Can we fish with Mathias forcing?

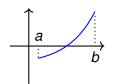
Ludovic PATEY

September 8, 2017

Many theorems can be seen as problems.

Intermediate value theorem

For every continuous function f over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.



König's lemma

Every infinite, finitely branching tree admits an infinite path.

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

$$RCA_0 \vdash A \leftrightarrow T$$

in a very weak theory RCA₀ capturing computable mathematics

RCA₀

Robinson arithmetics

$$m+1 \neq 0$$

 $m+1 = n+1 \rightarrow m = n$
 $\neg (m < 0)$
 $m < n+1 \leftrightarrow (m < n \lor m = n)$

$$m + (n + 1) = (m + n) + 1$$

 $m \times 0 = 0$
 $m \times (n + 1) = (m \times n) + m$

m + 0 = m

Σ_1^0 induction scheme

$$\varphi(0) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \Rightarrow \forall n\varphi(n)$$

where $\varphi(n)$ is Σ_1^0

Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \Rightarrow \exists X \forall n(n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is Σ_1^0 with free X, and ψ is Π_1^0 .

REVERSE MATHEMATICS

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems. П¹СА **ATR ACA** WKL

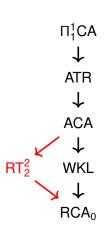
RCA₀

REVERSE MATHEMATICS

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...



RAMSEY'S THEOREM

 $[X]^n$ is the set of unordered *n*-tuples of elements of X

A *k*-coloring of $[X]^n$ is a map $f: [X]^n \to k$

A set $H \subseteq X$ is homogeneous for f if $|f([H]^n)| = 1$.

Every k-coloring of $[\mathbb{N}]^n$ admits an infinite homogeneous set.

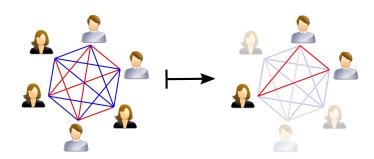
PIGEONHOLE PRINCIPLE

Every k-partition of \mathbb{N} admits an infinite part.

```
0 1 2 3 4 0 1 2 3 4 5 6 7 8 9 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 26 27 28 .... 25 26 27 28 ....
```

RAMSEY'S THEOREM FOR PAIRS

 RT^2_k Every k-coloring of the infinite clique admits an infinite monochromatic subclique.



$$\mathsf{RCA}_0 \nvdash \mathsf{RT}_2^2 \to \mathsf{ACA}_{(\mathsf{Seetapun})}$$

By preserving a weakness property using a proto version of the CJS argument.

A weakness property is a collection of sets closed downwards under the Turing reduction.

Examples

► {*X* : *X* is low}

▶ $\{X : A \not\leq_T X\}$ for some set A

► {*X* : *X* is hyperimmune-free}

Fix a weakness property W.

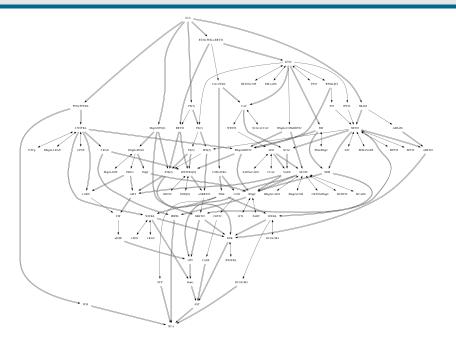
A problem P preserves W if for every $Z \in W$, every Z-computable P-instance X has a solution Y such that $Y \oplus Z \in W$

Lemma

If P preserves $\mathcal W$ but Q does not, then $\mathsf{RCA}_0 \nvdash \mathsf{P} \to \mathsf{Q}$

$$\mathsf{RCA}_0 \nvdash \mathsf{RT}_2^2 \to \mathsf{ACA}_{(\mathsf{Seetapun})}$$

By preserving $W = \{X : X \text{ is incomplete }\}$ using a proto version of the CJS argument.



Separations are often achieved by preserving weakness properties using canonical notions of forcing

Separations by weakness properties

- ► WKL ⊬_c ACA
- $ightharpoonup RT_2^2 \not\vdash_c ACA$
- ightharpoonup EM $varphi_c$ RT₂²
- ► EM \forall_c TS²
- ightharpoonup TS² $\not\vdash_c$ RT₂²
- $ightharpoonup RT_2^2 \not\vdash_c TT_2^2$
- ► $RT_2^2 \not\vdash_c WWKL$
- ▶ ..

(cone avoidance)

(cone avoidance)

(2 hyperimmunities)

(ω hyperimmunities)

(2 hyperimmunities)

(fairness property)

(c.b-enum avoidance)

A notion of forcing \mathbb{P} is canonical for a problem P if the properties preserved by the problem and by the notion of forcing coincide.

Restriction to classes of properties

FAMILIES OF PROPERTIES

Effectiveness

- ▶ Lowness
- Hyperimmunefreeness
- ► Hyperarithmetic
- •

Genericity

- ▶ Cone avoidance
- ► Preservation of non- Σ_n^0 definitions
- Preservation of hyperimmunity
- **>** ..

EXAMPLE

 $\mathcal P$ is an open genericity property if $\mathcal P$ is the set of oracles which do not compute a member of a fixed closed set $\mathcal C \subseteq \omega^\omega$

Contains already all the genericity properties used in reverse mathematics.

Theorem (Hirschfeldt and P.)

WKL and the notion of forcing with Π_1^0 classes preserve the same open genericity properties

Mathias forcing with a CJS argument

are sufficient to analyse Ramsey-type statements.

 $[X]^{\omega}$ denotes the set of infinite subsets of X

A problem P is of Ramsey-type if for every instance I, the set of solutions is dense and closed downward in ($[\mathbb{N}]^{\omega}$, \subseteq):

$$\forall X \in [\mathbb{N}]^{\omega}, \ [X]^{\omega} \cap \mathcal{S}(I) \neq \emptyset$$

 $\forall X \in \mathcal{S}(I), \ [X]^{\omega} \subseteq \mathcal{S}(I)$

We can solve Ramsey-type problems simultaneously.

Given two Ramsey-type problems P and Q, define the problem

$$\mathsf{P}\cap\mathsf{Q}=\left\{\begin{array}{l} \mathcal{I}(\mathsf{P}\cap\mathsf{Q})=\mathcal{I}(\mathsf{P})\times\mathcal{I}(\mathsf{Q})\\ \mathcal{S}(\mathit{I},\mathit{J})=\mathcal{S}(\mathit{I})\cap\mathcal{S}(\mathit{J}) \end{array}\right.$$

Thm (Dzhafarov and Jockusch)

If a set S is not computable, then for every set A, there is an infinite set $G \subseteq A$ or $G \subseteq \overline{A}$ such that $S \not\leq_{\mathcal{T}} G$.

Thm (Dzhafarov and Jockusch)

If a set S is not computable, then for every set A, there is an infinite set $G \subseteq A$ or $G \subseteq \overline{A}$ such that $S \not\leq_{\mathcal{T}} G$.

Input: a set $S \not\leq_{\mathcal{T}} \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_{\mathcal{T}} G$

$$(F_0, F_1, X)$$
Initial segment Reservoir

- ▶ F_i is finite, X is infinite, $\max F_i < \min X$
- \triangleright $S \not\leq_T X$
- $ightharpoonup F_i \subseteq A_i$

(Mathias condition)

(Weakness property)

(Combinatorics)

Extension

$$(E_0, E_1, Y) \leq (F_0, F_1, X)$$

- $ightharpoonup F_i \subseteq E_i$
- $ightharpoonup Y \subseteq X$
- $ightharpoonup E_i \setminus F_i \subseteq X$

Satisfaction

$$\langle G_0, G_1 \rangle \in [F_0, F_1, X]$$

- $ightharpoonup F_i \subseteq G_i$
- $ightharpoonup G_i \setminus F_i \subseteq X$

$$[\textbf{\textit{E}}_0,\textbf{\textit{E}}_1,Y]\subseteq [\textbf{\textit{F}}_0,\textbf{\textit{F}}_1,X]$$

$$(F_0, F_1, X) \Vdash \varphi(G_0, G_1)$$
Condition Formula

$$\varphi(G_0, G_1)$$
 holds for every $\langle G_0, G_1 \rangle \in [F_0, F_1, X]$

Input: a set $S \not\leq_{\mathcal{T}} \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $S \not\leq_{\mathcal{T}} G$

Input: a set $S \not\leq_{\mathcal{T}} \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output: an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

$$\Phi_{e_0}^{G_0}
eq S \lor \Phi_{e_1}^{G_1}
eq S$$

Input: a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output: an infinite set $G \subseteq A_i$ such that $S \not\leq_T G$

$$\Phi_{e_0}^{G_0}
eq S \lor \Phi_{e_1}^{G_1}
eq S$$

FIRST ATTEMPT

Given a condition $c = (F_0, F_1, X)$, suppose the formula

$$\varphi(x,n) = (\exists d \leq c)d \Vdash \Phi_{e_0}^{G_0}(x) \downarrow = n$$

is $\Sigma_1^{0,X}$ (it is not). Then the set

$$\mathcal{C} = \{(\mathbf{x}, \mathbf{n}) : \varphi(\mathbf{x}, \mathbf{n})\}$$

is X-c.e.

FIRST ATTEMPT

$$\mathcal{C} = \{(\mathbf{x}, \mathbf{n}) : \varphi(\mathbf{x}, \mathbf{n})\}$$

∠ ₁ case	II1 Case	impossible case
$(\exists x)(x,1-S(x))\in \mathcal{C}$	$(\exists x)(x,S(x)) \not\in \mathcal{C}$	$(\forall x)(x, 1 - S(x)) \not\in C$
		$(\forall x)(x,S(x))\in\mathcal{C}$
Then $\exists d \leq c$ such that	Then	Then since C is X -c.e
$d \Vdash \Phi_{e_0}^{G_0}(x) \downarrow = 1 - S(x)$	$c \Vdash \Phi_{e_0}^{G_0}(x) eq S(x)$	$S \leq_{\mathcal{T}} X$

Impossible sees

THE FIRST ATTEMPT FAILS

Given a condition $c = (F_0, F_1, X)$, the formula

$$\varphi(x,n) = (\exists d \leq c)d \Vdash \Phi_{e_0}^{G_0}(x) \downarrow = n$$

is too complex because it can be translated in

$$(\exists E_0 \subseteq X \cap A_0) \Phi_{e_0}^{F_0 \cup E_0}(x) \downarrow = n$$

which is $\Sigma_1^{0,A\oplus X}$ and not $\Sigma_1^{0,X}$.

IDEA: MAKE AN OVERAPPROXIMATION

"Can we find an extension for every instance of RT₂?"

Given a condition $c = (F_0, F_1, X)$, let $\psi(x, n)$ be the formula

$$(\forall B_0 \sqcup B_1 = \mathbb{N})(\exists i < 2)(\exists E_i \subseteq X \cap B_i) \Phi_{e_i}^{F_i \cup E_i}(x) \downarrow = n$$

$$\psi(\mathbf{x},\mathbf{n})$$
 is $\Sigma_1^{0,X}$

Case 1: $\psi(x, n)$ holds

Letting $B_i = A_i$, there is an extension $d \le c$ forcing

$$\Phi_{e_0}^{G_0}(x) \downarrow = n \vee \Phi_{e_1}^{G_1}(x) \downarrow = n$$

Case 2: $\psi(x, n)$ does not hold

$$(\exists B_0 \sqcup B_1 = \mathbb{N})(\forall i < 2)(\forall E_i \subseteq X \cap B_i) \Phi_{e_i}^{F_i \cup E_i}(x) \neq n$$

The condition $(F_0, F_1, X \cap B_i) \leq c$ forces

$$\Phi_{e_0}^{G_0}(x) \neq n \vee \Phi_{e_1}^{G_1}(x) \neq n$$

SECOND ATTEMPT

T. 0200

$$\mathcal{D} = \{ (\mathbf{x}, \mathbf{n}) : \psi(\mathbf{x}, \mathbf{n}) \}$$

∠ ₁ case	III Case	illipossible case
$(\exists x)(x,1-S(x))\in \mathcal{D}$	$(\exists x)(x,S(x)) \not\in \mathcal{D}$	$(\forall x)(x, 1 - S(x)) \not\in \mathcal{D}$
		$(\forall x)(x,S(x))\in\mathcal{D}$
Then $\exists d \leq c \ \exists i < 2$	Then $\exists d \leq c \ \exists i < 2$	Then since \mathcal{D} is X -c.e
$d \Vdash \Phi_{e_i}^{G_i}(x) \downarrow = 1 - S(x)$	$d \Vdash \Phi_{e_i}^{G_i}(x) eq \mathcal{S}(x)$	$S \leq_{\mathcal{T}} X \not\sim$

□. caea

Impossible case

CJS ARGUMENT

Context: We build a solution G to a P-instance X

Goal: Decide a property $\varphi(G)$.

Question: For every P-instance Y, can I find a solution G

satisfying $\varphi(G)$?

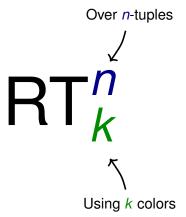
If yes: In particular for Y = X, I can satisfy $\varphi(G)$.

If no: If no: By making G be a solution to X and Y

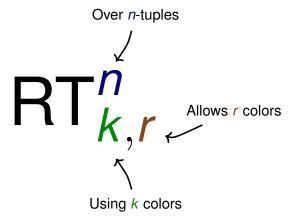
simultaneously, I will satisfy $\neg \varphi(G)$.

Separations of Ramsey-type statements using the CJS argument often yield tight bounds

RAMSEY'S THEOREM



RAMSEY'S THEOREM



Fix a problem P.

A set S is P-encodable if there is an instance of P such that every solution computes S.

What sets can encode an instance of RT_k^n ?

Thm (Wang)

A set is $\mathrm{RT}^n_{k,\ell}$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the nth Schröder Number)

Thm (Wang)

A set is $RT_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the nth Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $RT_{k,\ell}^n$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Wang)

A set is $RT_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the nth Schröder Number)

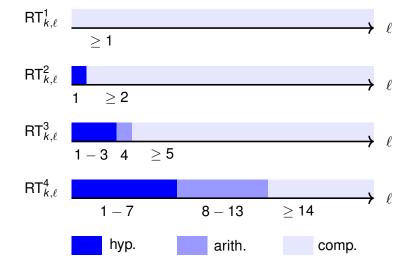
Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $RT_{k,\ell}^n$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Cholak, P.)

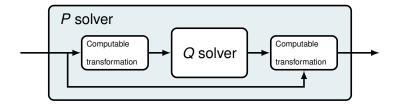
A set is $RT_{k,\ell}^n$ -encodable iff it is arithmetic for medium ℓ

$\mathsf{RT}^n_{k,\ell}$ -ENCODABLE SETS



The CJS argument applies to many frameworks

COMPUTABLE REDUCTION



$$P \leq_{\mathcal{C}} Q$$

Every P-instance I computes a Q-instance J such that for every solution X to J, $X \oplus I$ computes a solution to I.

A function *f* is hyperimmune if it is not dominated by a computable function.

A problem P preserves ℓ among k hyperimmunities if for every k-tuple f_1, \ldots, f_k of hyperimmune functions and every computable P-instance I, there is a solution Y such that at least ℓ among k of the f_i are Y-hyperimmune.

Thm (P.)

 RT_k^2 preserves 2 among k + 1 hyperimmunities, but not RT_{k+1}^2 .

Cor (P.)

$$\mathsf{RT}^2_{k+1} \not\leq_{\mathcal{C}} \mathsf{RT}^2_{k}.$$

How many applications needed to prove that $RCA_0 \vdash RT_2^2 \rightarrow RT_5^2$?

Take an RT $_5^2$ -instance which does not preserve 2 among 5 hyperimmune sets A_0, \ldots, A_4 .

# of apps of RT2	# of i 's such that A_i is hyperimmune
0	5
1	$\pi(5,2)=3$
2	$\pi(3,2)=2$
3	$\pi(2,2)=1$

How many applications needed to prove that $RCA_0 \vdash RT_2^2 \rightarrow RT_5^2$?

We need at least 3 applications of RT₂ to obtain RT₅.

By a standard color blindness argument, 3 applications are sufficient.

The limits of Mathias forcing and the CJS argument

 $f: [\mathbb{N}]^{n+1} \to k$ is stable if for every $\sigma \in [\mathbb{N}]^n$, $\lim_y f(\sigma, y)$ exists.

 SRT_k^n : RT_k^n restricted to stable colorings.

An infinite set C is \overline{R} -cohesive for some sets R_0, R_1, \ldots if for every i, either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R}_i$.

COH: Every collection of sets has a cohesive set.

Ø'-computable

 RT_k^n

stable computable

 RT_k^{n+1}

Ø'-computable

 RT_k^n

stable computable

 RT_k^{n+1}

"Every Δ_2^0 set has an infinite subset or cosubset"

 \Leftrightarrow

SRT₂

$$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{COH} \land \mathsf{SRT}_2^2$$
.

Given
$$f: [\mathbb{N}]^2 \to 2$$
, define $\langle R_x : x \in \mathbb{N} \rangle$ by

$$R_x = \{y : f(x, y) = 1\}$$

By COH, there is an \vec{R} -cohesive set C.

 $f: [C]^2 \rightarrow 2$ is an instance of SRT_2^2

$$\mathsf{RCA}_0 \nvdash \mathsf{COH} \to \mathsf{SRT}_2^2$$

(Hirschfeldt, Jocksuch, Kjos-Hanssen, Lempp, and Slaman)

By preserving $W = \{X : X \text{ does not compute an f-homogeneous set } \}$ using a computable Mathias forcing.

$$RCA_0 \nvdash SRT_2^2 \rightarrow COH$$

(Chong, Slaman and Yang)

Using the CJS argument in a non-standard model containing only low sets.

Turing ideal \mathcal{M}

- $\blacktriangleright (\forall X \in \mathcal{M})(\forall Y \leq_T X)[Y \in \mathcal{M}]$
- $\blacktriangleright (\forall X, Y \in \mathcal{M})[X \oplus Y \in \mathcal{M}]$

Examples

- ► {*X* : *X* is computable }
- ▶ $\{X : X \leq_T A \land X \leq_T B\}$ for some sets A and B

Let \mathcal{M} be a Turing ideal and P, Q be problems.

Satisfaction

$$\mathcal{M} \models \mathsf{P}$$

if every P-instance in \mathcal{M} has a solution in \mathcal{M} .

Computable entailment

$$P \models_{c} Q$$

if every Turing ideal satisfying P satisfies Q.

Does
$$SRT_2^2 \models_c COH$$
?

The CJS argument applied to RT₂ yields solutions to COH.

Does COH
$$\leq_c$$
 SRT₂?

Have we found the right framework?

Can Mathias forcing and the CJS argument answer all the Ramsey-type questions?

The CJS argument applied to RT₂ yields solutions to COH.

Fix a computable sequence of sets R_0, R_1, \ldots

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ computes an \overrightarrow{R} -cohesive set?

A set X is high if $X' \geq_T \emptyset''$.

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ is high?

If yes, then COH $\leq_{oc} RT_2^1$.

If no, well, this is still interesting per se.

A set *S* is P-jump-encodable if there is an instance of P such that the jump of every solution computes *S*.

Are the RT_2^1 -jump-encodable sets precisely the \emptyset' -computable ones?

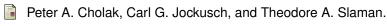
CONCLUSION

We have a minimalistic framework which answers accurately many questions about Ramsey's theorem.

This can be taken as evidence that we have found the right framework.

Does the COH vs SRT₂ question reveal the limits of the framework?

REFERENCES



On the strength of Ramsey's theorem for pairs.

Journal of Symbolic Logic, 66(01):1-55, 2001.

Carl G. Jockusch.

Ramsey's theorem and recursion theory.

Journal of Symbolic Logic, 37(2):268-280, 1972.

Ludovic Patey.

The reverse mathematics of Ramsey-type theorems.

PhD thesis, Université Paris Diderot, 2016.

Wei Wang.

Some logically weak Ramseyan theorems.

Advances in Mathematics, 261:1-25, 2014.