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REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.
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capturing computable mathematics

3/69



MOTIVATIONS ENCODING SETS OPEN QUESTIONS
! !

RCA

Robinson arithmetics

m+1+#£0 m+0=m
m+1=n+1—-m=n m+(n+1)=(m+n)+1
-(m<0) mx0=0
m<n+1(m<nvm=n) mx(n+1)=(mxn)+m
¥¢ induction scheme A9 comprehension scheme
p(0) AVN(p(n) = w(n+1)) vn(p(n) < 4(n))
= Ynp(n) = 3XVn(n e X < ¢(n))
where ¢(n) is =9 where ¢(n) is =0 with free X, and v

s M0
is 3.

4/69



MOTIVATIONS ENCODING SETS OPEN QUESTIONS
! !

79 induction scheme
©(0) AVN(p(n) = p(n+1)) = Vnp(n)

where ¢(n) is =9

bounded A% comprehension scheme
Vivn(p(n) < ¢¥(n)) = 3IXVn(ne X < (x <t Ap(n)))

where ¢(n) is =9 with free X, and ) is MY,
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REVERSE MATHEMATICS

Mathematics are MiCA
computationally AiR
very structured 1
ACA
\3

Almost every theorem is
- . WKL
empirically equivalent to one
among five big subsystems. 1
RCA,
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HILBERT'S PROGRAM

Justification of infinitary methods
to prove finitistic mathematics 2

L . . (Infinite)
Finitistic reductionnism:

T o= PRAF ¢

where ¢ is a M9 formula

“At least 85% of mathematics
are reducible to finitistic methods” PRA
(Stephen Simpson (Finite)
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OPEN QUESTIONS

REVERSE MATHEMATICS

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

Except for Ramsey’s theory...

MiCA
ATR

ACA

4

RT3 WKL

N4

RCAy
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What is Ramsey’s theorem?
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RAMSEY’S THEOREM

[X]" is the set of unordered n-tuples of elements of X
A k-coloring of [X]|"isamap f: [X]" — k

A set H C X is homogeneous for fif [f([H]")| = 1.

RTn Every k-coloring of [N]" admits
an infinite homogeneous set.
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PIGEONHOLE PRINCIPLE

RT1 Every k-partition of N admits
K an infinite part.

01 2 3 4 2

5 6 7 8 9 5 6 9
10 11 12 13 14 —> 12

15 16 17 18 19 15 17 18
20 21 22 23 24 24

25 26 27 28 ... 26 27
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RAMSEY’S THEOREM FOR PAIRS

RT2 Every k-coloring of the infinite clique admits
an infinite monochromatic subclique.
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Reverse mathematics
from a computational viewpoint.
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STANDARD MODELS OF RCA

An w-structure is a structure M = {w, S, <, +, -} where

(i
(i
(i

(iv

w is the set of standard natural numbers

< is the natural order

+ and - are the standard operations over natural numbers
S C P(w)

—_ — — —
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STANDARD MODELS OF RCA

An w-structure is a structure M = {w, S, <, +, -} where

(i
(i
(i

(iv

w is the set of standard natural numbers

< is the natural order

+ and - are the standard operations over natural numbers
S C P(w)

—_ — — —

An w-structure is fully specified
by its second-order part S.
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Turing ideal M

> (VX € M)(VY <7 X)[Y € M]
> (VXY e M)[X® Y € M|

Examples
» {X: X is computable }
» {X: X<y AN X <y B} for some sets Aand B
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Let M = {w, S, <, +, -} be an w-structure

M E RCA,

S is a Turing ideal
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Many theorems can be seen as problems.

Intermediate value theorem

For every continuous function f over an
interval [a, b] such that f(a) - f(b) < 0, there
is areal x € [a, b] such that f(x) = 0.

Koénig’s lemma
Every infinite, finitely branching tree admits
an infinite path.
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Let M be a Turing ideal and P, Q be problems.

Satisfaction Computable entailment
MEP PE=cQ
if every P-instance in M if every Turing ideal

has a solution in M. satisfying P satisfies Q.
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RT3 (. ACA

(Seetapun and Slaman, 1995)

» Build M |= RT3 with (/ ¢ M
» If M = ACAthen () ¢ M

0 = {e: (3s)Pe(e) halts after s steps }
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Build M |= RT5 with ¢ ¢ M.

Suppose A £ Z. Then every Z-computable f : [w]?> — 2 has
an infinite f-homogeneous set H such that A £+ Z @ H.

Start with My = {Z : Z is computable }. In particular (' & M.
Given a Turing ideal M, ={Z : Z <7 U} where I/ £7 U,
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! !

Build M |= RT5 with ¢ ¢ M.

Suppose A £ Z. Then every Z-computable f : [w]?> — 2 has
an infinite f-homogeneous set H such that A £+ Z @ H.

Start with My = {Z : Z is computable }. In particular (' & M.
Given a Turing ideal M, ={Z: Z <1 U} where i/ £7 U,

1. pick some f : [w]? — 2in M,
2. let H be f-homogeneous set such that ' £+ U® H
3. let My ={Z:Z <7 Ud H}
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Non-implications over RCA, often involve
purely computability-theoretic arguments.
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Form,n> 3,

RCA, - RTJ «» RT}

(Jockusch)

Theorem (Jockusch)

For every n > 3, there is a computable coloring f : [w]" — 2
such that every infinite f-homogeneous set computes (("—2).

Let f(x,y, z) = 1 if the approximation of )/ | x at stage y and at
stage z coincide.
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OPEN QUESTIONS

Fix some n > 2.

Thm (Jockusch)

Every computable instance of RT}
has a N9 solution.

Thm (Jockusch)

There is a computable instance of
RT} with no X9 solution.

RT}

RT3

RT2

I
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For k,¢ > 2,

RCAo - RT? < RT/

Given a coloring f : [w]” — {red, green, blue}

» Define g : [w]” — {red, grue} by merging green and blue

» Apply RT on g to obtain H such that g[H]" = {red} or
g[H]" = {grue}

» In the latter case, apply RT, on f[H]" — {green, blue} to obtain
G such that f[G]" = {green} or f[G]" = {blue}
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We use more than once the premise for

RCA, - RTS — RT;*"
RCA, + RT} — RT} 4

Can we do it in one step?
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COMPUTABLE REDUCTION

Q solver

P<cQ

Every P-instance / computes a Q-instance J such that for every
solution X to J, X & I computes a solution to /.

P solver

Computable Computable
>
transformation transformation
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! !

RT,™' £ RTS

(Jockusch)

» Pick a computable coloring f : [w]"! — 2 with no 9, solution

» Every computable coloring g : [w]” — 2 has a 9 solution.
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A function f : w — w is hyperimmune if it is not dominated by
any computable function.

There is a computable coloring f : [w]®> — k + 1 and
hyperimmune functions hy, . .., hx such that for every infinite
f-homogeneous set H, at most one his H-hyperimmune.

Let hy, ..., hx be hyperimmune. For every computable coloring
f: [w]? — k, there is an infinite f-homogeneous set H such that
at least two h’s are H-hyperimmune.
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RTZ,, £ RT

(P)

» Pick a computable coloring f : [w]?> — k + 1 and hyperimmune
functions hy, . . ., hx such that for every solution H, at most one h
is H-hyperimmune.

» Every computable coloring g : [w]> — k has a solution H such
that at least two h’s are H-hyperimmune.
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The naive color-merging proof is optimal
with respect to the number of applications in

RCA, - RT% — RT?
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PIGEONHOLE PRINCIPLE

RT1 Every k-partition of N admits
K an infinite part.

01 2 3 4 2

5 6 7 8 9 5 6 9
10 11 12 13 14 —> 12

15 16 17 18 19 15 17 18
20 21 22 23 24 24

25 26 27 28 ... 26 27
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ENCODING SETS

OPEN QUESTIONS

For k,¢ > 2,

RT, <. RT,

No need to use RT] as

RT} is computably true
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WEIHRAUCH REDUCTION

P solver

(@} Qsolver v

P<wQ

There are ¢ and W such that for every P-instance /, ¢ is
a Q-instance such that for every solution X to ¢/, WX®/is a
solution to /.
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RTI1(+1 fW RT}(

(Brattka and Rakotoniaina)

Given ¢ and V. Build an instance / of RT}. Let
/' =000000...
until W (n) | with F of color some ¢ < 2iin . Then let
/ = 0000001111111 ...
until WG(m) | with G of color 1 — ¢ in ®'. Then let

| =0000001111111222222 . ..
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STRONG COMPUTABLE REDUCTION
P solver

Computable Computable
. Q solver ‘
transformation transformation

P <sc Q

Every P-instance / computes a Q-instance J such that every
solution X to J, computes (without /) a solution to /.
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A function f : w — w is hyperimmune if it is not dominated by
any computable function.

There is a coloring f : w — k + 1 and hyperimmune functions
ho, - - -, hx such that for every infinite f-homogeneous set H, at
most one his H-hyperimmune.

Let ho, ..., hx be hyperimmune. For every coloring f : w — Kk,
there is an infinite f-homogeneous set H such that at least two
h's are H-hyperimmune.
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RT.1 %sc RTk

(P)

» Pick a coloring f : w — k + 1 and hyperimmune functions
ho, ..., hx such that for every solution H, at most one h is
H-hyperimmune.

» Every coloring g : w — k has a solution H such that at least two
h's are H-hyperimmune.
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RCA, - VKRT}, < BX}

(Hirst)

BX3: For every T3 formula ¢,

(vx < )(3Fy)e(x,y) = Qu)(vx < )(3y < u)e(x,y)

A finite union of finite sets is finite”

39/69



MOTIVATIONS ENCODING SETS OPEN QUESTIONS

What sets can encode
Ramsey’s theorem?



MOTIVATIONS ENCODING SETS OPEN QUESTIONS

Fix a problem P.

A set Sis P-encodable if there is an instance of
P such that every solution computes S.

What sets can encode an
instance of RT,?
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A function f is a modulus of a set S if every function
dominating f computes S.

A set Sis computably encodable if for every infinite set X,
there is an infinite subset Y C X computing S.

Given a set S, TFAE
» S is computably encodable
» S admits a modulus
» S is hyperarithmetic
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Thm (Jockusch)

A set is RTg-encodable for some n > 2 iff it is hyperarithmetic.
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! !

A set is RTg-encodable for some n > 2 iff it is hyperarithmetic.

Proof (=).

Let g : [w]” — k be a coloring whose homogeneous sets
compute S.

Since every infinite set has a homogeneous subset,
S is computably encodable.

Thus S is hyperarithmetic. O

43/69



MOTIVATIONS ENCODING SETS OPEN QUESTIONS
! !

A set is RT;-encodable for some n > 2 iff it is hyperarithmetic.

Proof (<).

Let S be hyperarithmetic with modulus ps.
Define g : [w]? — 2 by g(x,y) = 1iff y > pg(x).
Let H= {xo < x4 < ...} be an infinite g-homogeneous set.

The function py(n) = x, dominates g, hence computes S. [
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The encodability power
of RT}; comes from the

sparsity

of its homogeneous sets.
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What about RT,?

0O 1 2 3 4

5 6 7 8 9 . .
Sparsity of red implies

10 11 12 13 14 non-sparsity of blue

15 16 17 18 19 and conversely.

20 21 22 23 24
25 26 27 28 ...
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Thm (Dzhafarov and Jockusch)

A set is RT3-encodable iff it is computable.
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A set is RT}-encodable iff it is computable.

Input : aset S £7 (0 and a 2-partition Ay LI Ay = N

Output : an infinite set G C A; suchthat S £ G
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Fo, F1, X

/7 \

Initial segment Reservoir

» F;is finite, X is infinite, max F; < min X (Mathias condition)
» SLr X (Weakness property)
» F; CA (Combinatorics)
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Extension Satisfaction
(Eo, E1,Y) < (Fo, F1,X) (Go, Gy) € [Fo, F1,X]
> Fi CE » FiC G
» YCX » G\FCX
» E\NFCX

[E07E17Y] - [F07F17X]
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(Fo, F1, X) IF ¢(Go, Gi1)
4 \

Condition Formula

¢(Go, G1) holds for every (Go, G1) € [Fo, Fi, X]
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Input : aset S £7 (0 and a 2-partition Ay LI Ay =N
Output : aninfinite set G C A; suchthat S £+ G
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Input : aset S £7 (0 and a 2-partition Ay LI Ay =N
Output : aninfinite set G C A; suchthat S £+ G

O £ SV O £ S
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Input : aset S £7 (0 and a 2-partition Ay LI Ay =N
Output : aninfinite set G C A; suchthat S £+ G

O £ SV O £ S

{c ek (3x) O(x) L# S(x) VP (x) 1 }
The set is dense

VoG (x) 1 S(x) v &g (x) 1
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IDEA: MAKE AN OVERAPPROXIMATION

“Can we find an extension for every instance of RT,?”

Given a condition ¢ = (Fg, F1, X), let ¢)(x, n) be the formula

(VBoUB;y = N)(3i < 2)(3E; € XnB))®L 5(x) |=n

. <0.X
P(x,n)is X
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Case 1: ¥(x, n) holds

Letting B; = A;, there is an extension d < ¢ forcing

d>eGo°(x) l=nv d>g11 (x)l=n

Case 2: ¥(x, n) does not hold
(3Bo Ui By = N)(Vi < 2)(VE; € X N B))®55 (x) # n
The condition (Fy, F1, X N B;) < c forces

O3 (x) #nV OS (x) # n
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D = {(x,n) : (x. n)}

Y| case
(IX)(x,1-=8(x)) eD

Then3dd <c3di<?2
d - g (x) |=1 - S(x)

My case
(3x)(x, 8(x)) ¢ D

Then3dd <cdi<?2
d - &Z(x) # S(x)

Impossible case
(vx)(x,1 = S(x)) ¢ D
(Vx)(x, S(x)) € D

Then since D is X-c.e

S<r X%
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RAMSEY’S THEOREM

Over n-tuples
Using k colors
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RAMSEY’S THEOREM

Over n-tuples

I = I k AIIowsrcoIors

Usmg k colors

54/69



MOTIVATIONS ENCODING SETS OPEN QUESTIONS

Thm (Wang)

A set is RT ,-encodable iff it is computable for large ¢
(whenever ¢ is at least the nth Schréder Number)
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Thm (Wang)

A setis RTZ,g-encodabIe iff it is computable for large ¢
(whenever ¢ is at least the nth Schréder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is RT ,-encodable iff it is hyperarithmetic for small £
(whenever £ < 27— 1)

Thm (Cholak, P.)

A set is RT} ,-encodable iff it is arithmetic for medium ¢
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RTy ,~ENCODABLE SETS

RTh, y 0
> 1

RT2: B y s
1 >2

T, 1,
1-3 4 >5

RTy. [ i,

1-7 8-12 72 >14

B hyo. arith. comp.
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The combinatorial features of
RT} reveal the computational
features of RT} "
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Have we found the right framework?

Can variants of Mathias forcing
answer all Ramsey-type questions?
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An infinite set C is R-cohesive for some sets Ro, Ry, . ..
if for every i, either C C* R; or C C* R,.

COH : Every collection of sets has a cohesive set.

A coloring f : [w]? — 2 is stable if lim, f(x, y) exists for every x.

SRT§ : Every stable coloring of pairs admits an infinite
homogeneous set.
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RCA, - RT3 <> COH A SRT3

(Cholak, Jockusch and Slaman)

» Given f: [N]? — 2, define (Rx : x e N) by Ry = {y : f(x,y) = 1}
» By COH, there is an R-cohesive set C = {xo < X; < ...}
» f:[C]? — 2is stable
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RCA, - RT3 <> COH A SRT3

(Cholak, Jockusch and Slaman)

Thm (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman)
RCA, ¥ COH — SRT3

Thm (Chong, Slaman and Yang)
RCA, ¥ SRT5 — COH

Using a non-standard model containing only low sets.
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Does SRT5 =, COH?

» Our analysis of SRT3 is based on Mathias forcing
» Mathias forcing produces cohesive sets

Does COH <. SRT3?
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COH admits a universal instance:
the primitive recursive sets

A set is p-cohesive if it is cohesive for the p.r. sets

A set is p-cohesive iff its jump is PA over ('

For every computable sequence of sets R and every
p-cohesive set C, C computes an R-cohesive set.
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!

SRTS3 can be seen as a AJ instance of
the pigeonhole principle

» Given a stable computable coloring f : [w]? — 2
» Let A= {x:lim, f(x,y) =1}

» Every infinite set H C Aor H C A computes an infinite
f-homogeneous set.
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Is there a set X such that o
every infinteset HC XorHC X
has a jump of PA degree over ('?

Fix a non-AJ set B. For every set X, there is an infinite set
H C X or H C X such that Bis not A>".
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CONCLUSION

We have a minimalistic framework which answers accurately
many questions about Ramsey’s theorem.

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are
often immediate consequences of their combinatorics.

We understand what the Ramsey-type problems compute, but
ignore what the jump of their solutions compute.
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