Ramsey's theorem under a computable perspective

Ludovic PATEY

What is Ramsey's theorem?

RAMSEY'S THEOREM

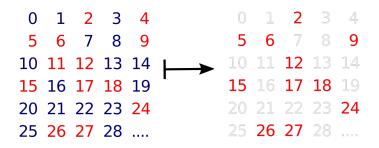
- $[X]^n$ is the set of unordered *n*-tuples of elements of X
- A *k*-coloring of $[X]^n$ is a map $f : [X]^n \to k$
- A set $H \subseteq X$ is homogeneous for f if $|f([X]^n)| = 1$.

 $\begin{array}{ll} \mathsf{RT}^n_k & \text{Every } k \text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

PIGEONHOLE PRINCIPLE

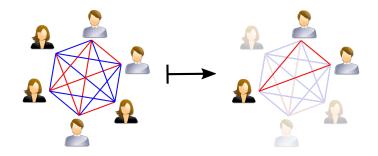
 RT_k^1

Every *k*-partition of ℕ admits an infinite part.



RAMSEY'S THEOREM FOR PAIRS

RT_k^2 Every *k*-coloring of the infinite clique admits an infinite monochromatic subclique.



Why do we care about Ramsey's theorem?

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

$\mathsf{RCA}_0 \vdash A \leftrightarrow T$

in a very weak theory RCA₀ capturing computable mathematics

RCA₀

Robinson arithmetics

$$m + 1 \neq 0$$

$$m + 1 = n + 1 \rightarrow m = n$$

$$\neg (m < 0)$$

$$m < n + 1 \leftrightarrow (m < n \lor m = n)$$

$$m + 0 = m$$

 $m + (n + 1) = (m + n) + 1$
 $m \times 0 = 0$
 $m \times (n + 1) = (m \times n) + m$

Σ_1^0 induction scheme

 $\begin{array}{l} \varphi(\mathbf{0}) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \\ \Rightarrow \forall n\varphi(n) \end{array}$

where $\varphi(n)$ is Σ_1^0

Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \Rightarrow \exists X \forall n(n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is Σ_1^0 with free *X*, and ψ is Π_1^0 .

REVERSE MATHEMATICS

Mathematics are computationally very structured

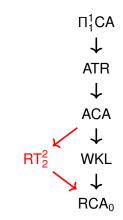
Almost every theorem is empirically equivalent to one among five big subsystems. П¹CA ATR ACA WKL RCA₀

REVERSE MATHEMATICS

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...

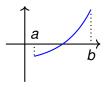




Many theorems can be seen as problems.

Intermediate value theorem

For every continuous function f over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.



König's lemma

Every infinite, finitely branching tree admits an infinite path.

A problem P has a collection of instances $\mathcal{I}(P)$. Every instance *I* has set of solutions $\mathcal{S}(I)$.

$$\mathcal{I}(\mathsf{RT}_k^n) = \{f : [\mathbb{N}]^n \to k\}$$

 $S(f) = \{ \text{ infinite } f \text{-homogeneous set } \}$

 $[X]^{\omega}$ denotes the set of infinite subsets of X

A problem P is of Ramsey-type if for every instance *I*, the set of solutions is dense and closed downward in $([\mathbb{N}]^{\omega}, \subseteq)$:

$$orall X \in [\mathbb{N}]^{\omega}, \ [X]^{\omega} \cap \mathcal{S}(I) \neq \emptyset$$
 $orall X \in \mathcal{S}(I), \ [X]^{\omega} \subseteq \mathcal{S}(I)$

We can solve Ramsey-type problems simultaneously.

Given two Ramsey-type problems P and Q, define the problem

$$\mathsf{P} \cap \mathsf{Q} = \begin{cases} \mathcal{I}(\mathsf{P} \cap \mathsf{Q}) = \mathcal{I}(\mathsf{P}) \times \mathcal{I}(\mathsf{Q}) \\ \\ \mathcal{S}(I, J) = \mathcal{S}(I) \cap \mathcal{S}(J) \end{cases}$$

What sets can encode Ramsey's theorem?

Fix a problem P.

A set *S* is P-encodable if there is an instance of P such that every solution computes *S*.

What sets can encode an instance of RT_k^n ?

A function f is a modulus of a set S if every function dominating f computes S.

A set *S* is computably encodable if for every infinite set *X*, there is an infinite subset $Y \subseteq X$ computing *S*.

Thm (Solovay, Groszek and Slaman)

Given a set S, TFAE

- ► S is computably encodable
- ► S admits a modulus
- ► *S* is hyperarithmetic

INTRODUCTION	ENCODING SETS	SIMPLE SOLUTIONS	COMPARING PROBLEMS	OPEN QUESTI	IONS
Thm (Jo	ockusch)				
A set is	A set is RT_k^n -encodable for some $n \ge 2$ iff it is hyperarithmetic.				

Intro	DUCTION	ENCODING SETS	SIMPLE SOLUTIONS	COMPARING PROBLEMS	OPEN QUESTIONS
	Thm (Joo	ckusch)			
	A set is	RT ⁿ _k -encodabl	e for some $n \ge 2$	2 iff it is hyperarithr	netic.
	Proof (⇒).			
	Let <i>g</i> : [compute	-	coloring whose h	omogeneous sets	
		very infinite se nputably encod	t has a homoger dable.	neous subset,	

Thus S is hyperarithmetic.

INTRODUCTION	ENCODING SETS	SIMPLE SOLUTIONS	COMPARING PROBLEMS	OPEN QUESTIONS
Thm (Jo	ockusch)			

A set is RT_k^n -encodable for some $n \ge 2$ iff it is hyperarithmetic.

Proof (⇐).

Let *S* be hyperarithmetic with modulus μ_S .

Define $g : [\omega]^2 \to 2$ by g(x, y) = 1 iff $y > \mu_S(x)$.

Let $H = \{x_0 < x_1 < ...\}$ be an infinite *g*-homogeneous set.

The function $p_H(n) = x_n$ dominates μ_S , hence computes *S*.

The encodability power of RT_k^n comes from the **sparsity**

of its homogeneous sets.

What about RT_k^1 ?

- 0 1 2 3 4
- 5 6 7 8 9
- 10 11 12 13 14
- 15 16 17 18 19
- 20 21 22 23 24
- 25 26 27 28

Sparsity of red implies non-sparsity of blue and conversely.

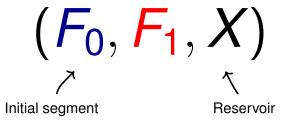
Thm (Dzhafarov and Jockusch)

A set is RT_2^1 -encodable iff it is computable.

Thm (Dzhafarov and Jockusch)

A set is RT_2^1 -encodable iff it is computable.

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$ Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$



- F_i is finite, X is infinite, max $F_i < \min X$
- ► $S \not\leq_T X$
- ► $F_i \subseteq A_i$

(Mathias condition) (Weakness property) (Combinatorics)

Extension

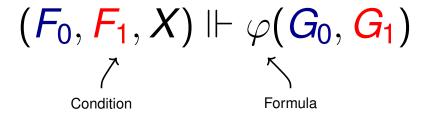
 $(\boldsymbol{E}_0, \boldsymbol{E}_1, \boldsymbol{Y}) \leq (\boldsymbol{F}_0, \boldsymbol{F}_1, \boldsymbol{X})$

- ► $F_i \subseteq E_i$
- ► $Y \subseteq X$
- $\blacktriangleright E_i \setminus F_i \subseteq X$

Satisfaction

- $\langle G_0, G_1 \rangle \in [F_0, F_1, X]$
- ► $F_i \subseteq G_i$
 - $\blacktriangleright \quad G_i \setminus F_i \subseteq X$

$[\textbf{\textit{E}}_0, \textbf{\textit{E}}_1, \textbf{\textit{Y}}] \subseteq [\textbf{\textit{F}}_0, \textbf{\textit{F}}_1, \textbf{\textit{X}}]$



 $\varphi(G_0, G_1)$ holds for every $\langle G_0, G_1 \rangle \in [F_0, F_1, X]$

Input : a set $S \leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

- Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$
- Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

$$\Phi_{e_0}^{{m G_0}}
eq See \Phi_{e_1}^{{m G_1}}
eq S$$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

$$\Phi_{e_0}^{\mathsf{G}_0}
eq S \lor \Phi_{e_1}^{\mathsf{G}_1}
eq S$$

The set
$$\begin{cases} c: c \Vdash (\exists x) \quad \Phi_{e_0}^{G_0}(x) \downarrow \neq S(x) \lor \Phi_{e_0}^{G_0}(x) \uparrow \\ & \lor \quad \Phi_{e_1}^{G_1}(x) \downarrow \neq S(x) \lor \Phi_{e_1}^{G_1}(x) \uparrow \end{cases}$$
 is dense

FIRST ATTEMPT

Given a condition $c = (F_0, F_1, X)$, suppose the formula

$$arphi(x,n) = (\exists d \leq c)d \Vdash \Phi^{G_0}_{e_0}(x) \downarrow = n$$

is $\Sigma_1^{0,X}$ (it is not). Then the set

$$\mathcal{C} = \{(\mathbf{x}, \mathbf{n}) : \varphi(\mathbf{x}, \mathbf{n})\}$$

is X-c.e.

FIRST ATTEMPT

$$\mathcal{C} = \{(\mathbf{x}, \mathbf{n}) : \varphi(\mathbf{x}, \mathbf{n})\}$$

Σ_1 case	Π_1 case	Impossible case
$(\exists x)(x,1-S(x))\in \mathcal{C}$	$(\exists x)(x, S(x)) ot\in C$	$(orall x)(x,1-S(x)) ot\in \mathcal{C}$ $(orall x)(x,S(x))\in \mathcal{C}$
Then $\exists d \leq c$ such that $d \Vdash \Phi^{G_0}_{e_0}(x) \downarrow = 1 - S(x)$	Then $c \Vdash \Phi^{G_0}_{_{\mathcal{B}_0}}(x) eq S(x)$	Then since C is X-c.e $S \leq_T X \notin$

THE FIRST ATTEMPT FAILS

Given a condition $c = (F_0, F_1, X)$, the formula

$$arphi(x,n) = (\exists d \leq c)d \Vdash \Phi^{G_0}_{e_0}(x) \downarrow = n$$

is too complex because it can be translated in

$$(\exists \textit{E}_0 \subseteq \textit{X} \cap \textit{A}_0) \Phi_{e_0}^{\textit{F}_0 \cup \textit{E}_0}(x) \downarrow = n$$

which is $\Sigma_1^{0,A\oplus X}$ and not $\Sigma_1^{0,X}$.

IDEA: MAKE AN OVERAPPROXIMATION

"Can we find an extension for every instance of RT₂?"

Given a condition $c = (F_0, F_1, X)$, let $\psi(x, n)$ be the formula

 $(\forall B_0 \sqcup B_1 = \mathbb{N})(\exists i < 2)(\exists E_i \subseteq X \cap B_i) \Phi_{e_i}^{F_i \cup E_i}(x) \downarrow = n$

$$\psi(\boldsymbol{x},\boldsymbol{n})$$
 is $\Sigma_1^{0,X}$

Case 1: $\psi(x, n)$ holds

Letting $B_i = A_i$, there is an extension $d \le c$ forcing

$$\Phi_{e_0}^{\mathbf{G}_0}(x) \downarrow = n \lor \Phi_{e_1}^{\mathbf{G}_1}(x) \downarrow = n$$

Case 2: $\psi(x, n)$ does not hold $(\exists B_0 \sqcup B_1 = \mathbb{N})(\forall i < 2)(\forall E_i \subseteq X \cap B_i)\Phi_{e_i}^{F_i \cup E_i}(x) \neq n$ The condition $(F_0, F_1, X \cap B_i) \leq c$ forces

$$\Phi_{e_0}^{G_0}(x) \neq n \lor \Phi_{e_1}^{G_1}(x) \neq n$$

SECOND ATTEMPT

$$\mathcal{D} = \{(\mathbf{x}, \mathbf{n}) : \psi(\mathbf{x}, \mathbf{n})\}$$

Σ_1 case	Π_1 case	Impossible case
$(\exists x)(x,1-S(x))\in \mathcal{D}$	$(\exists x)(x, S(x)) ot\in \mathcal{D}$	$(\forall x)(x, 1 - S(x)) \not\in \mathcal{D}$
		$(orall x)(x,\mathcal{S}(x))\in\mathcal{D}$
Then $\exists d \leq c \; \exists i < 2$	Then $\exists d \leq c \ \exists i < 2$	Then since \mathcal{D} is X-c.e
$d \Vdash \Phi^{G_i}_{e_i}(x) \downarrow = 1 - S(x)$	$\textit{d} \Vdash \Phi_{e_i}^{G_i}(x) eq S(x)$	$S \leq_T X$ 4

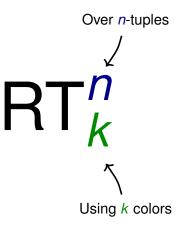
CJS ARGUMENT

- Context: We build a solution *G* to a P-instance *X*
 - Goal: Decide a property $\varphi(G)$.
- Question: For every P-instance Y, can I find a solution G satisfying $\varphi(G)$?
 - If yes: In particular for Y = X, I can satisfy $\varphi(G)$.
 - If no: If no: By making G be a solution to X and Y simultaneously, I will satisfy $\neg \varphi(G)$.

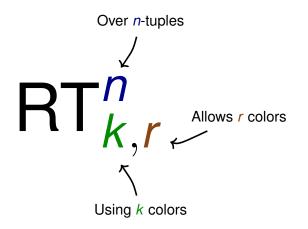
Mathias forcing with a CJS argument

are sufficient to compare Ramsey-type statements.

RAMSEY'S THEOREM



RAMSEY'S THEOREM



INTRODUCTION	ENCODING SETS	SIMPLE SOLUTIONS	COMPARING PROBLEMS	OPEN QUESTIONS

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $RT^n_{k,\ell}$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

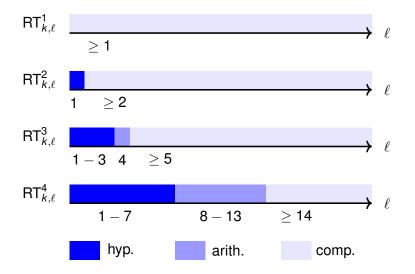
Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $RT^n_{k,\ell}$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Cholak, P.)

A set is $RT_{k,\ell}^n$ -encodable iff it is arithmetic for medium ℓ

$RT^n_{k,\ell}$ -ENCODABLE SETS



How simple can be the solutions of a computable instance of RT_k^n ?

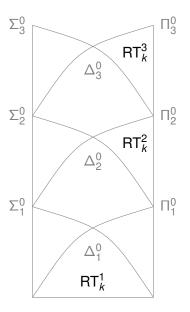
Fix some $n \ge 2$.

Thm (Jockusch)

Every computable instance of RT_k^n has a Π_n^0 solution.

Thm (Jockusch)

There is a computable instance of RT_k^n with no Σ_n^0 solution.



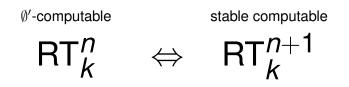
 $f : [\mathbb{N}]^{n+1} \to k$ is stable if for every $\sigma \in [\mathbb{N}]^n$, $\lim_y f(\sigma, y)$ exists.

If
$$f : [\mathbb{N}]^{n+1} \to k$$
 is stable, define $\tilde{f}(\sigma) = \lim_{y} f(\sigma, y)$.

Given a problem P, define its jump

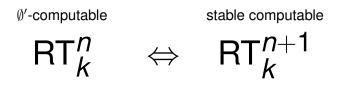
$$\mathsf{J}(\mathsf{P}) = \begin{cases} \mathcal{I}(\mathsf{J}(\mathsf{P})) = \{f : \tilde{f} \in \mathcal{I}(\mathsf{P})\} \\ \\ \mathcal{S}_{\mathsf{J}(\mathsf{P})}(f) = \mathcal{S}_{\mathsf{P}}(\tilde{f}) \end{cases}$$

 SRT_k^n : RT_k^n restricted to stable colorings.

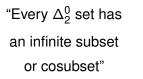


 SRT_2^2

 SRT_k^n : RT_k^n restricted to stable colorings.



 \Rightarrow



A set *S* is computably P-encodable if there is a computable instance of P whose solutions compute *S*.

Thm

 \emptyset' is computably $J(RT_2^2)$ -encodable.

$$f(x,y) = \left\{egin{array}{cc} 1 & ext{if } y \geq \mu_{\emptyset'}(x) \ 0 & ext{otherwise} \end{array}
ight.$$

Cor (Jockusch)

 $\emptyset^{(n)}$ is computably RT_2^{n+2} -encodable.

Given a problem P, define its finite-error version

$$\mathsf{P}^* = \begin{cases} \mathcal{I}(\mathsf{P}^*) = \mathcal{I}(\mathsf{P}) \\ \\ \mathcal{S}_{\mathsf{P}^*}(I) = \{ Y : \exists Z \in \mathcal{S}_{\mathsf{P}}(I), \ Z =^* Y \} \end{cases}$$

Given a problem P, define its finite-error version

$$\mathsf{P}^* = \begin{cases} \mathcal{I}(\mathsf{P}^*) = \mathcal{I}(\mathsf{P}) \\ \\ \mathcal{S}_{\mathsf{P}^*}(I) = \{ Y : \exists Z \in \mathcal{S}_{\mathsf{P}}(I), \ Z =^* Y \} \end{cases}$$

An infinite set *C* is \vec{R} -cohesive for some sets R_0, R_1, \ldots if for every *i*, either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R}_i$.

 $\bigcap RT_2^{1*}$: Every collection of sets has a cohesive set.

RT_k^{n+1} follows from $\bigcap RT_2^{1*}$ and $J(RT_k^n)$.

RT_k^{n+1} follows from $\bigcap RT_2^{1*}$ and $J(RT_k^n)$.

Given $f : [\mathbb{N}]^{n+1} \to k$, define $\langle R_{\sigma,c} : \sigma \in [\mathbb{N}]^n, c < k \rangle$ by

$$R_{\sigma,c} = \{ \mathbf{y} : f(\sigma, \mathbf{y}) = \mathbf{c} \}$$

By $\bigcap \mathsf{RT}_2^{1*}$, there is an \vec{R} -cohesive set *C*.

RT_k^{n+1} follows from $\bigcap RT_2^{1*}$ and $J(RT_k^n)$.

Given $f : [\mathbb{N}]^{n+1} \to k$, define $\langle R_{\sigma,c} : \sigma \in [\mathbb{N}]^n, c < k \rangle$ by

$$\boldsymbol{R}_{\sigma,\boldsymbol{c}} = \{\boldsymbol{y} : \boldsymbol{f}(\sigma,\boldsymbol{y}) = \boldsymbol{c}\}$$

By $\bigcap \mathsf{RT}_2^{1*}$, there is an \vec{R} -cohesive set *C*.

 $f[C]^{n+1} \rightarrow k$ is an instance of $J(RT_k^n)$

By $J(RT_k^n)$, there is an infinite \tilde{f} -homogeneous set H

 $H \oplus C$ computes an infinite *f*-homogeneous set

A set S is (computably) P-encodable if there is a (computable) instance of P whose solutions compute S.

Thm (Dzhafarov, Jockusch; Wang)

The RT_k^1 -encodable and the $\bigcap RT_2^{1*}$ -encodable sets are the computable ones.

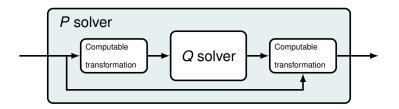
Cor (Seetapun)

The computably RT_k^2 -encodable sets are the computable ones.

The combinatorial features of RT_k^n reveal the computational features of RT_k^{n+1}

How do Ramsey-type problems compare?

COMPUTABLE REDUCTION



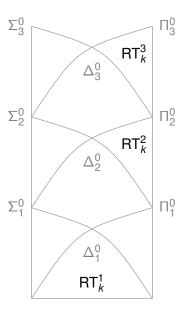
 $\mathsf{P} \leq_{\mathsf{C}} \mathsf{Q}$

Every P-instance *I* computes a Q-instance *J* such that for every solution *X* to *J*, $X \oplus I$ computes a solution to *I*.

Thm (Jockusch)

For every $n \ge 1$, $\operatorname{RT}_{k}^{n+1} \not\leq_{c} \operatorname{RT}_{k}^{n}$.

Proof: $\operatorname{RT}_{k}^{n}$ has Π_{n}^{0} solutions, but $\operatorname{RT}_{k}^{n+1}$ doesn't.



A function *f* is hyperimmune if it is not dominated by a computable function.

A function *f* is hyperimmune if it is not dominated by a computable function.

A problem P preserves ℓ among *k* hyperimmunities if for every *k*-tuple f_1, \ldots, f_k of hyperimmune functions and every computable P-instance *I*, there is a solution *Y* such that at least ℓ among *k* of the f_i are *Y*-hyperimmune.

A function *f* is hyperimmune if it is not dominated by a computable function.

A problem P preserves ℓ among *k* hyperimmunities if for every *k*-tuple f_1, \ldots, f_k of hyperimmune functions and every computable P-instance *I*, there is a solution *Y* such that at least ℓ among *k* of the f_i are *Y*-hyperimmune.

Thm (P.) RT_k^2 preserves 2 among k + 1 hyperimmunities, but not RT_{k+1}^2 . Cor (P.) $RT_{k+1}^2 \leq_c RT_k^2$.

What is left?

Have we found the right framework?

Can Mathias forcing and the CJS argument answer all the Ramsey-type questions? The CJS argument applied to RT_2^1 yields solutions to $\bigcap RT_2^{1*}$.

Fix a computable sequence of sets R_0, R_1, \ldots

Is there a set *X*, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ computes an \overline{R} -cohesive set?

A set X is high if $X' \ge_T \emptyset''$.

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ is high?

If yes, then $\bigcap \mathsf{RT}_2^{1*} \leq_{oc} \mathsf{RT}_2^1$.

If no, well, this is still interesting per se.

A set S is P-jump-encodable if there is an instance of P such that the jump of every solution computes S.

Are the RT_2^1 -jump-encodable sets precisely the \emptyset' -computable ones?

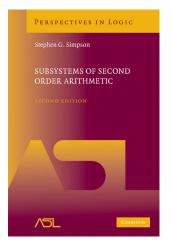
CONCLUSION

We have a minimalistic framework which answers accurately many questions about Ramsey's theorem.

Ramsey-type problems compute through sparsity.

The computational properties of Ramsey-type problems are often immediate consequences of their combinatorics.

We understand what the Ramsey-type problems compute, but ignore what the jump of their solutions compute.



SLICING THE TRUTH

On the Computable and Reverse Mathematics of Combinatorial Principles

látur: Chitat Chang • Qi Feng • Theodore & Slaman • W Hagh Weadin • Yao Yang Copyrighted Material

Subsystems of second-order arithmetic

Slicing the truth

REFERENCES

- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, 66(01):1–55, 2001.
 - Carl G. Jockusch.

Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–280, 1972.

Ludovic Patey.

The reverse mathematics of Ramsey-type theorems. PhD thesis, Université Paris Diderot, 2016.

Wei Wang.

Some logically weak Ramseyan theorems. Advances in Mathematics, 261:1–25, 2014.