Canonical notions of forcing in computability theory

Ludovic PATEY Joint work with Denis Hirschfeldt

Motivations	Framework	Applications	Questions
●000000000	0000000	00000000000	000000
			í

Have we found the right techniques?

- ▶ Would martians come up with the same proof?
- ► Do we loose in generality with our constructions?

Motivations	Framework	Applications	Questions
000000000	000000	0000000000	000000

Example : weak 1-genericity

- ► A set $D \subseteq 2^{<\omega}$ is dense if for every $\sigma \in 2^{<\omega}$ there is a $\tau \succeq \sigma$ in D.
- A real *R* meets *D* if $\sigma \in D$ for some $\sigma \prec R$.
- ► A real *R* is weakly 1-generic if it meets every dense ∑₁⁰ set.

Example : weak 1-genericity

List all the Σ_1^0 sets $W_0, W_1, W_2, \dots \subseteq 2^{<\omega}$

Build a real with the finite extension method $\sigma_0 \prec \sigma_1 \prec \sigma_2 \prec \dots$

Let $f: \omega \to \omega$ be an increasing time function.

Search for an extension σ_{s+1} of σ_s in some unsatisfied W_e such that σ_s has no extension in W_i[f(|σ_{s+1}|)] for any unsatisfied W_i with i < e</p>

Thm (Kurtz)

Every weakly 1-generic real computes a function *f* which makes this construction produce a weakly 1-generic real.

Example : minimal degree

- ► A Turing degree d > 0 is minimal if there is no degree in between 0 and d.
- ► Two strings τ₀, τ₁ are a Ψ-splitting if Ψ^{τ₀} and Ψ^{τ₁} are incompatible.
- T ⊆ 2^{<ω} is a delayed Ψ-splitting tree if T is a tree and whenever σ₀, σ₁ ∈ T are incompatible, any τ₀, τ₁ ∈ T properly extending σ₀ and σ₁ respectively are a Ψ-splitting.

Motivations	Framework	Applications	Questions
0000000000	0000000	0000000000	000000

Example : minimal degree

A set *T* ⊆ 2^{<ω} is a c.e. tree if there is a computable enumeration of finite sets {*T_n*}_{n≥0} such that |*T*₀| = 1 and if σ ∈ *T_{s+1}* \ *T_s*, then σ extends a leaf of *T_s*.

Thm (Lewis)

A set *G* is of minimal degree iff *G* is incomputable, and whenever Ψ^{G} is total and incomputable, then Ψ^{G} lies on a delayed Ψ -splitting c.e. tree.

Motivations	Framework	Applications	Questions
000000000	000000	00000000000	000000

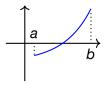
Both constructions are without loss of generality

- ► The constructions are natural
- ► The resulting objects carry their own construction

Consider mathematical problems

Intermediate value theorem

For every continuous function *f* over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.

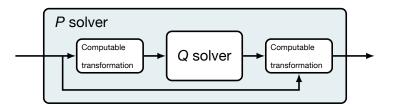


König's lemma Every infinite, finitely branching tree admits

an infinite path.

Motivations	Framework	Applications	Questions

Computable reduction



 $\mathsf{P} \leq_{\mathsf{C}} \mathsf{Q}$

Every P-instance *I* computes a Q-instance *J* such that for every solution *X* to *J*, $X \oplus I$ computes a solution to *I*.

Motivations	Framework	Applications	Questions
00000000000	000000	00000000000	000000

Observations

When proving that $P \leq_c Q$, we usually

- construct a computable instance of P with complex solutions
- construct for every computable instance of Q a simple solution
- ► use a notion of forcing to build solutions to Q-instances

Motivations	Framework	Applications	Questions
0000000000	000000	00000000000	000000

Observations

The notion of forcing for Q does not depend on P

- Q seems to have a canonical notion of forcing
- Separation proofs can be obtained without loss of generality using this notion of forcing

Motivations ooooooooo●	Framework 0000000	Applications	Questions

Examples

For WKL, forcing with Π_1^0 classes :

- ► ACA ≰_c WKL
- ► $\mathsf{RT}_2^2 \not\leq_{\mathsf{c}} \mathsf{WKL}$
- ▶ ...

For ADS, forcing with split pairs :

- ► ACA ≰_c ADS
- ► CAC ≰_c ADS
- ► $\mathsf{RT}_2^2 \not\leq_{\mathsf{c}} \mathsf{ADS}$
- ► DNC ≰_c ADS

(cone avoidance) (Towsner) (dep. hyperimmunity) (non-DNC degree)

For DNC, forcing with bushy trees

(cone avoidance) (ω hyperimmunities)

Motivations	Framework	Applications	Questions
0000000000	●000000	00000000000	000000

Towards a framework

Motivations	Framework o●ooooo	Applications	Questions

Weakness property

- ► A weakness property is a class $W \subseteq 2^{\omega}$ which is closed downward under Turing reducibility.
- ► A problem P computably satisfies a weakness property *W* if every computable instance of P has a solution in *W*.

Example : Given a set *A*, let $W_A = \{X : X \geq_T A\}$. Then WKL computably satisfies W_A for every $A \leq_T \emptyset$.

Motivations	Framework	Applications	Questions
0000000000	000000	00000000000	000000

Weakness property

If Q computably satisfies ${\mathcal W}$ but P does not, then

Ac Q

Motivations	Framework	Applications	Questions

P-forcing

Fix a problem P.

- A P-forcing is a forcing family P = (P_I : I ∈ dom P) such that for every P-instance I, every sufficiently generic filter yields a solution to I.
- A P-forcing ℙ computably satisfies a weakness property W if every computable I ∈ dom(P), every sufficiently generic filter yields an element in W.

Example : Given a set *A*, let $\mathcal{W}_A = \{X : X \not\geq_T A\}$. Forcing with Π_1^0 classes computably satisfies \mathcal{W}_A for every $A \not\leq_T \emptyset$.

Motivations	Framework	Applications	Questions
0000000000	0000000	00000000000	000000

Fix a class \mathfrak{W} of weakness properties.

Defi

A P-forcing \mathbb{P} is canonical for \mathfrak{W} if for every $\mathcal{W} \in \mathfrak{W}$ such that P computably satisfies \mathcal{W} , then so does \mathbb{P} .

What class \mathfrak{W} to consider?

Motivations	Framework	Applications	Questions
0000000000	0000000	00000000000	000000

Weakness properties

Effectiveness properties:

Lowness ($\mathcal{W} = \{X : X' \leq_T \emptyset'\}$)

Arithmetical hierarchy ($W = \{X : X \text{ is arithmetical }\}$) Genericity properties:

Cone avoidance $(\mathcal{W}_A = \{X : X \not\geq_T A\} \text{ for } A \not\leq_T \emptyset)$

Preservation of hyperimmunity ($W_f = \{X : f \text{ is } X\text{-hyperimmune}\}$)

Preservation of non- Σ_1^0 definitions ($\mathcal{W}_A = \{X : A \notin \Sigma_1^{0,X}\}$ for $A \notin \Sigma_1^0$)

Motivations	Framework	Applications	Questions
0000000000	000000	00000000000	000000

Closed set avoidance

A closed set avoidance property is a property of the form

 $\mathcal{W}_{\mathcal{C}} = \{ X : \mathcal{C} \text{ has no } X \text{-computable member} \}$

for some closed set $\mathcal{C} \subseteq \omega^{\omega}$ in the Baire space.

- Cone avoidance: $C_A = \{A\}$
- ▶ Preservation of hyperimmunity: $C_f = \{g \in \omega^{\omega} : g \ge f\}$
- ► Non-DNC degree $C = \{g \in \omega^{\omega} : \exists n(g(n) = \Phi_n(n))\}$

Motivations	Framework	Applications	Questions
0000000000	0000000	●0000000000	000000

What problems admit a canonical forcing?

Motivations	Framework	Applications	Questions
0000000000	000000	0000000000	000000

Cohen genericity

Lem (Folklore)

If $C \subseteq \omega^{\omega}$ is a closed set with no computable member, then C has no *G*-computable member for every sufficiently Cohen generic.

Proof: Given a Cohen condition $\sigma \in 2^{<\omega}$ forcing totality of a functional Φ_e , there is a $\tau \succeq \sigma$ such that $[\Phi_e^{\tau}] \cap \mathcal{C} = \emptyset$.

The Atomic Model Theorem (AMT) admits a canonical notion of forcing for closed set avoidance properties.

Motivations	Framework	Applications	Questions
0000000000	0000000	0000000000	000000

Highness

Lem (Folklore)

If $C \subseteq \omega^{\omega}$ is a closed set with no computable member and $A \in 2^{\omega}$, then C has no G-computable member for some G such that $G' \geq_T A$.

Proof: Use forcing conditions (h, n), where $h \subseteq \omega^2 \to 2$ is a finite Δ_2^0 approximation, and *n* fixes the first *n* columns to *A*.

Cohesiveness (COH) and highness admit a canonical notion of forcing for closed set avoidance properties.

Motivations	Framework	Applications	Questions
0000000000	0000000	00000000000	000000

WKL: Every infinite binary tree has an infinite path

Let $\ensuremath{\mathcal{C}}$ be the closed set of all completions of PA.

Then WKL does not computably preserve $W_{\mathcal{C}}$.

Thm

The WKL-forcing with non-empty Π^0_1 classes is canonical for closed set avoidance properties.

Motivations	Framework	Applications	Questions
0000000000	0000000	0000000000	000000
0000000000	0000000	0000000000	00000

Thm

The WKL-forcing with non-empty Π_1^0 classes is canonical for closed set avoidance properties.

- Fix a closed set $C \subseteq \omega^{\omega}$ and a functional Φ_e .
- ▶ Try to prove that the set of Π_1^0 classes forcing $\Phi_e^G \notin C$ is dense.
- ▶ If it fails, show that WKL does not computably preserve W_C .

Fix a closed set $\mathcal{C} \subseteq \omega^{\omega}$, a non-empty Π_1^0 class \mathcal{D} and Φ_e .

Success if

- ▶ there is a $\sigma \in 2^{<\omega}$ such that $[\sigma] \cap D \neq \emptyset$ and $[\Phi_e^{\sigma}] \cap C = \emptyset$.
- or $\{X \in \mathcal{D} : \Phi_{e}^{X}(n) \uparrow\} \neq \emptyset$ for some *n*.

Otherwise $\{\Phi_e^X : X \in \mathcal{D}\}$ is an effectively compact subset of \mathcal{C} . Every PA degree computes a member of \mathcal{C} .

Motivations	Framework	Applications	Questions

Thm

WKL computably preserves $\mathcal{W}_{\mathcal{C}}$ iff \mathcal{C} has no non-empty effectively compact subset.

- Cone avoidance : $C = \{A\}$ if $A \not\leq_T \emptyset$
- ▶ Preservation of hyperimmunity: $C_f = \{g \in \omega^{\omega} : g \ge f\}$
- ► DNC : The II₁⁰ class of {0, 1}-valued DNC is a non-empty effectively compact subset

Motivations	Framework	Applications	Questions
0000000000	000000	00000000000	000000

Ascending Descending Sequence

SADS: Every linear order of type $\omega + \omega^*$ has an infinite ascending or descending sequence.

Let $L = (\omega, <_L)$ be an instance of SADS with *omega*-part *U* and ω^* -part *V*.

Forcing conditions : (σ_0, σ_1) such that

- ▶ $\sigma_0, \sigma_1 \in \omega^{<\omega}$ are $<_{\mathbb{N}}$ -ascending
- ▶ $\sigma_0 \subseteq U$ is <_L-ascending
- ► $\sigma_1 \subseteq V$ is <_L-descending

Motivations	Framework	Applications	Questions
0000000000	0000000	000000000000	000000

Ascending Descending Sequence

Thm

The SADS-forcing is canonical for closed set avoidance properties.

A split pair is a pair (τ_0, τ_1) such that

- ▶ $\tau_0, \tau_1 \in \omega^{<\omega}$ are $<_{\mathbb{N}}$ -ascending
- ▶ τ_0 is $<_L$ -ascending, τ_1 is $<_L$ -descending
- $\blacktriangleright \max_{L} \tau_0 <_L \min_{L} \tau_1$

Closed set jump avoidance

A closed set jump avoidance property is a property of the form

 $\mathcal{J}_{\mathcal{C}} = \{ X : \mathcal{C} \text{ has no } X' \text{-computable member} \}$

for some closed set $\mathcal{C} \subseteq \omega^{\omega}$ in the Baire space.

Let C be the closed set of all completions of PA relative to 0'. Then COH does not computably preserve \mathcal{J}_{C} .

Motivations	Framework	Applications	Questions
0000000000	0000000	00000000000	000000

Cohesiveness

Let R_0, R_1, R_2, \ldots be an instance of COH

Let
$$R_{\sigma} = \bigcap_{\sigma(i)=1} R_i \bigcap_{\sigma(i)=0} \overline{R}_i$$

Forcing conditions: (*F*, σ , D) such that

▶ *F* is a finite set,
$$\sigma \in 2^{<\omega}$$

- \mathcal{D} is a non-empty $\Pi_1^{0,\emptyset'}$ subclass of $[\sigma]$
- $(\textit{\textit{E}}, \tau, \textit{\textit{E}}) \leq (\textit{\textit{F}}, \sigma, \textit{\textit{D}})$ if
 - ► (E, R_{τ}) Mathias extends (F, R_{σ}) .
 - $\blacktriangleright \ \sigma \prec \tau \text{ and } \mathcal{E} \subseteq \mathcal{D}.$

Motivations	Framework	Applications	Questions
0000000000	000000	0000000000	000000

Cohesiveness

Thm

The COH-forcing is canonical for closed set jump avoidance properties.

Thm

COH computably preserves $\mathcal{J}_{\mathcal{C}}$ iff \mathcal{C} has no non-empty \emptyset' -effectively compact subset.

If A is not ∆₂⁰, every computable instance of COH admits a solution G such that A is not ∆₂⁰(G).

Open questions

Motivations 0000000000	Framework	Applications	Questions oeoooo

DNC functions

A function *f* is DNC if for every *e*, $f(e) \neq \Phi_e(e)$.

A tree $T \subseteq \omega^{<\omega}$ is *k*-bushy above $\sigma \in \omega^{<\omega}$ if every element of *T* is comparable with *T*, and for every $\tau \in T$ which extends σ and is not a leaf, τ has at least *k* immediate extensions in *T*.

A set $B \subseteq \omega^{<\omega}$ is *k*-small above σ if there is no finite tree *k*-bushy above σ whose leaves belong to *B*.

Motivations	Framework	Applications	Questions

DNC functions

Bushy tree forcing : (σ, B) where

- $\blacktriangleright \ \sigma \in \omega^{<\omega}$
- *B* is *k*-small above σ for some *k*.

Question

Is bushy tree DNC-forcing canonical for closed set avoidance properties?

Motivations	Framework	Applications	Questions

Intuition

Lem

Let X be a set. TFAE

- ► X computes a DNC function
- ► X computes a function g such that if $|W_e| \le n$, then $g(e, n) \notin W_e$.

Lem

Suppose *B* is a *k*-small c.e. set above σ . Then the set

{n : B is not *k*-small above σn }

is c.e. of size at most k - 1.

Motivations	Framework	Applications	Questions

Conclusion

Natural combinatorial problems seem to have canonical notions of forcing.

The proofs of canonicity yield forcing-free criteria of preservations.

The right notion of forcing for DNC functions is not fully understood.

Motivations	Framework	Applications	Questions

References

Mushfeq Khan and Joseph S Miller.

Forcing with bushy trees.

Bulletin of Symbolic Logic, 23(2):160–180, 2017.

Publisher: Cambridge University Press.

Ludovic Patey.

Controlling iterated jumps of solutions to combinatorial problems.

```
Computability, 6(1):47-78, 2017.
```