}\vdash \varphi(\mathbf{G}) \equiv \begin{cases} \exists x \ \exists \tau \succeq \sigma \ \psi(\tau, x) & \text{for } n = 1 \\ \exists x \ \exists \tau \succeq \sigma \ \tau \ ? \nvDash \neg \psi(\mathbf{G}, x) & \text{for } n > 1 \end{cases}$$

Lemma

The forcing question for Σ_n^0 -formulas is Σ_n^0 -preserving

Pigeonhole principle

RT^1_k Every *k*-partition of \mathbb{N} admits an infinite subset of a part.

Theorem (Dzhafarov and Jockusch)

For every set $C \not\leq_T \emptyset$ and every 2-partition $A_0 \sqcup A_1 = \mathbb{N}$, there is some i < 2 and an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$.

Theorem (Monin and Patey)

For every set $C \not\leq_T \emptyset^{(n)}$ and every 2-partition $A_0 \sqcup A_1 = \mathbb{N}$, there is some i < 2 and an infinite set $G \subseteq A_i$ such that $C \not\leq_T G^{(n)}$.

- F_i is finite, X is infinite, max $F_i < \min X$ (Matrix
- ► $C \not\leq_T X$
- ► $F_i \subseteq A_i$

(Mathias condition) (Weakness property) (Combinatorics)

Extension

 $(\boldsymbol{\textit{E}}_0, \boldsymbol{\textit{E}}_1, \textbf{\textit{Y}}) \leq (\boldsymbol{\textit{F}}_0, \boldsymbol{\textit{F}}_1, \textbf{\textit{X}})$

- ► $F_i \subseteq E_i$
- ► $Y \subseteq X$
- ► $E_i \setminus F_i \subseteq X$

- Denotation
- $\langle \mathbf{G}_0, \mathbf{G}_1 \rangle \in [\mathbf{F}_0, \mathbf{F}_1, \mathbf{X}]$
- ► $F_i \subseteq G_i$
- ► $G_i \setminus F_i \subseteq X$

 $[\boldsymbol{E}_0, \boldsymbol{E}_1, \boldsymbol{Y}] \subseteq [\boldsymbol{F}_0, \boldsymbol{F}_1, \boldsymbol{X}]$

max $F < \min X$

Mathias extension $(E, Y) \le (F, X)$ $F \subseteq E, Y \subseteq X, E \setminus F \subseteq X$

Cylinder $[F,X] = \{G: F \subseteq G \subseteq F \cup X\}$

A function $g : \mathbb{N} \to \mathbb{N}$ dominates $f : \mathbb{N} \to \mathbb{N}$ if $\forall^{\infty} x \ g(x) \ge f(x)$.

The principal function of an infinite set $X = \{x_0 < x_1 < ...\}$ is the function $p_X : n \mapsto x_n$.

A Turing degree **d** is high if $\mathbf{d}' \ge \mathbf{0}''$.

Theorem (Martin domination)

A degree is high iff it computes a function dominating every computable function

Lemma

If G is sufficiently Mathias generic, then p_G dominates every computable function

- Let *f* : N → N be a total computable function and (*F*, *X*) be a Mathias condition
- ▶ Let $Y \subseteq X$ be such that $p_{F \cup Y}$ dominates f
- The extension (F, Y) forces p_G to dominate f

Mathias forcing produces sparse sets which computes fast-growing functions even when using computable reservoirs

Solution: restrict reservoirs

The only operations on the reservoirs are partitioning and trimming.

Definition

A non-empty class $\mathcal{P} \subseteq 2^{\mathbb{N}}$ is partition regular if

- (1) For every $X \in \mathcal{P}$ and $Y \supseteq X$, $Y \in \mathcal{P}$
- (2) For every $X \in \mathcal{P}$ and every $Z_0 \cup Z_1 = X$, there is some i < 2 such that $Z_i \in \mathcal{P}$

Conclusion

The computability-theoretic properties of forcing notions are consequences of combinatorial and definitional features of their forcing questions.

SLICING THE TRUTH

On the Computable and Reverse Mathematics of Combinatorial Principles

láton: Chitet Chang • Qi Feng • Theodore & Slamon • W Hugh Woodin • Yue Yong Corporighted Material

Subsystems of second-order arithmetic, 2010

Slicing the truth, 2014

Reverse Mathematics, 2022

Lowness and avoidance, 2025