Ramsey's theorem under a computable perspective

Ludovic PATEY

Motivations

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

$\mathsf{RCA}_0 \vdash A \leftrightarrow T$

in a very weak theory RCA₀ capturing computable mathematics

RCA₀

Robinson arithmetics

$$m + 1 \neq 0$$

$$m + 1 = n + 1 \rightarrow m = n$$

$$\neg (m < 0)$$

$$m < n + 1 \leftrightarrow (m < n \lor m = n)$$

$$m + 0 = m$$

 $m + (n + 1) = (m + n) + 1$
 $m \times 0 = 0$
 $m \times (n + 1) = (m \times n) + m$

Σ_1^0 induction scheme

 $\begin{array}{l} \varphi(\mathbf{0}) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \\ \Rightarrow \forall n\varphi(n) \end{array}$

where $\varphi(n)$ is Σ_1^0

Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \Rightarrow \exists X \forall n(n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is Σ_1^0 with free *X*, and ψ is Π_1^0 .

Σ_n^0 induction scheme

$$\varphi(\mathbf{0}) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \Rightarrow \forall n\varphi(n)$$

where $\varphi(n)$ is Σ_n^0

bounded Δ_n^0 comprehension scheme

 $\forall t \forall n(\varphi(n) \Leftrightarrow \psi(n)) \Rightarrow \exists X \forall n(n \in X \Leftrightarrow (x < t \land \varphi(n)))$

where $\varphi(n)$ is Σ_n^0 with free X, and ψ is Π_n^0 .

REVERSE MATHEMATICS

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems. П¦СА ATR ACA WKL **RCA**₀

HILBERT'S PROGRAM

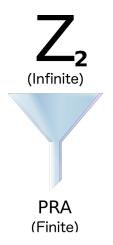
Justification of infinitary methods to prove finitistic mathematics

Finitistic reductionnism:

$$T \vdash \varphi \Rightarrow PRA \vdash \varphi$$

where φ is a Π_1^0 formula

"At least 85% of mathematics are reducible to finitistic methods" (Stephen Simpson



HILBERT'S PROGRAM

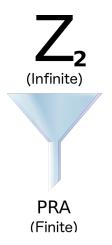
Justification of infinitary methods to prove finitistic mathematics

Finitistic reductionnism:

$$T \vdash \varphi \Rightarrow PRA \vdash \varphi$$

where φ is a Π_1^0 formula

"At least 85% of mathematics are reducible to finitistic methods" (Stephen Simpson)



REVERSE MATHEMATICS

Mathematics are computationally very structured

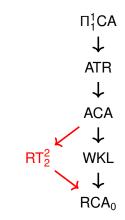
Almost every theorem is empirically equivalent to one among five big subsystems. П¹CA ATR ACA WKL RCA₀

REVERSE MATHEMATICS

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...



What is Ramsey's theorem?

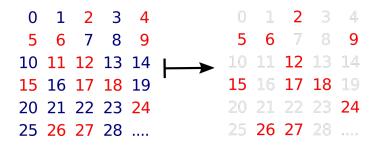
RAMSEY'S THEOREM

- $[X]^n$ is the set of unordered *n*-tuples of elements of X
- A *k*-coloring of $[X]^n$ is a map $f : [X]^n \to k$
- A set $H \subseteq X$ is homogeneous for f if $|f([H]^n)| = 1$.

 $\begin{array}{ll} \mathsf{RT}^n_k & \text{Every } k \text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

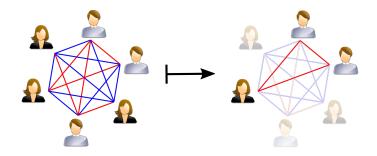
PIGEONHOLE PRINCIPLE

RT^1_k Every *k*-partition of \mathbb{N} admits an infinite part.



RAMSEY'S THEOREM FOR PAIRS

RT_k^2 Every *k*-coloring of the infinite clique admits an infinite monochromatic subclique.



Reverse mathematics from a computational viewpoint.

STANDARD MODELS OF RCA_0

An ω -structure is a structure $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$ where

- (i) ω is the set of standard natural numbers
- (ii) < is the natural order
- (iii) + and \cdot are the standard operations over natural numbers (iv) $\mathcal{S}\subseteq\mathcal{P}(\omega)$

STANDARD MODELS OF RCA_0

An ω -structure is a structure $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$ where

- (i) ω is the set of standard natural numbers
- (ii) < is the natural order
- (iii) + and \cdot are the standard operations over natural numbers (iv) $\mathcal{S}\subseteq\mathcal{P}(\omega)$

An ω -structure is fully specified by its second-order part S.

Turing ideal \mathcal{M} ► $(\forall X \in \mathcal{M})(\forall Y \leq_{T} X)[Y \in \mathcal{M}]$ ► $(\forall X, Y \in \mathcal{M})[X \oplus Y \in \mathcal{M}]$

Examples

- $\{X : X \text{ is computable }\}$
- $\{X : X \leq_T A \land X \leq_T B\}$ for some sets A and B

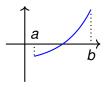
Let $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$ be an ω -structure

$\mathcal{M} \models \mathsf{RCA}_0$ \equiv \mathcal{S} is a Turing ideal

Many theorems can be seen as problems.

Intermediate value theorem

For every continuous function f over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.



König's lemma

Every infinite, finitely branching tree admits an infinite path.

Let \mathcal{M} be a Turing ideal and P, Q be problems.

Satisfaction

 $\mathcal{M} \models \mathsf{P}$

 $\label{eq:product} \begin{array}{l} \mbox{if every P-instance in } \mathcal{M} \\ \mbox{has a solution in } \mathcal{M}. \end{array} \end{array}$

Computable entailment

 $\mathsf{P}\models_{c}\mathsf{Q}$

if every Turing ideal satisfying P satisfies Q.

 $RT_2^2 \not\models_c ACA$ (Seetapun and Slaman, 1995)

- Build $\mathcal{M} \models \mathsf{RT}_2^2$ with $\emptyset' \notin \mathcal{M}$
- ▶ If $\mathcal{M} \models \mathsf{ACA}$ then $\emptyset' \in \mathcal{M}$

$$\emptyset' = \{ e : (\exists s) \Phi_e(e) \text{ halts after } s \text{ steps } \}$$

Build
$$\mathcal{M} \models \mathsf{RT}_2^2$$
 with $\emptyset' \notin \mathcal{M}$.

Suppose $A \not\leq_T Z$. Then every *Z*-computable $f : [\omega]^2 \to 2$ has an infinite *f*-homogeneous set *H* such that $A \not\leq_T Z \oplus H$.

Start with $\mathcal{M}_0 = \{ Z : Z \text{ is computable } \}$. In particular $\emptyset' \notin \mathcal{M}_0$.

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ where $\emptyset' \not\leq_T U$,

Build
$$\mathcal{M} \models \mathsf{RT}_2^2$$
 with $\emptyset' \notin \mathcal{M}$.

Suppose $A \not\leq_T Z$. Then every *Z*-computable $f : [\omega]^2 \to 2$ has an infinite *f*-homogeneous set *H* such that $A \not\leq_T Z \oplus H$.

Start with $\mathcal{M}_0 = \{ Z : Z \text{ is computable } \}$. In particular $\emptyset' \notin \mathcal{M}_0$.

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ where $\emptyset' \not\leq_T U$,

1. pick some $f : [\omega]^2 \rightarrow 2$ in \mathcal{M}_n

Build
$$\mathcal{M} \models \mathsf{RT}_2^2$$
 with $\emptyset' \notin \mathcal{M}$.

Suppose $A \not\leq_T Z$. Then every *Z*-computable $f : [\omega]^2 \to 2$ has an infinite *f*-homogeneous set *H* such that $A \not\leq_T Z \oplus H$.

Start with $\mathcal{M}_0 = \{ Z : Z \text{ is computable } \}$. In particular $\emptyset' \notin \mathcal{M}_0$.

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ where $\emptyset' \not\leq_T U$,

- 1. pick some $f : [\omega]^2 \to 2$ in \mathcal{M}_n
- 2. let *H* be *f*-homogeneous set such that $\emptyset' \not\leq_T U \oplus H$

Build
$$\mathcal{M} \models \mathsf{RT}_2^2$$
 with $\emptyset' \notin \mathcal{M}$.

Suppose $A \not\leq_T Z$. Then every *Z*-computable $f : [\omega]^2 \to 2$ has an infinite *f*-homogeneous set *H* such that $A \not\leq_T Z \oplus H$.

Start with $\mathcal{M}_0 = \{ Z : Z \text{ is computable } \}$. In particular $\emptyset' \notin \mathcal{M}_0$.

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ where $\emptyset' \not\leq_T U$,

- 1. pick some $f : [\omega]^2 \to 2$ in \mathcal{M}_n
- 2. let *H* be *f*-homogeneous set such that $\emptyset' \leq_T U \oplus H$
- 3. let $\mathcal{M}_{n+1} = \{Z : Z \leq_T U \oplus H\}$

Non-implications over RCA₀ often involve purely computability-theoretic arguments.

For $m, n \ge 3$, $\mathbf{RCA}_0 \vdash \mathbf{RT}_2^m \leftrightarrow \mathbf{RT}_2^n$ (Jockusch)

Theorem (Jockusch)

For every $n \ge 3$, there is a computable coloring $f : [\omega]^n \to 2$ such that every infinite *f*-homogeneous set computes $\emptyset^{(n-2)}$.

Let f(x, y, z) = 1 if the approximation of $\emptyset' \upharpoonright x$ at stage y and at stage z coincide.

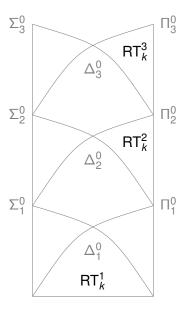
Fix some $n \ge 2$.

Thm (Jockusch)

Every computable instance of RT_k^n has a Π_n^0 solution.

Thm (Jockusch)

There is a computable instance of RT_k^n with no Σ_n^0 solution.



$\mathsf{For}\,{}^{k,\ell \,\geq\, 2,}_{k} \\ \mathsf{RCA}_0 \vdash \mathsf{RT}_k^n \leftrightarrow \mathsf{RT}_\ell^n$

Given a coloring $f : [\omega]^n \to {\text{red}, \text{green}, \text{blue}}$

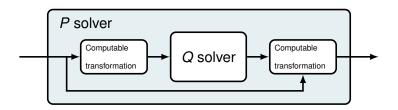
- ▶ Define $g : [\omega]^n \to {\text{red}, \text{grue}}$ by merging green and blue
- Apply RTⁿ₂ on g to obtain H such that g[H]ⁿ = {red} or g[H]ⁿ = {grue}
- ▶ In the latter case, apply RT_2^n on $f[H]^n \to \{\text{green}, \text{blue}\}$ to obtain G such that $f[G]^n = \{\text{green}\}$ or $f[G]^n = \{\text{blue}\}$

We use more than once the premise for

$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^n \to \mathsf{RT}_2^{n+1}$ $\mathsf{RCA}_0 \vdash \mathsf{RT}_k^n \to \mathsf{RT}_{k+1}^n$

Can we do it in one step?

COMPUTABLE REDUCTION



 $\mathsf{P} \leq_{\mathsf{C}} \mathsf{Q}$

Every P-instance *I* computes a Q-instance *J* such that for every solution *X* to *J*, $X \oplus I$ computes a solution to *I*.

$\operatorname{RT}_{2}^{n+1} \not\leq_{c} \operatorname{RT}_{2}^{n}$

- ▶ Pick a computable coloring $f : [\omega]^{n+1} \to 2$ with no \sum_{n+1}^{0} solution
- Every computable coloring $g : [\omega]^n \to 2$ has a Π_n^0 solution.

A function $f: \omega \to \omega$ is hyperimmune if it is not dominated by any computable function.

Thm (P.)

There is a computable coloring $f : [\omega]^2 \to k + 1$ and hyperimmune functions h_0, \ldots, h_k such that for every infinite *f*-homogeneous set *H*, at most one *h* is *H*-hyperimmune.

Thm (P.)

Let h_0, \ldots, h_k be hyperimmune. For every computable coloring $f : [\omega]^2 \to k$, there is an infinite *f*-homogeneous set *H* such that at least two *h*'s are *H*-hyperimmune.

 $\operatorname{RT}_{k+1}^2 \not\leq_c \operatorname{RT}_k^2$ (P.)

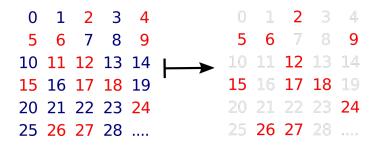
- ► Pick a computable coloring *f* : [ω]² → *k* + 1 and hyperimmune functions *h*₀,..., *h_k* such that for every solution *H*, at most one *h* is *H*-hyperimmune.
- ► Every computable coloring g : [ω]² → k has a solution H such that at least two h's are H-hyperimmune.

The naive color-merging proof is optimal with respect to the number of applications in

$$\mathsf{RCA}_0 \vdash \mathsf{RT}_k^2 \to \mathsf{RT}_\ell^2$$

PIGEONHOLE PRINCIPLE

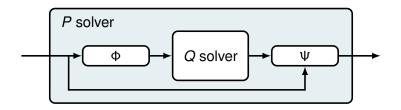
RT^1_k Every *k*-partition of \mathbb{N} admits an infinite part.



For $k, \ell \geq 2$, $\operatorname{RT}_{k}^{1} \leq_{c} \operatorname{RT}_{\ell}^{1}$

No need to use RT^1_{ℓ} as RT^1_k is computably true

WEIHRAUCH REDUCTION



 $\mathsf{P} \leq_W \mathsf{Q}$

There are Φ and Ψ such that for every P-instance *I*, Φ^{I} is a Q-instance such that for every solution *X* to Φ^{I} , $\Psi^{X \oplus I}$ is a solution to *I*.

 $\operatorname{RT}_{k+1}^1 \not\leq_W \operatorname{RT}_k^1$

(Brattka and Rakotoniaina)

Given Φ and Ψ . Build an instance I of RT₃¹. Let

I = 000000...

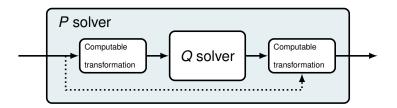
until $\Psi^{F}(n) \downarrow$ with *F* of color some c < 2 in Φ^{I} . Then let

I = 00000011111111...

until $\Psi^{G}(m) \downarrow$ with *G* of color 1 - c in Φ^{I} . Then let

I = 0000001111111222222...

STRONG COMPUTABLE REDUCTION



 $\mathsf{P} \leq_{\mathit{sc}} \mathsf{Q}$

Every P-instance *I* computes a Q-instance *J* such that every solution *X* to *J*, computes (without *I*) a solution to *I*.

A function $f: \omega \to \omega$ is hyperimmune if it is not dominated by any computable function.

Thm (P.)

There is a coloring $f : \omega \to k + 1$ and hyperimmune functions h_0, \ldots, h_k such that for every infinite *f*-homogeneous set *H*, at most one *h* is *H*-hyperimmune.

Thm (P.)

Let h_0, \ldots, h_k be hyperimmune. For every coloring $f : \omega \to k$, there is an infinite *f*-homogeneous set *H* such that at least two *h*'s are *H*-hyperimmune.

 $\operatorname{RT}_{k+1}^1 \not\leq_{sc} \operatorname{RT}_k^1$ (P.)

- ▶ Pick a coloring $f : \omega \to k + 1$ and hyperimmune functions h_0, \ldots, h_k such that for every solution *H*, at most one *h* is *H*-hyperimmune.
- ► Every coloring g : ω → k has a solution H such that at least two h's are H-hyperimmune.

$\mathsf{RCA}_0 \vdash \forall k\mathsf{RT}^1_k \leftrightarrow \mathsf{B}\Sigma^0_2$ (Hirst)

BΣ₂⁰: For every Σ₂⁰ formula φ ,

 $(\forall x < t)(\exists y)\varphi(x, y) \rightarrow (\exists u)(\forall x < t)(\exists y < u)\varphi(x, y)$

"A finite union of finite sets is finite"

What sets can encode Ramsey's theorem?

Fix a problem P.

A set *S* is P-encodable if there is an instance of P such that every solution computes *S*.

What sets can encode an instance of RT_k^n ?

A function f is a modulus of a set S if every function dominating f computes S.

A set *S* is computably encodable if for every infinite set *X*, there is an infinite subset $Y \subseteq X$ computing *S*.

Thm (Solovay, Groszek and Slaman)

Given a set S, TFAE

- ► S is computably encodable
- ► S admits a modulus
- ► *S* is hyperarithmetic

Thm (Jockusch)

A set is RT_k^n -encodable for some $n \ge 2$ iff it is hyperarithmetic.

Thm (Jockusch)

A set is RT_k^n -encodable for some $n \ge 2$ iff it is hyperarithmetic.

Proof (\Rightarrow).

Let $g: [\omega]^n \to k$ be a coloring whose homogeneous sets compute *S*.

Since every infinite set has a homogeneous subset, *S* is computably encodable.

Thus S is hyperarithmetic.

Thm (Jockusch)

A set is RT_k^n -encodable for some $n \ge 2$ iff it is hyperarithmetic.

Proof (⇐).

Let *S* be hyperarithmetic with modulus μ_S .

Define $g : [\omega]^2 \to 2$ by g(x, y) = 1 iff $y > \mu_S(x)$.

Let $H = \{x_0 < x_1 < ...\}$ be an infinite *g*-homogeneous set.

The function $p_H(n) = x_n$ dominates μ_S , hence computes *S*.

The encodability power of RT_k^n comes from the **sparsity**

of its homogeneous sets.

What about RT_k^1 ?

- 0 1 2 3 4
- 5 6 7 8 9
- 10 11 12 13 14
- 15 16 17 18 19
- 20 21 22 23 <mark>24</mark>
- 25 26 27 28

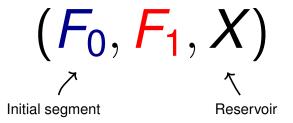
Sparsity of red implies non-sparsity of blue and conversely. Thm (Dzhafarov and Jockusch)

A set is RT_2^1 -encodable iff it is computable.

Thm (Dzhafarov and Jockusch)

A set is RT_2^1 -encodable iff it is computable.

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$ Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$



- F_i is finite, X is infinite, max $F_i < \min X$
- ► $S \not\leq_T X$
- ► $F_i \subseteq A_i$

(Mathias condition) (Weakness property) (Combinatorics)

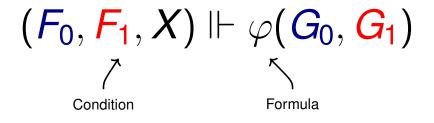
Extension

- $(\boldsymbol{E}_0, \boldsymbol{E}_1, \boldsymbol{Y}) \leq (\boldsymbol{F}_0, \boldsymbol{F}_1, \boldsymbol{X})$
 - ► $F_i \subseteq E_i$
 - ► $Y \subseteq X$
 - ► $E_i \setminus F_i \subseteq X$

Satisfaction

- $\langle \textit{G}_0,\textit{G}_1\rangle \in [\textit{F}_0,\textit{F}_1,\textit{X}]$
- ► $F_i \subseteq G_i$
- ► $G_i \setminus F_i \subseteq X$

$[\textbf{\textit{E}}_0, \textbf{\textit{E}}_1, \textbf{\textit{Y}}] \subseteq [\textbf{\textit{F}}_0, \textbf{\textit{F}}_1, \textbf{\textit{X}}]$



 $\varphi(G_0, G_1)$ holds for every $\langle G_0, G_1 \rangle \in [F_0, F_1, X]$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

$$\Phi_{e_0}^{\mathsf{G}_0}
eq S \lor \Phi_{e_1}^{\mathsf{G}_1}
eq S$$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

$$\Phi_{e_0}^{\mathsf{G}_0}
eq S \lor \Phi_{e_1}^{\mathsf{G}_1}
eq S$$

The set
$$\begin{cases} c: c \Vdash (\exists x) \quad \Phi_{e_0}^{G_0}(x) \downarrow \neq S(x) \lor \Phi_{e_0}^{G_0}(x) \uparrow \\ & \lor \quad \Phi_{e_1}^{G_1}(x) \downarrow \neq S(x) \lor \Phi_{e_1}^{G_1}(x) \uparrow \end{cases}$$
 is dense

IDEA: MAKE AN OVERAPPROXIMATION

"Can we find an extension for every instance of RT₂?"

Given a condition $c = (F_0, F_1, X)$, let $\psi(x, n)$ be the formula

 $(\forall B_0 \sqcup B_1 = \mathbb{N})(\exists i < 2)(\exists E_i \subseteq X \cap B_i) \Phi_{e_i}^{F_i \cup E_i}(x) \downarrow = n$

$$\psi(\boldsymbol{x},\boldsymbol{n})$$
 is $\Sigma_1^{0,X}$

Case 1: $\psi(x, n)$ holds

Letting $B_i = A_i$, there is an extension $d \le c$ forcing

$$\Phi_{e_0}^{\mathbf{G}_0}(x) \downarrow = n \lor \Phi_{e_1}^{\mathbf{G}_1}(x) \downarrow = n$$

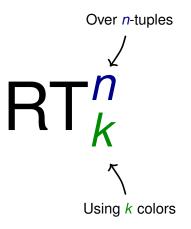
Case 2: $\psi(x, n)$ does not hold $(\exists B_0 \sqcup B_1 = \mathbb{N})(\forall i < 2)(\forall E_i \subseteq X \cap B_i)\Phi_{e_i}^{F_i \cup E_i}(x) \neq n$ The condition $(F_0, F_1, X \cap B_i) \leq c$ forces

$$\Phi_{e_0}^{G_0}(x) \neq n \lor \Phi_{e_1}^{G_1}(x) \neq n$$

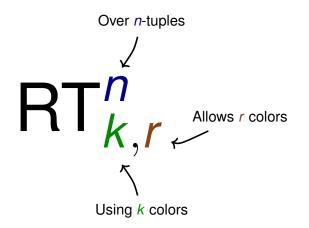
$$\mathcal{D} = \{(\mathbf{x}, \mathbf{n}) : \psi(\mathbf{x}, \mathbf{n})\}$$

Σ_1 case	Π_1 case	Impossible case
$(\exists x)(x,1-S(x))\in \mathcal{D}$	$(\exists x)(x, \mathcal{S}(x)) ot\in \mathcal{D}$	$(\forall x)(x, 1 - S(x)) \notin D$
		$(orall x)(x,\mathcal{S}(x))\in\mathcal{D}$
Then $\exists d \leq c \; \exists i < 2$	Then $\exists d \leq c \ \exists i < 2$	Then since \mathcal{D} is X-c.e
$d \Vdash \Phi^{G_i}_{e_i}(x) \downarrow = 1 - S(x)$	$d \Vdash \Phi^{G_i}_{e_i}(x) eq S(x)$	$\mathcal{S}\leq_{\mathcal{T}} X$ 4

RAMSEY'S THEOREM



RAMSEY'S THEOREM



Thm (Wang)

A set is $RT^n_{k,\ell}$ -encodable iff it is computable for large ℓ

(whenever ℓ is at least the *n*th Schröder Number)

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $RT^n_{k,\ell}$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

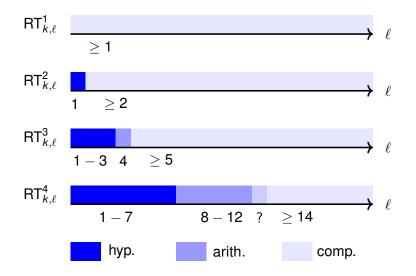
Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $RT^n_{k,\ell}$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Cholak, P.)

A set is $RT_{k,\ell}^n$ -encodable iff it is arithmetic for medium ℓ

$\mathsf{RT}^n_{k,\ell}$ -ENCODABLE SETS



The combinatorial features of RT_k^n reveal the computational features of RT_k^{n+1}

Open questions

Have we found the right framework?

Can variants of Mathias forcing answer all Ramsey-type questions?

An infinite set *C* is \vec{R} -cohesive for some sets R_0, R_1, \ldots if for every *i*, either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R}_i$.

COH : Every collection of sets has a cohesive set.

A coloring $f : [\omega]^2 \to 2$ is stable if $\lim_{y} f(x, y)$ exists for every *x*.

 SRT_2^2 : Every stable coloring of pairs admits an infinite homogeneous set.

$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{COH} \wedge \mathsf{SRT}_2^2$

(Cholak, Jockusch and Slaman)

- Given $f : [\mathbb{N}]^2 \to 2$, define $\langle R_x : x \in \mathbb{N} \rangle$ by $R_x = \{y : f(x, y) = 1\}$
- ▶ By COH, there is an \vec{R} -cohesive set $C = \{x_0 < x_1 < ...\}$
- ▶ $f : [C]^2 \rightarrow 2$ is stable

$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{COH} \wedge \mathsf{SRT}_2^2$

(Cholak, Jockusch and Slaman)

Thm (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman)

 $\mathsf{RCA}_0 \nvdash \mathsf{COH} \to \mathsf{SRT}^2_2$

Thm (Chong, Slaman and Yang)

 $\mathsf{RCA}_0 \nvDash \mathsf{SRT}_2^2 \to \mathsf{COH}$

Using a non-standard model containing only low sets.

Does $SRT_2^2 \models_c COH?$

- ► Our analysis of SRT²₂ is based on Mathias forcing
- ► Mathias forcing produces cohesive sets

Does COH
$$\leq_c$$
 SRT₂?

COH admits a universal instance: the primitive recursive sets

A set is p-cohesive if it is cohesive for the p.r. sets

Thm (Jockusch and Stephan)

A set is p-cohesive iff its jump is PA over \emptyset'

Thm (Jockusch and Stephan)

For every computable sequence of sets \vec{R} and every p-cohesive set *C*, *C* computes an \vec{R} -cohesive set.

SRT_2^2 can be seen as a Δ_2^0 instance of the pigeonhole principle

• Given a stable computable coloring $f : [\omega]^2 \to 2$

• Let
$$A = \{x : \lim_{y \to y} f(x, y) = 1\}$$

► Every infinite set H ⊆ A or H ⊆ A computes an infinite f-homogeneous set.

Is there a set X such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ has a jump of PA degree over \emptyset' ?

Thm (Monin, P.)

Fix a non- Δ_2^0 set *B*. For every set *X*, there is an infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ such that *B* is not $\Delta_2^{0,H}$.

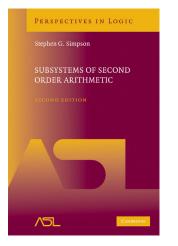
CONCLUSION

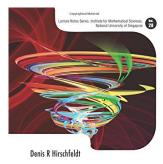
We have a minimalistic framework which answers accurately many questions about Ramsey's theorem.

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are often immediate consequences of their combinatorics.

We understand what the Ramsey-type problems compute, but ignore what the jump of their solutions compute.





SLICING THE TRUTH

On the Computable and Reverse Mathematics of Combinatorial Principles

látur: Chitet Chang • Qi Feng • Theodore & Slamon • W Hugh Weadin • Yue Yang Copyrighted Material

Subsystems of second-order arithmetic

Slicing the truth

REFERENCES

- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, 66(01):1–55, 2001.
 - Carl G. Jockusch.

Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–280, 1972.

Ludovic Patey.

The reverse mathematics of Ramsey-type theorems. PhD thesis, Université Paris Diderot, 2016.

Wei Wang.

Some logically weak Ramseyan theorems. Advances in Mathematics, 261:1–25, 2014.