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RCA0

Robinson arithmetics

m + 1 6= 0 m + 0 = m
m + 1 = n + 1→ m = n m + (n + 1) = (m + n) + 1
¬(m < 0) m × 0 = 0
m < n + 1↔ (m < n ∨m = n) m × (n + 1) = (m × n) + m

Σ0
1 induction scheme

ϕ(0) ∧ ∀n(ϕ(n)⇒ ϕ(n + 1))
⇒ ∀nϕ(n)

where ϕ(n) is Σ0
1

∆0
1 comprehension scheme

∀n(ϕ(n)⇔ ψ(n))
⇒ ∃X∀n(n ∈ X ⇔ ϕ(n))

where ϕ(n) is Σ0
1 with free X , and ψ

is Π0
1.
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Σ0
n induction scheme

ϕ(0) ∧ ∀n(ϕ(n)⇒ ϕ(n + 1))⇒ ∀nϕ(n)

where ϕ(n) is Σ0
n

bounded ∆0
n comprehension scheme

∀t∀n(ϕ(n)⇔ ψ(n))⇒ ∃X∀n(n ∈ X ⇔ (x < t ∧ ϕ(n)))

where ϕ(n) is Σ0
n with free X , and ψ is Π0

n.
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REVERSE MATHEMATICS

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

RCA0

WKL

ACA

ATR

Π1
1CA
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HILBERT’S PROGRAM

Justification of infinitary methods
to prove finitistic mathematics

Finitistic reductionnism:

T ` ϕ⇒ PRA ` ϕ
where ϕ is a Π0

1 formula

“At least 85% of mathematics
are reducible to finitistic methods”

(Stephen Simpson

)
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What is Ramsey’s theorem?
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RAMSEY’S THEOREM

[X ]n is the set of unordered n-tuples of elements of X

A k -coloring of [X ]n is a map f : [X ]n → k

A set H ⊆ X is homogeneous for f if |f ([H]n)| = 1.

RTn
k

Every k -coloring of [N]n admits
an infinite homogeneous set.
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PIGEONHOLE PRINCIPLE

RT1
k

Every k -partition of N admits
an infinite part.
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RAMSEY’S THEOREM FOR PAIRS

RT2
k

Every k -coloring of the infinite clique admits
an infinite monochromatic subclique.

13 / 69



MOTIVATIONS ENCODING SETS OPEN QUESTIONS

Reverse mathematics
from a computational viewpoint.
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STANDARD MODELS OF RCA0

An ω-structure is a structureM = {ω,S, <,+, ·} where

(i) ω is the set of standard natural numbers
(ii) < is the natural order
(iii) + and · are the standard operations over natural numbers
(iv) S ⊆ P(ω)

An ω-structure is fully specified
by its second-order part S.
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Turing idealM
� (∀X ∈M)(∀Y ≤T X )[Y ∈M]

� (∀X ,Y ∈M)[X ⊕ Y ∈M]

Examples
� {X : X is computable }
� {X : X ≤T A ∧ X ≤T B} for some sets A and B
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LetM = {ω,S, <,+, ·} be an ω-structure

M |= RCA0

≡
S is a Turing ideal
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Many theorems can be seen as problems.

Intermediate value theorem
For every continuous function f over an
interval [a,b] such that f (a) · f (b) < 0, there
is a real x ∈ [a,b] such that f (x) = 0.

König’s lemma
Every infinite, finitely branching tree admits
an infinite path.

a
b
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LetM be a Turing ideal and P,Q be problems.

Satisfaction

M |= P
if every P-instance inM

has a solution inM.

Computable entailment

P |=c Q
if every Turing ideal

satisfying P satisfies Q.
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RT2
2 6|=c ACA

(Seetapun and Slaman, 1995)

� BuildM |= RT2
2 with ∅′ 6∈ M

� IfM |= ACA then ∅′ ∈M

∅′ = {e : (∃s)Φe(e) halts after s steps }
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BuildM |= RT2
2 with ∅′ 6∈ M.

Thm (Seetapun and Slaman)

Suppose A 6≤T Z . Then every Z -computable f : [ω]2 → 2 has
an infinite f -homogeneous set H such that A 6≤T Z ⊕ H.

Start withM0 = {Z : Z is computable }. In particular ∅′ 6∈ M0.

Given a Turing idealMn = {Z : Z ≤T U} where ∅′ 6≤T U,

1. pick some f : [ω]2 → 2 inMn

2. let H be f -homogeneous set such that ∅′ 6≤T U ⊕ H
3. letMn+1 = {Z : Z ≤T U ⊕ H}
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Non-implications over RCA0 often involve
purely computability-theoretic arguments.
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For m,n ≥ 3,

RCA0 ` RTm
2 ↔ RTn

2
(Jockusch)

Theorem (Jockusch)

For every n ≥ 3, there is a computable coloring f : [ω]n → 2
such that every infinite f -homogeneous set computes ∅(n−2).

Let f (x , y , z) = 1 if the approximation of ∅′ � x at stage y and at
stage z coincide.
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Fix some n ≥ 2.

Thm (Jockusch)

Every computable instance of RTn
k

has a Π0
n solution.

Thm (Jockusch)

There is a computable instance of
RTn

k with no Σ0
n solution.

Σ0
1 Π0

1

Σ0
2

Σ0
3

Π0
2

Π0
3

∆0
1

∆0
2

∆0
3

RT1
k

RT2
k

RT3
k
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For k , ` ≥ 2,

RCA0 ` RTn
k ↔ RTn

`

Given a coloring f : [ω]n → {red,green,blue}

� Define g : [ω]n → {red,grue} by merging green and blue

� Apply RTn
2 on g to obtain H such that g[H]n = {red} or

g[H]n = {grue}
� In the latter case, apply RTn

2 on f [H]n → {green,blue} to obtain
G such that f [G]n = {green} or f [G]n = {blue}
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We use more than once the premise for

RCA0 ` RTn
2 → RTn+1

2

RCA0 ` RTn
k → RTn

k+1

Can we do it in one step?
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COMPUTABLE REDUCTION

Q solver
Computable

transformation

Computable

transformation

P solver

P ≤c Q
Every P-instance I computes a Q-instance J such that for every
solution X to J, X ⊕ I computes a solution to I.
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RTn+1
2 6≤c RTn

2
(Jockusch)

� Pick a computable coloring f : [ω]n+1 → 2 with no Σ0
n+1 solution

� Every computable coloring g : [ω]n → 2 has a Π0
n solution.
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A function f : ω → ω is hyperimmune if it is not dominated by
any computable function.

Thm (P.)

There is a computable coloring f : [ω]2 → k + 1 and
hyperimmune functions h0, . . . ,hk such that for every infinite
f -homogeneous set H, at most one h is H-hyperimmune.

Thm (P.)

Let h0, . . . ,hk be hyperimmune. For every computable coloring
f : [ω]2 → k , there is an infinite f -homogeneous set H such that
at least two h’s are H-hyperimmune.

29 / 69



MOTIVATIONS ENCODING SETS OPEN QUESTIONS

RT2
k+1 6≤c RT2

k
(P.)

� Pick a computable coloring f : [ω]2 → k + 1 and hyperimmune
functions h0, . . . ,hk such that for every solution H, at most one h
is H-hyperimmune.

� Every computable coloring g : [ω]2 → k has a solution H such
that at least two h’s are H-hyperimmune.
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The naive color-merging proof is optimal
with respect to the number of applications in

RCA0 ` RT2
k → RT2

`
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PIGEONHOLE PRINCIPLE

RT1
k

Every k -partition of N admits
an infinite part.
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For k , ` ≥ 2,

RT1
k ≤c RT1

`

No need to use RT1
` as

RT1
k is computably true
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WEIHRAUCH REDUCTION

Q solverΦ Ψ

P solver

P ≤W Q

There are Φ and Ψ such that for every P-instance I, ΦI is
a Q-instance such that for every solution X to ΦI , ΨX⊕I is a
solution to I.
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RT1
k+1 6≤W RT1

k
(Brattka and Rakotoniaina)

Given Φ and Ψ. Build an instance I of RT1
3. Let

I = 000000 . . .

until ΨF (n) ↓ with F of color some c < 2 in ΦI . Then let

I = 0000001111111 . . .

until ΨG(m) ↓ with G of color 1− c in ΦI . Then let

I = 0000001111111222222 . . .
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STRONG COMPUTABLE REDUCTION

Q solver
Computable

transformation

Computable

transformation

P solver

P ≤sc Q
Every P-instance I computes a Q-instance J such that every
solution X to J, computes (without I) a solution to I.
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A function f : ω → ω is hyperimmune if it is not dominated by
any computable function.

Thm (P.)

There is a coloring f : ω → k + 1 and hyperimmune functions
h0, . . . ,hk such that for every infinite f -homogeneous set H, at
most one h is H-hyperimmune.

Thm (P.)

Let h0, . . . ,hk be hyperimmune. For every coloring f : ω → k ,
there is an infinite f -homogeneous set H such that at least two
h’s are H-hyperimmune.
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RT1
k+1 6≤sc RT1

k
(P.)

� Pick a coloring f : ω → k + 1 and hyperimmune functions
h0, . . . ,hk such that for every solution H, at most one h is
H-hyperimmune.

� Every coloring g : ω → k has a solution H such that at least two
h’s are H-hyperimmune.
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RCA0 ` ∀kRT1
k ↔ BΣ0

2
(Hirst)

BΣ0
2: For every Σ0

2 formula ϕ,

(∀x < t)(∃y)ϕ(x , y)→ (∃u)(∀x < t)(∃y < u)ϕ(x , y)

”A finite union of finite sets is finite”

39 / 69



MOTIVATIONS ENCODING SETS OPEN QUESTIONS

What sets can encode
Ramsey’s theorem?
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Fix a problem P.

A set S is P-encodable if there is an instance of
P such that every solution computes S.

What sets can encode an
instance of RTn

k?
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A function f is a modulus of a set S if every function
dominating f computes S.

A set S is computably encodable if for every infinite set X ,
there is an infinite subset Y ⊆ X computing S.

Thm (Solovay, Groszek and Slaman)

Given a set S, TFAE
� S is computably encodable
� S admits a modulus
� S is hyperarithmetic
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Thm (Jockusch)

A set is RTn
k -encodable for some n ≥ 2 iff it is hyperarithmetic.

Proof (⇒).

Let g : [ω]n → k be a coloring whose homogeneous sets
compute S.

Since every infinite set has a homogeneous subset,
S is computably encodable.

Thus S is hyperarithmetic.
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Thm (Jockusch)

A set is RTn
k -encodable for some n ≥ 2 iff it is hyperarithmetic.

Proof (⇐).

Let S be hyperarithmetic with modulus µS.

Define g : [ω]2 → 2 by g(x , y) = 1 iff y > µS(x).

Let H = {x0 < x1 < . . . } be an infinite g-homogeneous set.

The function pH(n) = xn dominates µS, hence computes S.
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The encodability power
of RTn

k comes from the

sparsity
of its homogeneous sets.
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What about RT1
k?

Sparsity of red implies
non-sparsity of blue
and conversely.
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Thm (Dzhafarov and Jockusch)

A set is RT1
2-encodable iff it is computable.

Input : a set S 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that S 6≤T G
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(F0,F1,X )
Initial segment Reservoir

� Fi is finite, X is infinite, max Fi < min X (Mathias condition)

� S 6≤T X (Weakness property)

� Fi ⊆ Ai (Combinatorics)
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Extension

(E0,E1,Y ) ≤ (F0,F1,X )

� Fi ⊆ Ei

� Y ⊆ X

� Ei \ Fi ⊆ X

Satisfaction

〈G0,G1〉 ∈ [F0,F1,X ]

� Fi ⊆ Gi

� Gi \ Fi ⊆ X

[E0,E1,Y ] ⊆ [F0,F1,X ]
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(F0,F1,X ) 
 ϕ(G0,G1)

Condition Formula

ϕ(G0,G1) holds for every 〈G0,G1〉 ∈ [F0,F1,X ]
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Input : a set S 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that S 6≤T G

ΦG0
e0 6= S ∨ ΦG1

e1 6= S

The set

c : c 
 (∃x) ΦG0
e0

(x) ↓6= S(x) ∨ ΦG0
e0

(x) ↑

∨ ΦG1
e1

(x) ↓6= S(x) ∨ ΦG1
e1

(x) ↑

 is dense
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IDEA: MAKE AN OVERAPPROXIMATION

“Can we find an extension for every instance of RT1
2?”

Given a condition c = (F0,F1,X ), let ψ(x ,n) be the formula

(∀B0tB1 = N)(∃i < 2)(∃Ei ⊆ X∩Bi)ΦFi∪Ei
ei

(x) ↓= n

ψ(x ,n) is Σ0,X
1
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Case 1: ψ(x ,n) holds

Letting Bi = Ai , there is an extension d ≤ c forcing

ΦG0
e0

(x) ↓= n ∨ ΦG1
e1

(x) ↓= n

Case 2: ψ(x ,n) does not hold

(∃B0 t B1 = N)(∀i < 2)(∀Ei ⊆ X ∩ Bi)ΦFi∪Ei
ei

(x) 6= n

The condition (F0,F1,X ∩ Bi) ≤ c forces

ΦG0
e0

(x) 6= n ∨ ΦG1
e1

(x) 6= n
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D = {(x ,n) : ψ(x ,n)}

Σ1 case

(∃x)(x ,1− S(x)) ∈ D

Then ∃d ≤ c ∃i < 2

d 
 ΦGi
ei

(x) ↓= 1− S(x)

Π1 case

(∃x)(x ,S(x)) 6∈ D

Then ∃d ≤ c ∃i < 2

d 
 ΦGi
ei

(x) 6= S(x)

Impossible case

(∀x)(x ,1− S(x)) 6∈ D

(∀x)(x ,S(x)) ∈ D

Then since D is X -c.e

S ≤T X �
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RAMSEY’S THEOREM

RTn
k

,r

Over n-tuples

Using k colors

Allows r colors
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Thm (Wang)

A set is RTn
k ,`-encodable iff it is computable for large `

(whenever ` is at least the nth Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is RTn
k ,`-encodable iff it is hyperarithmetic for small `

(whenever ` < 2n−1)

Thm (Cholak, P.)

A set is RTn
k ,`-encodable iff it is arithmetic for medium `
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RTn
k ,`-ENCODABLE SETS

RT1
k ,` `

≥ 1

RT2
k ,` `

1 ≥ 2

RT3
k ,` `

1− 3 4 ≥ 5

RT4
k ,` `

1− 7 8− 12 ? ≥ 14

hyp. arith. comp.
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The combinatorial features of
RTn

k reveal the computational
features of RTn+1

k
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Open questions
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Have we found the right framework?

Can variants of Mathias forcing
answer all Ramsey-type questions?
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An infinite set C is ~R-cohesive for some sets R0,R1, . . .
if for every i , either C ⊆∗ Ri or C ⊆∗ R i .

COH : Every collection of sets has a cohesive set.

A coloring f : [ω]2 → 2 is stable if limy f (x , y) exists for every x .

SRT2
2 : Every stable coloring of pairs admits an infinite

homogeneous set.
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RCA0 ` RT2
2 ↔ COH∧SRT2

2
(Cholak, Jockusch and Slaman)

� Given f : [N]2 → 2, define 〈Rx : x ∈ N〉 by Rx = {y : f (x , y) = 1}

� By COH, there is an ~R-cohesive set C = {x0 < x1 < . . . }
� f : [C]2 → 2 is stable
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RCA0 ` RT2
2 ↔ COH∧SRT2

2
(Cholak, Jockusch and Slaman)

Thm (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman)

RCA0 0 COH→ SRT2
2

Thm (Chong, Slaman and Yang)

RCA0 0 SRT2
2 → COH

Using a non-standard model containing only low sets.
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Does SRT2
2 |=c COH?

� Our analysis of SRT2
2 is based on Mathias forcing

� Mathias forcing produces cohesive sets

Does COH ≤c SRT2
2?
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COH admits a universal instance:

the primitive recursive sets

A set is p-cohesive if it is cohesive for the p.r. sets

Thm (Jockusch and Stephan)

A set is p-cohesive iff its jump is PA over ∅′

Thm (Jockusch and Stephan)

For every computable sequence of sets ~R and every
p-cohesive set C, C computes an ~R-cohesive set.
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SRT2
2 can be seen as a ∆0

2 instance of

the pigeonhole principle

� Given a stable computable coloring f : [ω]2 → 2

� Let A = {x : limy f (x , y) = 1}
� Every infinite set H ⊆ A or H ⊆ A computes an infinite

f -homogeneous set.
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Is there a set X such that
every infinite set H ⊆ X or H ⊆ X
has a jump of PA degree over ∅′?

Thm (Monin, P.)

Fix a non-∆0
2 set B. For every set X , there is an infinite set

H ⊆ X or H ⊆ X such that B is not ∆0,H
2 .
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CONCLUSION

We have a minimalistic framework which answers accurately
many questions about Ramsey’s theorem.

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are
often immediate consequences of their combinatorics.

We understand what the Ramsey-type problems compute, but
ignore what the jump of their solutions compute.
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Subsystems of second-order
arithmetic

Slicing the truth
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