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Consider mathematical problems

Intermediate value theorem
For every continuous function f over an
interval [a,b] such that f(a) · f(b) < 0, there
is a real x ∈ [a,b] such that f(x) = 0.

König’s lemma
Every infinite, finitely branching tree admits
an infinite path.

a
b
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Reverse mathematics

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.

RCA0 ⊢ A ↔ T
in a very weak theory RCA0

capturing computable mathematics
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RCA0

Robinson’s arithmetics

m+ 1 ̸= 0 m+ 0 = m
m+ 1 = n+ 1 → m = n m+ (n+ 1) = (m+ n) + 1
¬(m < 0) m× 0 = 0
m < n+ 1 ↔ (m < n ∨m = n) m× (n+ 1) = (m× n) +m

Σ0
1 induction scheme

φ(0) ∧ ∀n(φ(n) ⇒ φ(n+ 1))
⇒ ∀nφ(n)

where φ(n) is a Σ0
1 formula

∆0
1 comprehension scheme

∀n(φ(n) ⇔ ψ(n))
⇒ ∃X∀n(n ∈ X ⇔ φ(n))

where φ(n) is a Σ0
1 formula where X

appears freely, and ψ is a Π0
1 formula.
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Reverse mathematics

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

Except for Ramsey’s theory...

RCA0

WKL

ACA

ATR

Π1
1CA

RT2
2
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Lower and upper bounds

Does every computable
instance of P admit

a computable
solution?

RCA0 ⊢ P

yes

an arithmetical
solution?

ACA0 ⊢ P

yes

ACA0 ̸⊢ P

no

no

Is there a computable
instance such that every

solution

compute the halting set?

RCA0 +P ⊢ ACA

ye
s

RCA0 +P ⊬ ACA

no
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What sets can problems encode?

Defi

A problem P admits cone avoidance if for every
non-computable set C, every computable instance of P has a
solution which does not compute C.

If P admits cone avoidance, then RCA0+P ⊬ ACA0.
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What functions can problems dominate?

A function f is hyperimmune if it is not dominated by any
computable function.

Defi

A problem P admits preservation of 1 hyperimmunity if for
every hyperimmune function f and every instance of P, there is
a solution Y such that f is Y-hyperimmune.

8 / 40



The setting Ramsey’s theorem Milliken’s tree theorem Applications

Thm (Downey, Greenberg, Harrison-Trainor, P, Turetsky)

Cone avoidance and preservation of 1 hyperimmunity are
equivalent.

Not equivalent in the unrelativized version!

� Fix a non-zero set Y of hyperimmune-free degree.
Let P1 : ∅ 7→ {Y}.

� Fix a hyperimmune f below a ∆1
1-random.

Let P2 : ∅ 7→ {g : g ≥ f}.
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The strength of
Ramsey’s theorem
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Ramsey’s theorem

[X]n is the set of unordered n-tuples of elements of X

A k-coloring of [X]n is a map f : [X]n → k

A set H ⊆ X is homogeneous for f if |f([H]n)| = 1.

Thm (Ramsey’s theorem)

RTn
k : For every k-coloring of [N]n, there exists an infinite

homogeneous set.
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Pigeonhole principle

RT1
k

Every k-partition of N admits
an infinite part.
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Ramsey’s theorem for pairs

RT2
k

Every k-coloring of the infinite clique admits
an infinite monochromatic subclique.
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Lower and upper bounds

Does every computable
instance of P admit

a computable
solution?

RCA0 ⊢ P

yes

an arithmetical
solution?

ACA0 ⊢ P

yes

ACA0 ̸⊢ P

no

no

Is there a computable
instance such that every

solution

compute the halting set?

RCA0 +P ⊢ ACA

ye
s

RCA0 +P ⊬ ACA

no
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Thm

Every computable instance of RT1
2 has a computable solution.

Thm (Jockusch)

For n ≥ 2, every computable instance of RTn
2 has an

arithmetical solution.

Thm (Specker)

For n ≥ 2, there is a computable instance of RTn
2 with no

computable solution.
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Thm (Jockusch)

For n ≥ 3, there is a computable instance of RTn
2 whose

solutions compute the halting set.

Thm (Seetapun)

RT2
2 admits cone avoidance.
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The encodability power
of RTn

k comes from the

sparsity
of its homogeneous sets.
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Ramsey’s theorem

RTn
k

,r

Over n-tuples

Using k colors

Allows r colors
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Thm (Wang)

RTn
k,ℓ admits cone avoidance for sufficiently large ℓ.

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

There is a computable instance of RTn
k,ℓ whose solutions

compute the halting set whenever ℓ < 2n−2.
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Catalan numbers
Cn is the number of trails of length 2n.

C0 = 1 and Cn+1 =

n∑
i=0

CiCn−i

Thm (Cholak, P.)

RTn
k,ℓ admits cone avoidance if and only if ℓ ≥ Cn−1.
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RTn
k,ℓ-encodable sets

RT1
k,ℓ ℓ

≥ 1

RT2
k,ℓ ℓ

1 ≥ 2

RT3
k,ℓ ℓ

1− 3 4 ≥ 5

RT4
k,ℓ ℓ

1− 7 8− 13 ≥ 14

∆1
1 arith. comp.
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The strength of
Milliken’s tree theorem
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Strings

ω<ω is the set of all finite sequences of integers

σ ⪯ τ means σ is a prefix of τ

σ ∧ τ is the longest common prefix of σ and τ

στ is the concatenation of σ and τ
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Trees

A tree is a prefix-closed ∧-closed subset of ω<ω

The level of σ ∈ T is |{τ ∈ T : τ ≺ σ}|

The height of T is the least ordinal α larger than the level of
every σ ∈ T

For n ∈ N, T(n) denotes the set of all σ ∈ T at level n

A node σ ∈ T is k-branching in T if it has exactly k many
children in T.
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Strong subtrees

A tree S of height α is a strong subtree of a tree T if it satisfies
the following two properties:

� there exists a function f : α→ ω, called a level function,
such that for all n < α, if σ ∈ S(n) then σ ∈ T(f(n));

� for all k, a node in S which is not at level α− 1 in S is
k-branching in S if and only if it is k-branching in T.

Sα(T) is the collection of all strong subtrees of T of height α.
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Strong subtrees

...

f(0)

f(0) + 1

f(1)

f(1) + 1

f(2)

A strong subtree S of a tree T, with level function f.
The circles represent nodes in T; the solid circles in S.
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Milliken’s tree theorem

Sα(T) is the collection of all strong subtrees of T of height α.

A k-coloring of Sn(T) is a map f : Sn(T) → k

A tree T is homogeneous for f if |f(Sn(T))| = 1.

Thm (Milliken’s tree theorem)

MTn
k : For every finitely branching tree T with no leaves, every

k-coloring of Sn(T), admits a homogeneous strong subtree
S ∈ Sω(T).
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Lower and upper bounds

Does every computable
instance of P admit

a computable
solution?

RCA0 ⊢ P

yes

an arithmetical
solution?

ACA0 ⊢ P

yes

ACA0 ̸⊢ P

no

no

Is there a computable
instance such that every

solution

compute the halting set?

RCA0 +P ⊢ ACA

ye
s

RCA0 +P ⊬ ACA

no
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Since Milliken’s tree theorem generalizes Ramsey’s theorem:

Thm (Specker)

For n ≥ 2, there is a computable instance of MTn
2 with no

computable solution.

Thm (Jockusch)

For n ≥ 3, there is a computable instance of MTn
2 whose

solutions compute the halting set.
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Thm (Angles d’Auriac, Cholak, Dzhafarov, P. and Monin)

Every computable instance of MT1
2 has a computable solution.

Thm (Angles d’Auriac, Cholak, Dzhafarov, P. and Monin)

For n ≥ 2, every computable instance of MTn
2 has an

arithmetical solution.

Thm (Angles d’Auriac, Cholak, Dzhafarov, P. and Monin)

MT2
2 admits cone avoidance.
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Product of trees

Sα(T0, . . . ,Td−1) is the collection of all d-tuples of strong
subtrees of T0, . . . ,Td−1 of height α, respectively, as witnessed
by the same level function.

Thm (Product version of Milliken’s tree theorem)

PMTn
k : For every d-tuple of finitely branching trees T0, . . . ,Td−1

with no leaves, every k-coloring of Sn(T0, . . . ,Td−1), admits a
homogeneous tuple of strong subtrees
⟨S0, . . . ,Sd−1⟩ ∈ Sω(T0, . . . ,Td−1).

Halpern-Lauchli’s theorem (HLk) is PMT1
k .
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Summary

ACA0

WKL0

RCA0HL2 MT1
2 RT1

2

RT2
2

MT2
2

MT3
2 RT3

2
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Applications of
Milliken’s tree theorem
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Devlin’s theorem

A Joyce tree T of size n is a finite 2-branching tree with n
leaves, whose nodes are labelled by {1, . . . , 2n− 1}, such that
a node has lower label than its children

DTn
k,ℓ: For every coloring f : [Q]n → k, there is a subcopy

(U,<Q) of (Q,<Q) such that |f[U]n| ≤ ℓ

Thm (Devlin’s theorem)

∀kDTn
k,ℓ holds if and only if ℓ is at least the number of Joyce

trees of size n.
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Let ℓn be the tight bounds of ∀kDTn
k,ℓn

ℓ1 = 1 ; ℓ2 = 2 ; ℓ3 = 16 ; ℓ4 = 272 ; ...

Thm (Angles d’Auriac, Cholak, Dzhafarov, P. and Monin)

Every computable instance of ∀kDT1
k,1 admits a computable

solution.

Thm (Angles d’Auriac, Cholak, Dzhafarov, P. and Monin)

There is a computable instance of ∀kDT2
k,3 such that every

solution computes the halting set.

Thm (Angles d’Auriac, Cholak, Dzhafarov, P. and Monin)

∀kDT2
k,4 admits cone avoidance.
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Rado graph theorem

The Rado graph G is the Fraissé limit of the age of finite graphs

Given a finite graph F,
(G
F
)
is the set of copies of F in G

RGF
k,ℓ: For every coloring f :

(G
F
)
→ k, there is Rado subgraph Ĝ

of G such that |f
(Ĝ
F
)
| ≤ ℓ

Thm (Rado graph theorem)

For every finite graph F, there is some number of colors ℓ such
that ∀kRGF

k,ℓ holds.
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Let ℓF be the tight bound of ∀kRGF
k,ℓF

ℓn = ℓKn where Kn is the complete graph of size n

Thm (Angles d’Auriac, Cholak, Dzhafarov, P. and Monin)

For every finite graph F of size 2, ∀kRGF
k,ℓF admits cone

avoidance.

Thm (Angles d’Auriac, Cholak, Dzhafarov, P. and Monin)

For every finite graph F of size 3, there is a computable
instance of ∀kDTF

k,ℓF such that every solution computes the
halting set.
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Summary

ACA0

WKL0

RCA0HL2 RT1
2

RT2
2

MT2
2

MT3
2 RT3

2DT2
k,3

DT2
k,4

RGK3
k,16

RGK2
k,4

RGK1
k,1 DT1

k,1
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Conclusion

Milliken’s tree theorem satisfies the same threshold
phenomenon as Ramsey’s theorem at height 3.

Devlin’s theorem for pairs is equivalent to ACA0, while the
Rado graph theorem for size 2 is strictly weaker.

Milliken’s tree theorem for pairs implies neither Devlin’s
theorem for pairs, nor the Rado graph theorem for size 2.
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