The reverse mathematics of non-decreasing sequences

Ludovic PATEY UC Berkeley

S&P 500 Index INDEXCBOE: .INX - Nov 9, 4:01 PM EST

Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a computable function such that

$$\forall x, s \quad f(x, s+1) \leq f(x, s)$$

Let X be an infinite non-decreasing subsequence for

$$\tilde{f}(x) = \lim_{s} f(x, s)$$

~ /

How complicated must such an *X* be?

Identify the right abstraction of the problem

There is a Δ_2^0 function $g : \mathbb{N} \to \mathbb{N}$ for which every non-decreasing subsequence computes \emptyset' .

A function $g : \mathbb{N} \to \mathbb{N}$ is computably bounded if it is dominated by a computable function.

LNS

For every computable function such that $f(x, s + 1) \le f(x, s)$ there is a non-decreasing sequence for $\tilde{f}(x) = \lim_{s} f(x, s)$.

CNS

Every computably bounded Δ_2^0 function has an infinite non-decreasing sequence.

 \hat{f} is Δ_2^0 and dominated by h(x) = f(x, 0).

Theorem (P.)

For every Δ_2^0 computably dominated function

- ► there is a cone avoiding solution
- there is a solution which is low_2
- ▶ there is a solution computing no Martin-Löf random

Corollary $RCA_0 + CNS \nvDash WWKL$

- *F* is finite, *X* is infinite, $\max F < \min X$
- $\blacktriangleright \ X \in \mathcal{M} \models \mathsf{WKL} \land \mathsf{D}_2^2$
- ▶ $\forall x \in X, F \cup \{x\}$ is non-decreasing

(Mathias condition) (Weakness property) (Combinatorics)

Forcing infinity

Instance : a Δ_2^0 function *f* dominated by *h* Context : a condition (*F*, *X*)

- Pick $x \in X$
- Let $g(y) = \min(f(y), f(x))$
- Apply $D_{f(x)+1}^2$ and get a set *Y* and a color *c*
- If c < f(x), *Y* is our solution
- ▶ If c = f(x), take $(F \cup \{x\}, Y)$

Forcing Σ_1^0 formulas

Instance : a Δ_2^0 function *f* dominated by *h* Context : a condition (*F*, *X*) and a Σ_1^0 formula $\varphi(G)$

 $\mathcal{C} = \{g \text{ dom by } h : (\forall E \text{ non-decreasing } \subseteq X) \neg \varphi(F \cup E)\}$

If $\mathcal{C} \neq \emptyset$

- ▶ Apply WKL and get $g \in C$
- Get a non-decreasing subsequence $Y \subseteq X$ for g
- The condition (F, Y) forces $\neg \varphi(G)$

Forcing Σ_1^0 formulas

Instance : a Δ_2^0 function *f* dominated by *h* Context : a condition (*F*, *X*) and a Σ_1^0 formula $\varphi(G)$

 $\mathcal{C} = \{g \text{ dom by } h : (\forall E \text{ non-decreasing } \subseteq X) \neg \varphi(F \cup E)\}$

If $\mathcal{C}=\emptyset$

- ▶ In particular $f \notin C$.
- ► Take $E \subseteq X$ non-decreasing for f such that $\varphi(F \cup E)$
- Using D_2^2 to obtain *Y* such that $(F \cup E, Y)$ is a condition

A function $g : \mathbb{N} \to \mathbb{N}$ is eventually increasing if for each $y \in \mathbb{N}$, the preimage of $\{y\}$ by g is finite.

LNS

For every computable function such that $f(x, s + 1) \le f(x, s)$ there is a non-decreasing sequence for $\tilde{f}(x) = \lim_{s} f(x, s)$.

ICNS

Every eventually increasing, computably bounded Δ_2^0 function has an infinite non-decreasing sequence.

If *f* is not eventually increasing, it has a computable solution.

A function $g : \mathbb{N} \to \mathbb{N}$ is *X*-hyperimmune if it is not dominated by any *X*-computable function.

Theorem (P.)

Let g_0, g_1, \ldots be hyperimmune functions. For every eventually increasing, computably dominated Δ_2^0 function, there is a solution H such that the g's are H-hyperimmune.

Corollary $RCA_0 + ICNS + EM + WKL \nvDash SADS$

The strength of non-decreasing sequences

A function $g : \mathbb{N} \to \mathbb{N}$ is diagonally non-computable (DNC) if $g(e) \neq \Phi_e(e)$ for every $e \in \mathbb{N}$.

Theorem (Liang Yu)

There is a computable function satisfying $f(x, s + 1) \le f(x, s)$ such that every infinite non-decreasing sequence for \tilde{f} computes a DNC function.

Proof: f(x, s) = plain Kolmovorov complexity of x at stage s.

A function $g : \mathbb{N} \to \mathbb{N}$ is hyperimmune if it is not dominated by any computable function.

Theorem (P.)

There is a computable function satisfying $f(x, s + 1) \le f(x, s)$ such that every infinite non-decreasing sequence for \tilde{f} computes a hyperimmune function.

Proof: by a finite injury priority argument.

A function *f* is *X*-hypersurjective if there is an infinite $L \subseteq \mathbb{N}$ such that for every *X*-computable array A_0, A_1, \ldots and every $y \in L, f[A_i] = \{y\}$ for some $i \in \mathbb{N}$.

Theorem (P.) *Fix f hypersurjective. Every computable instance of* WKL *and* RT_2^2 *has a solution* H *such that f is* H-hypersurjective.

Corollary $\mathsf{RCA}_0 + \mathsf{RT}_2^2 + \mathsf{WKL} \nvDash \mathsf{CNS}$

REFERENCES

Damir D. Dzhafarov and Noah Schweber. Finding limit-nondecreasing sets for certain functions. http://mathoverflow.net/questions/227766/ finding-limit-nondecreasing-sets-for-certain-functions/, 2016.

Denis R. Hirschfeldt.

Some questions in computable mathematics. To appear, 2016.

Ludovic Patey.

The reverse mathematics of non-decreasing subsequences. Archive for Mathematical Logic, 2017.