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Axioms

Theorem

A1, . . . ,An ⇒

T
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Second-order arithmetics

t ::= 0 | 1 | x | t1 + t2 | t1 · t2

f ::= t1 = t2 | t1 < t2 | t1 ∈ X | f1 ∨ f2
| ¬f | ∀x.f | ∃x.f | ∀X.f | ∃X.f

(Hilbert and Bernays)

5 / 133



Robinson’s arithmetics

1. m+ 0 = m
2. m+ (n+ 1) = (m+ n) + 1

3. m× 0 = 0

4. m× (n+ 1) = (m× n) +m
5. m+ 1 6= 0

6. m+ 1 = n+ 1 → m = n
7. ¬(m < 0)

8. m < n+ 1 ↔ (m < n ∨m = n)
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Comprehension scheme

∃X∀n(n ∈ X ⇔ φ(n))

for every formula φ(n) where X appears freely.
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Arithmetic hierarchy

Σ0
n φ(y) ≡ ∃x1∀x2 . . .Qxn ψ(y, x1, . . . , xn)

Π0
n φ(y) ≡ ∀x1∃x2 . . .Qxn ψ(y, x1, . . . , xn)

where ψ contains only bounded first-order quantifiers

A set is Γ if it is Γ-definable
A set is ∆0

n if it is Σ0
n and Π0

n.
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Computability ≡ Definability

Theorem (Gödel)

A set is c.e. iff it is Σ0
1 and computable iff it is ∆0

1.

Theorem (Post)

A set is ∅(n)-c.e. iff it is Σ0
n+1 and ∅(n)-computable iff it is ∆0

n+1.

9 / 133



∆0
1 comprehension scheme

∀n(φ(n) ⇔ ψ(n)) ⇒ ∃X∀n(n ∈ X ⇔ φ(n))

where φ(n) is a Σ0
1 formula where X does not occur freely, and

ψ is a Π0
1 formula.
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Induction scheme

φ(0) ∧ ∀n(φ(n) ⇒ φ(n+ 1)) ⇒ ∀nφ(n)

for every formula φ(n)
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Σ0
1 induction scheme

φ(0) ∧ ∀n(φ(n) ⇒ φ(n+ 1)) ⇒ ∀nφ(n)

where φ(n) is a Σ0
1 formula

equivalent to

Σ0
1 bounded comprehension scheme

∀p∃X∀n(n ∈ X ⇔ n < p ∧ φ(n))

where φ(n) is a Σ0
1 formula where X does not occur freely
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RCA0

Robinson’s arithmetics

m+ 1 6= 0 m+ 0 = m
m+ 1 = n+ 1 → m = n m+ (n+ 1) = (m+ n) + 1
¬(m < 0) m× 0 = 0
m < n+ 1 ↔ (m < n ∨m = n) m× (n+ 1) = (m× n) +m

Σ0
1 induction scheme

φ(0) ∧ ∀n(φ(n) ⇒ φ(n+ 1))
⇒ ∀nφ(n)

where φ(n) is a Σ0
1 formula

∆0
1 comprehension scheme

∀n(φ(n) ⇔ ψ(n))
⇒ ∃X∀n(n ∈ X ⇔ φ(n))

where φ(n) is a Σ0
1 formula where X

does not occur freely, and ψ is a Π0
1

formula.
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Reverse mathematics

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

Except for Ramsey’s theory...

RCA0

WKL

ACA

ATR

Π1
1CA

RT2
2
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How to prove a
separation?
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Given two statements P and Q.

How to prove that RCA0+P ⊬ Q?

Build a model M such that
� M |= P
� M 6|= Q
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ω-structure M = {ω,S,<,+, ·}

(i) ω is the set of standard natural numbers
(ii) < is the natural order
(iii) + and · are the standard operations over natural numbers
(iv) S ⊆ P(ω)

An ω-structure is fully specified by its second-order part S.
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Turing ideal M
� (∀X ∈ M)(∀Y ≤T X)[Y ∈ M]

� (∀X,Y ∈ M)[X⊕ Y ∈ M]

Examples
� {X : X is computable }
� {X : X ≤T A ∧ X ≤T B} for some sets A and B
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Let M = {ω,S,<,+, ·} be an ω-structure

M |= RCA0
≡

S is a Turing ideal
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Many theorems can be seen as problems.

Intermediate value theorem
For every continuous function f over an
interval [a,b] such that f(a) · f(b) < 0, there
is a real x ∈ [a,b] such that f(x) = 0.

König’s lemma
Every infinite, finitely branching tree admits
an infinite path.

a
b
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Π1
2-problem

P ≡ ∀X[φ(X) → ∃Yψ(X,Y)]
where φ and ψ are arithmetic formulas

� P-instances: domP = {X : φ(X)}
� P-solutions to X: P(X) = {Y : ψ(X,Y)}
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Given two Π1
2-problems P and Q.

How to prove that RCA0+P ⊬ Q?

Build a Turing ideal M such that
� M |= P
� M 6|= Q
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Construct an ω-model of RCA0+P

Start with M0 = {Z : Z ≤T ∅}

Given a Turing ideal Mn = {Z : Z ≤T U} for some set U,

1. pick an instance X ∈ Mn of P
2. choose a solution Y to X
3. define Mn+1 = {Z : Z ≤T Y⊕ U}

Let M =
∪
nMn. Then M |= RCA0+P
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Beware, adding sets to M
may add solutions to instances of Q!
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A weakness property is a collection of sets
closed downward under the Turing reduction.

Exemples
� {X : X is low}
� {X : A 6≤T X} given a set A
� {X : X is hyperimmune-free}
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Let W be a weakness property.

A problem P preserves W if for every Z ∈ W ,
every Z-computable instance X of P
admits a solution Y such that Y⊕ Z ∈ W

Lemma

If P preserves W, then for every Z ∈ W , there is an
ω-model M |= RCA0 + P with Z ∈ M ⊆ W .

Lemma

If P preserves W and Q does not, then RCA0+P ⊬ Q
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Cone avoidance
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ACA0
Arithmetic Comprehension Axiom

� Every increasing sequence of reals admits a supremum.
� Bolzano/Weierstrass theorem: Every sequence of reals admits a converging

sub-sequence.
� Every countable commutative ring admits a maximal ideal.
� König’s lemma: Every infinite, finitely branching tree admits an infinite path.
� Ramsey’s theorem for colorings of [N]3.
� . . .
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ACA0
Arithmetic Comprehension Axiom

X′ = {e : ∃t ΦX
e(e)[t] ↓}

Lemma

RCA0 ` ACA0 ↔ ∀X ∃Y (Y = X′)

Lemma

If a Π1
2-problem P preserves W∅′ = {Z : ∅′ 6≤T Z},

then RCA0 + P 6` ACA0.
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Cone avoidance

A Π1
2-problem P admits cone avoidance if for every set Z,

every set C 6≤T Z and every Z-computable P-instance X,
there is a P-solution Y to X such that C 6≤T Y⊕ Z.

P admits cone avoidance
≡

P preserves WC = {Z : C 6≤T Z} for every set C

31 / 133



Strategy
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Forcing in Computability Theory

Partial order
(P,≤)

Condition
p ∈ P
approximation

Denotation
[p] ⊆ 2ω

class of candidates

Compatibility
If q ≤ p then [q] ⊆ [p]
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Forcing in Computability Theory

Filter F ⊆ P

∀p ∈ F ∀q ≥ p q ∈ F
∀p,q ∈ F , ∃r ∈ F r ≤ p,q

Dense set D ⊆ P

∀p ∈ P∃q ≤ p q ∈ D

Denotation
[F ] =

∩
p∈F [p]

Forcing p ⊩ φ(G)
∀G ∈ [p] φ(G)
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Cohen forcing
(2<ω,�)

2<ω is the set of all finite binary strings

σ � τ means σ is a prefix of τ

[σ] = {X ∈ 2ω : σ ≺ X}
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Theorem (Folklore)

Let C 6≤T ∅. For every sufficiently Cohen generic G, C 6≤T G.

Lemma

For every non-computable set C and Turing functional Φe, the
following set is dense in (2<ω,�).

D = {σ ∈ 2<ω : σ ⊩ ΦG
e 6= C}
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Given σ ∈ 2<ω, define the Σ0
1 set

W = {(x, v) : ∃τ � σ Φτe(x) ↓= v}

� Case 1: (x, 1− C(x)) ∈ W for some x
Then τ is an extension forcing ΦG

e 6= C

� Case 2: (x,C(x)) 6∈ W for some x
Then σ forces ΦG

e 6= C

� Case 3: W is a Σ0
1 graph of C

Impossible, since C 6≤T ∅
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Weak König’s lemma

2<ω is the set of all finite binary strings

A binary tree is a set T ⊆ 2<ω closed under prefixes

A path through T is an infinite sequence P such that every
initial segment is in T

WKL Every infinite binary tree admits
an infinite path.
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Jockusch-Soare forcing
(T ,⊆)

T is the collection of infinite computable binary trees

[T] = {X ∈ 2ω : ∀σ ≺ X σ ∈ T}
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Theorem (Jockusch-Soare)

Let C 6≤T ∅. For every infinite computable binary tree T ⊆ 2<ω,
there is a path P ∈ [T] such that C 6≤T P.

Lemma

For every non-computable set C and Turing functional Φe, the
following set is dense in (T ,⊆).

D = {T ∈ T : T ⊩ ΦG
e 6= C}
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Given T ∈ T , define the Σ0
1 set

W = {(x, v) : ∃ℓ ∈ N∀σ ∈ 2ℓ ∩ T Φσe (x) ↓= v}

� Case 1: (x, 1− C(x)) ∈ W for some x
Then T forces ΦG

e 6= C

� Case 2: (x,C(x)) 6∈ W for some x
Then {σ ∈ T : ¬(Φσ

e (x) ↓= v)} forces ΦG
e 6= C

� Case 3: W is a Σ0
1 graph of C

Impossible, since C 6≤T ∅
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Forcing question

p ?`φ(G)
where p ∈ P and φ(G) is Σ0

1

Lemma

Let p ∈ P and φ(G) be a Σ0
1 formula.

(a) If p ?`φ(G), then q ⊩ φ(G) for some q ≤ p;
(b) If p ?⊬φ(G), then q ⊩ ¬φ(G) for some q ≤ p.
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Forcing Π0
1Forcing Σ0

1

Jockusch-Soare
forcing question

Cohen
forcing question
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Fix a notion of forcing (P,≤).

A forcing question is Γ-preserving if for every p ∈ P and every
Γ-formula φ(G, x), the relation p ?`φ(G, x) is in Γ uniformly in x.

Lemma

Suppose ?` is Σ0
1-preserving. For every non-computable set C and

Turing functional Φe, the following set is dense in (P,≤).

D = {p ∈ P : p ⊩ ΦG
e 6= C}
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Given p ∈ P, define the Σ0
1 set

W = {(x, v) : p ?`ΦG
e (x) ↓= v}

� Case 1: (x, 1− C(x)) ∈ W for some x
Then there is an extension forcing ΦG

e 6= C

� Case 2: (x,C(x)) 6∈ W for some x
Then there is an extension forcing ΦG

e 6= C

� Case 3: W is a Σ0
1 graph of C

Impossible, since C 6≤T ∅
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Pigeonhole principle

RT1
k

Every k-partition of N admits
an infinite subset of a part.
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Theorem (Dzhafarov and Jockusch)

For every set C 6≤T ∅ and every 2-partition A0 t A1 = N,
there is some i < 2 and an infinite set G ⊆ Ai such that C 6≤T G.

Input : a set C 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that C 6≤T G
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(F0,F1,X)
Initial segment Reservoir

� Fi is finite, X is infinite, maxFi < minX (Mathias condition)

� C 6≤T X (Weakness property)

� Fi ⊆ Ai (Combinatorics)
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Extension

(E0,E1,Y) ≤ (F0,F1,X)

� Fi ⊆ Ei

� Y ⊆ X

� Ei \ Fi ⊆ X

Denotation

〈G0,G1〉 ∈ [F0,F1,X]

� Fi ⊆ Gi

� Gi \ Fi ⊆ X

[E0,E1,Y] ⊆ [F0,F1,X]

49 / 133



(F0,F1,X) ⊩ φ(G0,G1)

Condition Formula

φ(G0,G1) holds for every 〈G0,G1〉 ∈ [F0,F1,X]
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Input : a set C 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that C 6≤T G

ΦG0
e0 6= C ∨ ΦG1

e1 6= C

The set {p ∈ P : p ⊩ ΦG0
e0 6= C ∨ ΦG1

e1 6= C} is dense
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Disjunctive forcing question

p ?`φ0(G0) ∨ φ1(G1)
where p ∈ P and φ0(G0),φ1(G1) are Σ0

1

Lemma

Let p ∈ P and φ0(G0),φ1(G1) be Σ0
1 formulas.

(a) If p ?`φ0(G0)∨φ1(G1), then q ⊩ φ0(G0)∨φ1(G1) for some q ≤ p;

(b) If p ?⊬φ0(G0) ∨ φ1(G1), then q ⊩ ¬φ0(G0) ∨ ¬φ1(G1) for some
q ≤ p.
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Suppose the following relation is uniformly Σ0
1(X) whenever

φ0(G0),φ1(G1) are Σ0
1

(F0,F1,X) ?`φ0(G0) ∨ φ1(G1)

Lemma

For every non-computable set C and Turing functionals
Φe0 ,Φe1 , the following set is dense in (P,≤).

D = {p ∈ P : p ⊩ ΦG0
e0 6= C ∨ ΦG1

e1 6= C}

Consider the Σ0
1(X) set

W = {(x, v) : p ?`ΦG0
e0 (x) ↓= v ∨ ΦG0

e0 (x) ↓= v}
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Problem: complexity of the instance

“Can we find an extension for this instance of RT1
2?”

Definition

(F0,F1,X) ?`φ0(G0) ∨ φ1(G1)

≡

(∃i < 2)(∃Ei ⊆ X ∩ Ai)φi(Fi ∪ Ei)

The formula is Σ0
1(X⊕ Ai)
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Idea: make an overapproximation

“Can we find an extension for every instance of RT1
2?”

Definition

(F0,F1,X) ?`φ0(G0) ∨ φ1(G1)

≡

(∀B0 t B1 = N)(∃i < 2)(∃Ei ⊆ X ∩ Bi)φi(Fi ∪ Ei)

The formula is Σ0
1(X)
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Case 1: p ?`φ0(G0) ∨ φ1(G1)

Letting Bi = Ai, there is an extension q ≤ p forcing

φ0(G0) ∨ φ1(G1)

Case 2: p ?⊬φ0(G0) ∨ φ1(G1)

(∃B0 t B1 = N)(∀i < 2)(∀Ei ⊆ X ∩ Bi)¬φi(Fi ∪ Ei)

The condition (F0,F1,X ∩ Bi) ≤ p forces

¬φ0(G0) ∨ ¬φ1(G1)
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What we know so far...

Forcing question ?` Notion of forcing (P,≤)

Σ0
1-preserving cone avoidance

· · · · · ·
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Preservation of
hyperimmunity
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A function g : N → N dominates f : N → N if ∀∞x g(x) ≥ f(x).

A function f : N → N is a modulus for a set A ⊆ N if every
function dominating f computes A.

A function f : N → N is hyperimmune if it is not dominated by
any computable function.

An infinite set A ⊆ N is hyperimmune if there is no infinite
computable sequence of pairwise disjoint blocs intersecting A.
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Computation

∆1
1 (hyperarithmetic) sets

High degrees (d′ ≥ 0′′)

Hyperimmune sets

Function growth

Sets admitting a modulus

Functions dominating every
computable function

Hyperimmune functions
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A set G is weakly 1-generic if for every c.e. dense set of strings
We ⊆ 2<N, there is some σ ≺ G in We.

Lemma
Every weakly 1-generic set is
hyperimmune.

Given a computable sequence of
pairwise disjoint blocs (Bn)n∈N
the following set is dense:

{σ : ∃n |σ| > maxBn ∧ Bn ∩ σ = ∅}

Lemma
Every hyperimmune function
computes a weakly 1-generic set.

Given a hyperimmune function f, build an
f-computable sequence σ0 ≺ σ1 ≺ . . .
Having defined σn, wait until time f(|σn|)
to see if some We enumerates an
extension
(I cheat, slightly more complicated)
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Preservation of hyperimmunity

A Π1
2-problem P admits preservation of hyperimmunity if

for every set Z, every Z-hyperimmune function f and every
Z-computable P-instance X, there is a P-solution Y to X
such that f is Y⊕ Z-hyperimmune.

P admits preservation of Z-hyperimmunity
≡

P preserves Wf = {Z : f is Z-hyperimmune }
for every function f
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Cohen forcing
(2<ω,�)

2<ω is the set of all finite binary strings

σ � τ means σ is a prefix of τ

[σ] = {X ∈ 2ω : σ ≺ X}
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Theorem (Folklore)

Let f : N → N be hyperimmune. For every sufficiently Cohen
generic G, f is G-hyperimmune.

Lemma

For every hyperimmune function f : N → N and Turing
functional Φe, the following set is dense in (2<ω,�).

D = {σ ∈ 2<ω : σ ⊩ ∃x ΦG
e (x) ↑ ∨∃x ΦG

e (x) < f(x)}
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Given σ ∈ 2<ω, define the partial computable function:
h(x) = y for the least y such that

∃τ � σ Φτe(x) ↓= y

� Case 1: h(x) < f(x) for some x ∈ dom h.
Then τ is an extension forcing ΦG

e (x) < f(x)

� Case 2: x 6∈ dom h for some x
Then σ forces ΦG

e (x) ↑

� Case 3: h is total and dominates f.
Impossible, since f is hyperimmune
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Fix a notion of forcing (P,≤).

A forcing question is Γ-compact if for every p ∈ P and every
Γ-formula φ(G, x), if p ?`∃x φ(G, x) then there is a finite set
F ⊆ N such that p ?`∃x ∈ F φ(G, x).

Lemma

Suppose ?` is Σ0
1-preserving and Σ0

1-compact. For every
hyperimmune function f : N → N and Turing functional Φe, the
following set is dense in (P,≤).

D = {p ∈ P : p ⊩ ∃x ΦG
e (x) ↑ ∨∃x ΦG

e (x) < f(x)}
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Given p ∈ P, define the partial computable function:
h(x) = 1 +maxF for the least F such that

p ?`∃y ∈ F ΦG
e (x) ↓= y

� Case 1: h(x) < f(x) for some x ∈ dom h.
Then there is an extension forcing ΦG

e (x) ≤ maxF < f(x)

� Case 2: x 6∈ dom h for some x
Then p ?⊬ ∃y ΦG

e (x) ↓= y. There is an extension forcing ΦG
e (x) ↑

� Case 3: h is total and dominates f.
Impossible, since f is hyperimmune
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Theorem

A Π1
2-problem admits cone avoidance iff it admits preservation

of hyperimmunity.

� If a problem admits cone avoidance,
it can avoid ω cones simultaneously.

� There are problems which admit preservation of k
hyperimmunities, but not k+ 1 simultaneously.
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What we know so far...

Forcing question ?` Notion of forcing (P,≤)

Σ0
1-preserving cone avoidance

Σ0
1-preserving and Σ0

1-compact preservation of hyperimmunity

· · · · · ·
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Compactness avoidance
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WKL0
Weak König’s lemma

� Every infinite binary tree admits an infinite path
� Heine/Borel cover lemma: Every cover of the [0, 1] interval by a sequence of

open sets admits a finite sub-cover.
� Every real-valued function over [0, 1] is bounded.
� Gödel’s completeness theorem: every countable set of statements in predicate

calculus admits a countable model.
� Every countable commutative ring admits a prime ideal.
� . . .
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A function f : N → N is diagonally non-computable (DNC) if

∀e f(e) 6= Φe(e)

Lemma

There exists a computable infinite binary tree T ⊆ 2<N such that [T]
are the {0, 1}-valued DNC functions.

� T = {σ ∈ 2<N : ∀e < |σ| σ(e) ̸= Φe(e)[|σ|]}.

Lemma

For every computable infinite binary tree T, every {0, 1}-valued DNC
function computes a path.

� Given σ ∈ T and x ∈ N, let Φeσ explore the branches below σ · 0 and σ · 1.
� If the branch below σ · i is the first to die, then halt and output i.
� For every σ extensible in T, σ · f(eσ) is extensible in T.
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Cohen forcing
(2<ω,�)

2<ω is the set of all finite binary strings

σ � τ means σ is a prefix of τ

[σ] = {X ∈ 2ω : σ ≺ X}
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Theorem (Folklore)

Every sufficiently Cohen generic G computes no {0, 1}-valued
DNC function.

Lemma

For every {0, 1}-valued Turing functional Φe, the following set is
dense in (2<ω,�).

D = {σ ∈ 2<ω : σ ⊩ ∃x ΦG
e (x) ↑ ∨∃x ΦG

e (x) ↓= Φx(x)}
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Given σ ∈ 2<ω, define the Σ0
1 set

W = {(x, v) : ∃τ � σ Φτe(x) ↓= v}

� Case 1: (x,Φx(x)) ∈ W for some x such that Φx(x) ↓
Then τ is an extension forcing ΦG

e (x) = Φx(x)

� Case 2: (x, 0), (x, 1) 6∈ W for some x
Then σ forces ΦG

e (x) ↑

� Case 3: W is a Σ0
1 graph of a DNC function

Impossible, since no DNC function is computable.
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Fix a notion of forcing (P,≤).

A forcing question is Π0
n-merging if for every p ∈ P

and every pair of Σ0
n-formulas φ(G),ψ(G) such that

p ?⊬φ(G) and p ?⊬ψ(G), there is an extension q ≤ p
such that q ⊩ ¬φ(G) ∧ ¬ψ(G).

Lemma

Suppose ?` is Σ0
1-preserving and Π0

1-merging. For every
{0, 1}-valued functional Φe, the following set is dense in (P,≤).

D = {p ∈ P : p ⊩ ∃x ΦG
e (x) ↑ ∨∃x ΦG

e (x) ↓= Φx(x)}
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Forcing Π0
1Forcing Σ0

1

Jockusch-Soare
forcing question

Cohen
forcing question
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Solovay forcing
(C,⊆)

C is the collection of closed classes of positive measure in 2N
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Theorem

For every sufficiently Solovay generic G, G computes no
{0, 1}-valued DNC function.

Lemma

For every {0, 1}-valued Turing functional Φe, the following set is
dense in C.

D = {P ∈ C : P ⊩ ∃x ΦG
e (x) ↑ ∨∃x ΦG

e (x) ↓= Φx(x)}
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Lebesgue density lemma

Lemma

For every closed class P ⊆ 2N of
positive measure and every ϵ > 0,
there is some σ ∈ 2<N such that

µ(P ∩ [σ])

µ([σ]) ≥ 1− ϵ
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Given a closed class P ⊆ 2N and σ ∈ 2<N such that
µ(P) ∩ [σ]) > 0.9× µ([σ]), define the Σ0

1 set

W = {(x, v) : µ(Z : Φσ·Ze (x) ↓= v) > 0.2}

� Case 1: (x,Φx(x)) ∈ W for some x such that Φx(x) ↓
Then pick τ ∈ 2<N such that µ(P ∩ [τ ]) > 0 and Φτ

e (x) ↓= Φx(x).
The class P ∩ [τ ] is an extension forcing ΦG

e (x) = Φx(x)

� Case 2: (x, 0), (x, 1) 6∈ W for some x
Then P ∩ [σ] ∩ {Y : ΦY

e(x) ↑} forces ΦG
e (x) ↑

� Case 3: W is a Σ0
1 graph of a DNC function

Impossible, since no DNC function is computable.
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DNC
Diagonal Non-Computability

� For every set X, there exists an X-DNC function f, that is, ∀e, f(e) ̸= ΦX
e(e).

� For every set X, there exists an X-fixpoint-free function f, that is, ∀e,WX
f(e) ̸= WX

e .

� For every set X, there exists a function f such that ∀n,CX(f(n)) ≥ n.
� For every set X, there exists an infinite subset of an X-random set.
� RWWKL: For every binary tree of positive measure T ⊆ 2<N, there is an infinite

homogeneous set.
� . . .

82 / 133



Lemma

There is a probabilistic algorithm to compute a DNC function.

Algorithm Probability of error

Pick f(0) at random in [0, 22] ≤ 2−2

Pick f(1) at random in [0, 23] ≤ 2−3

Pick f(2) at random in [0, 24] ≤ 2−4

. . .

Global probability of error: at most
∑

n 2
−n−2 = 0.5.
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Cohen forcing
(2<ω,�)

2<ω is the set of all finite binary strings

σ � τ means σ is a prefix of τ

[σ] = {X ∈ 2ω : σ ≺ X}
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Theorem (Folklore)

Every sufficiently Cohen generic G computes no DNC function.

Lemma

For every Turing functional Φe, the following set is dense in
(2<ω,�).

D = {σ ∈ 2<ω : σ ⊩ ∃x ΦG
e (x) ↑ ∨∃x ΦG

e (x) ↓= Φx(x)}
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Given σ ∈ 2<ω, define the Σ0
1 set

W = {(x, v) : ∃τ � σ Φτe(x) ↓= v}

� Case 1: (x,Φx(x)) ∈ W for some x such that Φx(x) ↓
Then τ is an extension forcing ΦG

e (x) = Φx(x)

� Case 2: ∃x ∀y (x, y) 6∈ W
Then σ forces ΦG

e (x) ↑

� Case 3: W is a Σ0
1 graph of a DNC function

Impossible, since no DNC function is computable.
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Fix a notion of forcing (P,≤).

A forcing question is countably Π0
n-merging if for every p ∈ P

and every countable sequence of Σ0
n-formulas (φn(G))n∈N

such that for every n, p ?⊬φn(G), there is an extension q ≤ p
such that for every n, q ⊩ ¬φn(G).

Lemma

Suppose ?` is Σ0
1-preserving and countably Π0

1-merging. For every
Turing functional Φe, the following set is dense in (P,≤).

D = {p ∈ P : p ⊩ ∃x ΦG
e (x) ↑ ∨∃x ΦG

e (x) ↓= Φx(x)}
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What we know so far...

Forcing question ?` Notion of forcing (P,≤)

Σ0
1-preserving cone avoidance

Σ0
1-preserving and Σ0

1-compact preservation of hyperimmunity

Σ0
1-preserving and Π0

1-merging PA avoidance

Σ0
1-preserving and ω-Π0

1-merging DNC avoidance

· · · · · ·
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Conservation theorems
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Induction scheme
φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀yφ(y)

for every formula φ(x)

Collection scheme
(∀x < a)(∃y)φ(x, y) → (∃b)(∀x < a)(∃y < b)φ(x, y)

for every a ∈ N and every formula φ(x, y)
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Over Q + I∆0
0 + exp

Induction Collection Least principle Regularity
...

...
...

...

IΣ0
2 ≡ IΠ0

2 LΠ0
2 ≡ LΣ0

2 Σ0
2-regularity

I∆0
2 BΣ0

2 ≡ BΠ0
1 L∆0

2 ∆0
2-regularity

IΣ0
1 ≡ IΠ0

1 LΠ0
1 ≡ LΣ0

1 Σ0
1-regularity

I∆0
1 BΣ0

1 ≡ BΠ0
0 L∆0

1 ∆0
1-regularity

� exp: totality of the exponential
� A set X is M-regular if every initial segment of X is M-coded
� Least principle: every non-empty set admits a minimum element
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Over Q + I∆0
0 + exp

Induction Collection Least principle Regularity
...

...
...

...

IΣ0
2 ≡ IΠ0

2 LΠ0
2 ≡ LΣ0

2 Σ0
2-regularity

I∆0
2 BΣ0

2 ≡ BΠ0
1 L∆0

2 ∆0
2-regularity

IΣ0
1 ≡ IΠ0

1 LΠ0
1 ≡ LΣ0

1 Σ0
1-regularity

I∆0
1 BΣ0

1 ≡ BΠ0
0 L∆0

1 ∆0
1-regularity

RCA0 ≡ Q +∆0
1-comprehension+ IΣ0

1
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Over Q + I∆0
0 + exp

Induction Collection Least principle Regularity
...

...
...

...

IΣ0
2 ≡ IΠ0

2 LΠ0
2 ≡ LΣ0

2 Σ0
2-regularity

I∆0
2 BΣ0

2 ≡ BΠ0
1 L∆0

2 ∆0
2-regularity

IΣ0
1 ≡ IΠ0

1 LΠ0
1 ≡ LΣ0

1 Σ0
1-regularity

I∆0
1 BΣ0

1 ≡ BΠ0
0 L∆0

1 ∆0
1-regularity

RCA∗
0 ≡ Q +∆0

1-comprehension+ I∆0
0 + exp
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First-order part of T:
set of its first-order sentences

Induction System First-order part
...

...
...

IΣ0
2 ≡ IΠ0

2 RCA0 + IΣ0
2 Q + IΣ2

I∆0
2 RCA0 + BΣ0

2 Q + I∆2

IΣ0
1 ≡ IΠ0

1 RCA0 Q + IΣ1

I∆0
1 + exp RCA∗

0 Q + I∆1 + exp
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Fix a family of formulas Γ.

A theory T1 is Γ-conservative over T0 if every Γ-sentence
provable over T1 is provable over T0.

If T1 is a Π1
1-conservative extension of T0,

then they have the same first-order part.
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A second-order structure N = (N,T) is an ω-extension of
M = (M,S) if N = M, T ⊇ S, +N = +M and <N=<M.

Theorem

If every countable model of M |= T0 admits an ω-extension N |= T1,
then T1 is Π1

1-conservative over T0.

� Suppose T0 ⊬ ∀Xϕ(X). Let M |= T0 ∧ ∃X¬ϕ(X).
� Let N |= T1 be an ω-extension of M.
� Then N |= T1 ∧ ∃X¬ϕ(X). So T1 ⊬ ∀Xϕ(X).
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Let M = (M,S) be a second-order structure, and G ⊆ M.
M[G] is the smallest ω-extension containing the ∆0

1(M∪ {G})
sets.

Theorem

Let P be a Π1
2-problem and T be a theory. If for every countable

model M |= T and every X ∈ M such that M |= (X ∈ domP), there is
a set Y ⊆ M such that M[Y] |= T+ (Y ∈ P(X)), then T+ P is
Π1

1-conservative over T.

M ⊆ M[Y0] ⊆ M[Y0][Y1] ⊆ . . .
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WKL0
Weak König’s lemma

� Every infinite binary tree admits an infinite path

Theorem (Harrington)

WKL0 is Π1
1-conservative over RCA0
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Theorem (Harrington)

Let M = (M,S) |= RCA0 be a countable model and T ⊆ 2<M be an
infinite tree in S. There is a path G ∈ [T] such that M[G] |= RCA0.

(P,≤)
The set of all infinite
binary trees in S
ordered by inclusion

T ?` ∃yψ(y,G ↾y)
there is some ℓ ∈ M such that
for every σ ∈ T of length ℓ,
ψ(y,σ ↾ y) for some y < ℓ.
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T ?` ∃yψ(y,G ↾y)
there is some ℓ ∈ M such that
for every σ ∈ T of length ℓ,
ψ(y,σ ↾ y) for some y < ℓ.

Lemma

Let T be a condition and φ(G) be a Σ0
1(M)-formula.

1. If T ?`φ(G) then T forces φ(G)
2. If T ?⊬φ(G) then there is an extension T1 ⊆ T forcing ¬φ(G)
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Lemma (Friedman)

Let M = (M,S) |= RCA0 and G ⊆ M be such that M∪ {G} |= IΣ0
1.

Then M[G] |= RCA0.

Lemma

Let T be a condition and φ(x,X) be a Σ0
1(M)-formula such that T

forces ¬φ(b,G) for some b ∈ M. Then there is an extension T1 ⊆ T
such that

� Either T1 forces ¬φ(0,G)

� Or T1 forces φ(a,G) and ¬φ(a+ 1,G) for some a ∈ M
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Given T ∈ P, define the Σ0
1(M) set

W = {x ∈ M : T ?`φ(x,G)}

� Case 1: 0 6∈ W.
Then there is an extension forcing ¬φ(0,G)

� Case 2: a ∈ W and a+ 1 6∈ W for some a ∈ M
Then there is an extension forcing φ(a,G) and ¬φ(a+ 1,G)

� Case 3: 0 ∈ W and ∀a ∈ M (a ∈ W → a+ 1 ∈ W)
Impossible, since M |= IΣ0

1 but b 6∈ W.
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Every set can be ∆0
2

from the viewpoint of RCA0.

Theorem (Towsner)

Let M = (M,S) |= RCA0 be a countable model and A ⊆ M be
an arbitrary set. There is a set G ⊆ M such that A is ∆0

2(G) and
M[G] |= RCA0.
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Towsner forcing
P: set of pairs (g, I) in M such that
� g ⊆ M2 → 2 is a finite partial function;
� I ⊆ M is a finite set of “locked” columns.

[g, I]: class of all partial functions h ⊆ M2 → 2 such that
� g ⊆ h;
� for all (x, y) ∈ dom h \ domg, if x ∈ I then h(x, y) = A(x).

(h, J) ≤ (g, I) if J ⊇ I and h ∈ [g, I]
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(g, I) ?` ∃yψ(y,G ↾y)
there is some h ∈ [g, I] and some y such that ψ(y, h ↾y).

Lemma

Let (g, I) be a condition and φ(G) be a Σ0
1(M)-formula.

1. If (g, I) ?`φ(G) then there is an extension forcing φ(G)
2. If (g, I) ?⊬φ(G) then (g, I) forces ¬φ(G)
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Lemma (Friedman)

Let M = (M,S) |= RCA0 and G ⊆ M be such that M∪ {G} |= IΣ0
1.

Then M[G] |= RCA0.

Lemma

Let (g, I) be a condition and φ(x,X) be a Σ0
1(M)-formula such that

(g, I) forces ¬φ(b,G) for some b ∈ M. Then there is an extension
(h, J) ≤ (g, I) such that

� Either (h, J) forces ¬φ(0,G)

� Or (h, J) forces φ(a,G) and ¬φ(a+ 1,G) for some a ∈ M
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Given (g, I) ∈ P, define the Σ0
1(M) set

W = {x ∈ M : (g, I) ?`φ(x,G)}

� Case 1: 0 6∈ W.
Then there is an extension forcing ¬φ(0,G)

� Case 2: a ∈ W and a+ 1 6∈ W for some a ∈ M
Then there is an extension forcing φ(a,G) and ¬φ(a+ 1,G)

� Case 3: 0 ∈ W and ∀a ∈ M (a ∈ W → a+ 1 ∈ W)
Impossible, since M |= IΣ0

1 but b 6∈ W.
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Fix a notion of forcing (P,≤).

A forcing question is (Σ0
n,Π0

n)-merging if for every p ∈ P
and every pair of Σ0

n-formulas φ(G),ψ(G) such that
p ?`φ(G) and p ?⊬ψ(G), there is an extension q ≤ p
such that q ⊩ φ(G) ∧ ¬ψ(G)..

Lemma

Suppose ?` is Σ0
1-preserving and (Σ0

1,Π0
1)-merging. For every

{0, 1}-valued functional Φe, the following set is dense in (P,≤).

D = {p ∈ P : p ⊩ ∃x ΦG
e (x) ↑ ∨∃x ΦG

e (x) ↓= Φx(x)}
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Forcing Π0
1Forcing Σ0

1

Jockusch-Soare
forcing question

Toswner
forcing question
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What we know so far...

Forcing question ?` Notion of forcing (P,≤)

Σ0
1-preserving cone avoidance

Σ0
1-pres. and Σ0

1-compact pres. of hyperimmunity

Σ0
1-pres. and Π0

1-merging PA avoidance

Σ0
1-pres. and ω-Π0

1-merging DNC avoidance

Σ0
1-pres. and (Σ0

1,Π0
1)-merging IΣ0

1 preservation

· · · · · ·
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Higher jump control
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An infinite set C is cohesive for a sequence R0,R1, . . . if for
every i, C ⊆∗ Ri or C ⊆∗ Ri

COH
Cohesiveness principle

Every sequence of sets admits a cohesive set

Cohesiveness is about
jump computation
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Let R0,R1, . . . be an infinite sequence of sets

Given σ ∈ 2<N, let

R⃗σ =
∩

σ(i)=0

Ri
∩

σ(i)=1

Ri

Let C(R⃗) be the Π0
1(∅′) class of all P such that for every σ ≺ P,

R⃗σ is infinite
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Lemma

Let R⃗ be a uniformly computable sequence of sets.
A set computes an infinite R⃗-cohesive set iff its jump computes
a member of C(R⃗).

Lemma

For every Π0
1(∅′) class P ⊆ 2N, there is a uniformly computable

sequence of sets R⃗ such that C(R⃗) = P.
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A function f : N → N is diagonally non-X-computable (X-DNC) if

∀e f(e) 6= ΦX
e(e)

Lemma

There exists an X-computable infinite binary tree T ⊆ 2<N such that
[T] are the {0, 1}-valued X-DNC functions.

� T = {σ ∈ 2<N : ∀e < |σ| σ(e) ̸= ΦX
e(e)[|σ|]}.

Lemma

For every X-computable infinite binary tree T, every {0, 1}-valued
X-DNC function computes a path.

� Given σ ∈ T and x ∈ N, let ΦX
eσ explore the branches below σ · 0 and σ · 1.

� If the branch below σ · i is the first to die, then halt and output i.
� For every σ extensible in T, σ · f(eσ) is extensible in T.
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Lemma

Let R⃗ be a uniformly computable sequence of sets.
Every set whose jump computes a {0, 1}-valued ∅′-DNC
function computes an infinite R⃗-cohesive set.

Lemma

There is a uniformly computable sequence of sets R⃗ such that
for every R⃗-cohesive set, its jump computes a {0, 1}-valued
∅′-DNC function.
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Fix a notion of forcing (P,≤).

A forcing question is Π0
n-merging if for every p ∈ P

and every pair of Σ0
n-formulas φ(G),ψ(G) such that

p ?⊬φ(G) and p ?⊬ψ(G), there is an extension q ≤ p
such that q ⊩ ¬φ(G) ∧ ¬ψ(G).

Lemma

Suppose ?` is Σ0
n-preserving and Π0

n-merging. For every
{0, 1}-valued functional Φe, the following set is dense in (P,≤).

D = {p ∈ P : p ⊩ ∃x ΦG(n−1)

e (x) ↑ ∨∃x ΦG(n−1)

e (x) ↓= Φ∅(n−1)

x (x)}
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Given p ∈ P, define the Σ0
n set

W = {(x, v) : p ?`ΦG(n−1)

e (x) ↓= v}

� Case 1: (x,Φ∅(n−1)

x (x)) ∈ W for some x such that
Φ∅(n−1)

x (x) ↓
Then τ is an extension forcing ΦG(n−1)

e (x) = Φ∅(n−1)

x (x)

� Case 2: (x, 0), (x, 1) 6∈ W for some x
Then σ forces ΦG(n−1)

e (x) ↑

� Case 3: W is a Σ0
n graph of a ∅(n−1)-DNC function

Impossible, since no ∅(n−1)-DNC function is ∅(n−1)-computable.
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Cohen forcing
(2<ω,�)

2<ω is the set of all finite binary strings

σ � τ means σ is a prefix of τ

[σ] = {X ∈ 2ω : σ ≺ X}
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Theorem (Folklore)

Every sufficiently Cohen generic G computes no {0, 1}-valued
DNC function.

Lemma

For every {0, 1}-valued Turing functional Φe, the following set is
dense in (2<ω,�).

D = {σ ∈ 2<ω : σ ⊩ ∃x ΦG
e (x) ↑ ∨∃x ΦG

e (x) ↓= Φx(x)}
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Let σ ∈ 2<N and φ(G) ≡ ∃xψ(G, x) be a Σ0
n formula for n ≥ 1.

σ ?`φ(G) ≡

{
∃x ∃τ � σ ψ(τ , x) for n = 1

∃x ∃τ � σ τ ?⊬¬ψ(G, x) for n > 1

Lemma

The forcing question for Σ0
n-formulas is Σ0

n-preserving
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Pigeonhole principle

RT1
k

Every k-partition of N admits
an infinite subset of a part.
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Theorem (Dzhafarov and Jockusch)

For every set C 6≤T ∅ and every 2-partition A0 t A1 = N,
there is some i < 2 and an infinite set G ⊆ Ai such that C 6≤T G.

Theorem (Monin and Patey)

For every set C 6≤T ∅(n) and every 2-partition A0 t A1 = N,
there is some i < 2 and an infinite set G ⊆ Ai such that
C 6≤T G(n).
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(F0,F1,X)
Initial segment Reservoir

� Fi is finite, X is infinite, maxFi < minX (Mathias condition)

� C 6≤T X (Weakness property)

� Fi ⊆ Ai (Combinatorics)
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Extension

(E0,E1,Y) ≤ (F0,F1,X)

� Fi ⊆ Ei

� Y ⊆ X

� Ei \ Fi ⊆ X

Denotation

〈G0,G1〉 ∈ [F0,F1,X]

� Fi ⊆ Gi

� Gi \ Fi ⊆ X

[E0,E1,Y] ⊆ [F0,F1,X]
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Mathias condition

(F,X)
Initial segment Reservoir

F is finite, X is infinite,
maxF < minX

Mathias extension
(E,Y) ≤ (F,X)

F ⊆ E, Y ⊆ X, E \ F ⊆ X

Cylinder
[F,X] = {G : F ⊆ G ⊆ F ∪ X}
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A function g : N → N dominates f : N → N if ∀∞x g(x) ≥ f(x).

The principal function of an infinite set X = {x0 < x1 < . . . } is
the function pX : n 7→ xn.

A Turing degree d is high if d′ ≥ 0′′.
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Theorem (Martin domination)

A degree is high iff it computes a function dominating every
computable function

Lemma

If G is sufficiently Mathias generic, then pG dominates every
computable function

� Let f : N → N be a total computable function and (F,X) be a Mathias
condition

� Let Y ⊆ X be such that pF∪Y dominates f
� The extension (F,Y) forces pG to dominate f
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Mathias forcing produces sparse sets
which computes fast-growing functions
even when using computable reservoirs

Solution: restrict reservoirs
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The only operations on the reservoirs
are partitioning and trimming.

Definition

A non-empty class P ⊆ 2N is partition regular if
(1) For every X ∈ P and Y ⊇ X, Y ∈ P
(2) For every X ∈ P and every Z0 ∪ Z1 = X, there is some i < 2

such that Zi ∈ P
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Conclusion

The computability-theoretic properties
of forcing notions are consequences of
combinatorial and definitional features

of their forcing questions.
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