< □ > < @ > < E > < E > E のQ@

Ramsey's theorem and compactness

Ludovic PATEY PPS, Paris 7

January 13, 2016

THEOREMS AS PROBLEMS

Many theorems P are of the form

 $(\forall X)[\Phi(X) \to (\exists Y)\Psi(X,Y)]$

where Φ and Ψ are arithmetic formulas.

We may think of P as a class of problems.

- An *X* such that $\Phi(X)$ holds is an instance.
- A Y such that $\Psi(X, Y)$ holds is a solution to X.

THEOREMS AS PROBLEMS

Examples:

- (König's lemma)
 Every infinite, finitely branching tree has an infinite path.
- (Ramsey's theorem)
 Every *k*-coloring has an infinite monochromatic subset.
- (The atomic model theorem)
 Every complete atomic theory has an atomic model.

▶ ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

TURING IDEALS

A Turing ideal is a collection of sets \mathcal{M} closed under

- the Turing reduction: $(\forall X \in \mathcal{M})(\forall Y \leq_T X)[Y \in \mathcal{M}]$
- the effective join: $(\forall X, Y \in \mathcal{M})[X \oplus Y \in \mathcal{M}]$

Example:

- $\{X : X \text{ is computable}\}$
- $\{X : X \leq_T A \land X \leq_T B\}$ for some sets *A* and *B*

COMPARE THEOREMS

A Turing ideal \mathcal{M} satisfies a theorem P (written $\mathcal{M} \models P$) if every P-instance in \mathcal{M} has a solution in \mathcal{M} .

A theorem P computably entails a theorem Q (written $P \vdash_c Q$) if every Turing ideal satisfying P satisfies Q.

König's lemma

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SEPARATING THEOREMS

Fix two theorems P and Q.

How to prove that $\mathsf{P} \not\vdash \mathsf{Q}$?

Build a Turing ideal \mathcal{M} such that

- $\blacktriangleright \ \mathcal{M} \models \mathsf{P}$
- $\blacktriangleright \ \mathcal{M} \not\models \mathsf{Q}$

SEPARATING THEOREMS

Pick a Q-instance I with no I-computable solution.

Start with $\mathcal{M}_0 = \{Z : Z \leq_T I\}.$

Given a Turing ideal $M_n = \{Z : Z \leq_T U\}$ for some set U,

SEPARATING THEOREMS

Pick a Q-instance I with no I-computable solution.

Start with $\mathcal{M}_0 = \{Z : Z \leq_T I\}.$

Given a Turing ideal $M_n = \{Z : Z \leq_T U\}$ for some set U, 1. pick some P-instance $X \in M_n$

SEPARATING THEOREMS

Pick a Q-instance I with no I-computable solution.

Start with $\mathcal{M}_0 = \{Z : Z \leq_T I\}.$

Given a Turing ideal $M_n = \{Z : Z \leq_T U\}$ for some set U,

- 1. pick some P-instance $X \in \mathcal{M}_n$
- 2. choose a solution *Y* to *X*

SEPARATING THEOREMS

Pick a Q-instance *I* with no *I*-computable solution.

Start with $\mathcal{M}_0 = \{Z : Z \leq_T I\}.$

Given a Turing ideal $M_n = \{Z : Z \leq_T U\}$ for some set U,

- 1. pick some P-instance $X \in \mathcal{M}_n$
- 2. choose a solution *Y* to *X*
- 3. let $\mathcal{M}_{n+1} = \{Z : Z \leq_T Y \oplus U\}.$

SEPARATING THEOREMS

Beware, while adding sets to \mathcal{M} , we may add a solution to the Q-instance!

SEPARATING THEOREMS

An avoidance property is a collection of sets closed upwards under the Turing reducibility.

Examples

- $\{X : A \leq_T X\}$ for some set A
- $\{X : X \text{ is of PA degree}\}$
- ► {*X* : *X* computes a Martin-Löf random}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SEPARATING THEOREMS

Fix a property \mathcal{P} .

A statement P avoids \mathcal{P} if for every $Z \notin \mathcal{P}$, every Z-computable P-instance *X* has a solution *Y* such that $Y \oplus Z \notin \mathcal{P}$

Lemma *If* P *avoids* P *but* Q *does not, then* $P \not\vdash Q$

Ramsey's theorem

RAMSEY'S THEOREM

Fix a coloring $f : [\mathbb{N}]^n \to k$. A set H is *f*-homogeneous if there exists a color i < k such that $f([H]^n) = i$.

Ramsey's theorem Every coloring $f : [\mathbb{N}]^n \to k$ has an infinite *f*-homogeneous set.

CONE AVOIDANCE

A theorem P avoids cones if it avoids $\{A_0, A_1, ...\}$ for every countable sequence of non-computable sets $A_0, A_1, ...$

- ► RT³₂ does not avoid {∅'}
- ► RT²₂ avoids cones

(Jockusch, 1972) (Seetapun, 1995)

König's lemma

Conclusion

AVOIDANCE VS STRONG AVOIDANCE

Avoidance ≡ effective weakness

König's lemma

STRONG AVOIDANCE

Fix a property \mathcal{P} .

A statement P strongly avoids \mathcal{P} if for every $Z \notin \mathcal{P}$, every P-instance X has a solution Y such that $Y \oplus Z \notin \mathcal{P}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへで

AVOIDANCE VS STRONG AVOIDANCE

Strong avoidance ≡ combinatorial weakness

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

STRONG CONE AVOIDANCE

A theorem P strongly avoids cones if it strongly avoids $\{A_0, A_1, ...\}$ for every countable sequence of non-computable sets $A_0, A_1, ...$

- ► RT_2^2 does not strongly avoid $\{\emptyset'\}$ (Jockusch, 1972)
- ► RT¹₂ strongly avoids cones

(Dzhafarov and J., 2009)

König's lemma

< □ > < @ > < E > < E > E のQ@

König's lemma

A tree is a subset of $\mathbb{N}^{<\mathbb{N}}$ downward-closed under the prefix relation.

A tree *T* is finitely branching if for every $\sigma \in T$, there are finitely many *n*'s such that $\sigma n \in T$.

König's lemma Every infinite, finitely branching tree has an infinite path.

König's lemma

A tree is binary if it is a subset of $2^{<\mathbb{N}}$.

weak König's lemma

Every infinite, binary tree has an infinite path.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

König's lemma

A binary tree *T* has positive measure if

$$\lim_{s} \frac{|\{\sigma \in T : |\sigma| = s|}{2^{s}} > 0$$

weak weak König's lemma

Every binary tree of positive measure has an infinite path.

AVOIDANCE

- ► KL does not avoid {Ø'}
- WKL avoids cones

(J., Lewis, Remmel, 1991) (J. and Soare, 1972)

- WKL does not avoid PA degrees
- WWKL avoids PA degrees

(Solovay) (Kučera, 1985)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SUMMARY

RAMSEY VS KÖNIG

A function is hyperimmune if it is not dominated by any computable function.

- ► RT²₂ does not avoid hyp. functions
- ► WKL avoids hyp. functions

(Jockusch, 1972) (J. and Soare, 1972)

- ► RT²₂ avoids PA degrees
- RT¹₂ strongly avoids PA degrees

(Liu, 2012) (Liu, 2012)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

CONSTANT-BOUND ENUMERATIONS

A *k*-enumeration of a class $C \subseteq \mathbb{N}^{\mathbb{N}}$ is a sequence E_0, E_1, \ldots such that for each $n \in \mathbb{N}$,

- E_n contains k strings of length n
- $\mathcal{C} \cap [E_n] \neq \emptyset$

A constant-bound enumeration of C is a *k*-enum for some $k \in \omega$.

C.B-ENUM AVOIDANCE

A theorem P (strongly) avoids c.b-enums if it (strongly) avoids the c.b-enum's of C for every class $C \subseteq 2^{\mathbb{N}}$.

- ► WWKL does not avoid c.b-enums
- ► RT²₂ avoids c.b-enums
- ► RT¹₂ strongly avoids c.b-enums

(Liu, 2015) (Liu, 2015) (Liu, 2015)

C.B-ENUM AVOIDANCE

If a theorem P avoids c.b-enums then

- ► P avoids cones
- ► P avoids PA degrees

Any c.b-enum of $C = \{X : X \text{ is a completion of PA}\}$ computes a member of C.

 $\mathsf{RT}_2^2 \land \mathsf{WWKL} \not\vdash_c \mathsf{WKL}$

Which theorems avoid c.b-enums?

Conclusion

RAMSEY'S THEOREM

Over *n*-tuples RT_k^n Using *k* colors

RAMSEY'S THEOREM

THIN SET THEOREM

ALLOWING MORE COLORS

For every *n* and sufficiently large *k*'s

- ► TS^{*n*} strongly avoids cones
- ► TS^{*n*} strongly avoids c.b-enums

(Wang, 2014) (P.)

- ► The free set theorem avoids c.b-enums (P.)
- ► The rainbow Ramsey theorem avoids c.b-enums (P.)

Can RT_2^2 avoid arbitrary paths?

PATH AVOIDANCE

A theorem P avoids paths if it avoids C for every closed class $C \subseteq \mathbb{N}^{\mathbb{N}}$.

►	Cohesiveness avoids paths	(P.)
►	The atomic model theorem avoids paths	(P.)

PATH AVOIDANCE

Given a class $\mathcal{C} \subseteq \mathbb{N}^{\mathbb{N}}$, $deg(\mathcal{C}) = \{deg(X) : X \in \mathcal{C}\}$.

Simpson's embedding lemma For every Π_1^0 class $\mathcal{C} \subseteq 2^{\mathbb{N}}$ and every Σ_3^0 class $\mathcal{D} \subseteq \mathbb{N}^{\mathbb{N}}$, there is a Π_1^0 class $\mathcal{E} \subseteq 2^{\mathbb{N}}$ such that

 $deg(\mathcal{E}) = deg(\mathcal{C}) \cup deg(\mathcal{D})$

PATH AVOIDANCE

If for some P-instance X with no X-computable solution

 $\mathcal{D}_X = \{Y : Y \text{ is a solution to } X\}$

is Σ_3^0 , then P does not avoid paths.

- \blacktriangleright RT² does not avoid paths (P.) (P.)
- ► RT¹₂ does not strongly avoid paths

Can RT_2^2 avoid 1-enums?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1-ENUM AVOIDANCE

A theorem P (strongly) avoids 1-enums if it (strongly) avoids the 1-enum's of C for every class $C \subseteq 2^{\mathbb{N}}$.

Every c.b-enum of a Π_1^0 class computes a 1-enum.

- ► RT_2^2 avoids 1-enums of Π_1^0 classes (Liu, 2015)
- ► rainbow Ramsey's theorem for pairs avoids 1-enums (P.)

1-ENUM AVOIDANCE

Theorem (P.)

There is a class $\mathcal{C} \subseteq 2^{\mathbb{N}}$

- ▶ with no computable 1-enum
- with a computable 2-enum $(\sigma_0, \tau_0), (\sigma_1, \tau_1), \ldots$
- such that $\{n : C \cap [\sigma_n] \neq \emptyset\}$ is Δ_2^0 .

► RT²₂ does not avoid 1-enums

(P.)

Can RT₂² simultaneously avoid countably many c.b-enums?

・ロト (四) (日) (日) (日) (日) (日)

SIMULTANEOUS C.B-ENUM AVOIDANCE

A theorem P simultaneously avoids c.b-enums if it avoids the c.b-enum's of all the C's for every countable sequence of classes $C_0, C_1, \dots \subseteq 2^{\mathbb{N}}$.

If P avoids c.b-enums, then it simultaneously avoids c.b-enums for every increasing countable sequences of classes.

- ► the Erdős-Moser theorem simu. avoids c.b-enums (P.)
- ► TS_{k+1}^2 simultaneously avoids *k* c.b-enums (P.)
- TS_k^2 does not simultaneously avoid *k* c.b-enums (P.)

CONCLUSION

- Ramsey's theorem for pairs is effectively weak, but not combinatorially.
- ► The free set, thin set, Erdös moser and rainbow Ramsey theorems are combinatorially weak.
- Many Ramsey-type theorems have the ability to compute paths through binary trees with no computable paths.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

References

Damir D Dzhafarov and Carl G Jockusch.

Ramsey's theorem and cone avoidance. The Journal of Symbolic Logic, 74(02):557–578, 2009.

Jiayi Liu et al.

RT₂² does not imply WKL₀. Journal of Symbolic Logic, 77(2):609–620, 2012.

Ludovic Patey.

Combinatorial weaknesses of ramseyan principles. In preparation., 2015.

Wei Wang.

Some logically weak ramseyan theorems. arXiv preprint arXiv:1303.3331, 2013.

Wei Wang.

Cohesive sets and rainbows.

Annals of Pure and Applied Logic, 165(2):389-408, 2014.

König's lemma

QUESTIONS

Thank you for listening !