Partial orders and immunity in reverse mathematics

Ludovic PATEY IRIF, Paris 7

June 30, 2016

Many theorems can be seen as problems.

König's lemma

Every infinite, finitely branching tree admits an infinite path.

Some theorems are more effective than others.

Intermediate value theorem

For every continuous function f over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.

König's lemma Every infinite, finitely branching tree admits an infinite path.

REVERSE MATHEMATICS

Q is at least as hard as P if $RCA_0 \vdash Q \rightarrow P$

in a very weak theory RCA₀ capturing computable mathematics

(Harvey Friedman, 1974)

Turing ideal \mathcal{M}

(∀X ∈ M)(∀Y ≤_T X)[Y ∈ M]
(∀X, Y ∈ M)[X ⊕ Y ∈ M]

Examples

- $\blacktriangleright \{X : X \text{ is computable } \}$
- $\{X : X \leq_T A \land X \leq_T B\}$ for some sets *A* and *B*

Let \mathcal{M} be a Turing ideal and P,Q be problems.

Satisfaction $\mathcal{M} \models \mathsf{P}$

if every P-instance in \mathcal{M} has a solution in \mathcal{M} .

Computable entailment

 $\mathsf{P}\models_{c}\mathsf{Q}$

if every Turing ideal satisfying P satisfies Q.

Fix two problems P and Q.

How to prove that $\mathsf{P} \not\models_c \mathsf{Q}$?

Build a Turing ideal \mathcal{M} such that

$$\blacktriangleright \mathcal{M} \models \mathsf{P}$$

►
$$\mathcal{M} \not\models \mathsf{Q}$$

Pick a Q-instance I with no I-computable solution

Start with $\mathcal{M}_0 = \{Z : Z \leq_T I\}$

Given a Turing ideal $M_n = \{Z : Z \leq_T U\}$ for some set U,

Pick a Q-instance I with no I-computable solution

Start with $\mathcal{M}_0 = \{Z : Z \leq_T I\}$

Given a Turing ideal $M_n = \{Z : Z \leq_T U\}$ for some set U,

1. pick some P-instance $X \in \mathcal{M}_n$

Pick a Q-instance I with no I-computable solution

Start with $\mathcal{M}_0 = \{Z : Z \leq_T I\}$

Given a Turing ideal $M_n = \{Z : Z \leq_T U\}$ for some set U,

- 1. pick some P-instance $X \in \mathcal{M}_n$
- 2. choose a solution *Y* to *X*

Pick a Q-instance I with no I-computable solution

Start with $\mathcal{M}_0 = \{Z : Z \leq_T I\}$

Given a Turing ideal $M_n = \{Z : Z \leq_T U\}$ for some set U,

- 1. pick some P-instance $X \in \mathcal{M}_n$
- 2. choose a solution *Y* to *X*
- 3. let $\mathcal{M}_{n+1} = \{Z : Z \leq_T Y \oplus U\}$

Beware, while adding sets to \mathcal{M} , we may add a solution to the Q-instance!

A weakness property is a collection of sets closed downwards under the Turing reducibility.

Examples

- $\blacktriangleright \{X : X \text{ is low}\}$
- $\{X : A \not\leq_T X\}$ for some set A
- $\{X : X \text{ is hyperimmune-free}\}$

Fix a weakness property \mathcal{W} .

A problem P preserves W if for every $Z \in W$, every *Z*-computable P-instance *X* has a solution *Y* such that $Y \oplus Z \in W$

Lemma *If* P *preserves* W *but* Q *does not, then* $P \not\models_c Q$

Find the right weakness properties

- $\blacktriangleright \mathsf{WKL} \not\models_c \mathsf{ACA}$
- ► $\operatorname{RT}_2^2 \not\models_c \operatorname{ACA}$
- ► EM $\not\models_c \mathsf{RT}_2^2$
- ► EM $\not\models_c TS^2$
- $\blacktriangleright \mathsf{TS}^2 \not\models_c \mathsf{RT}_2^2$
- $\blacktriangleright \mathsf{RT}_2^2 \not\models_c \mathsf{TT}_2^2$

...

► $\operatorname{RT}_2^2 \not\models_c \operatorname{WWKL}$

(cone avoidance)
 (cone avoidance)
 (2 hyperimmunities)
 (ω hyperimmunities)
 (2 hyperimmunities)
 (fairness property)
 (c.b-enum avoidance)

RAMSEY'S THEOREM

$\begin{array}{ll} \mathsf{RT}_k^n & \text{Every } k\text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

CAC

Every infinite partial order admits an infinite chain or antichain.

Let $\mathcal{L} = (\omega, \leq_{\mathcal{L}})$ be a partial order. $f(\{x, y\}) = \begin{cases} 0 & \text{if } x <_{\mathcal{L}} y \lor y <_{\mathcal{L}} x \\ 2 & \text{if } x \mid_{\mathcal{L}} y \end{cases}$

Any infinite *f*-homogeneous set is a chain or an antichain.

$\mathsf{CAC} \not\models_c \mathsf{RT}_2^2$

(Hirschfeldt and Shore)

A function *f* is DNC if $(\forall e)[f(e) \neq \Phi_e(e)]$

Let $W_{DNC} = \{Z : Z \text{ does not compute a DNC function}\}$

CAC preserves \mathcal{W}_{DNC} but RT_2^2 does not

$\mathsf{CAC} \not\models_c \mathsf{RT}_2^2$

(Hirschfeldt and Shore)

A *k*-enum of *X* is a sequence $F_0 < F_1 < ...$ of sets such that $|F_i| = k$ and $F_i \cap X \neq \emptyset$ for every $i \in \mathbb{N}$

Let $\mathcal{W}_{Enum}^X = \{Z : Z \text{ does not compute a k-enum of } X\}$

CAC preserves W_{Enum}^X for every *X*, but RT_2^2 does not

There is an *X* with no computable *k*-enum such that every DNC function computes an infinite subset of *X*.

ADS

Every infinite linear order admits an infinite ascending or descending sequence.

Let $\mathcal{L} = (\omega, \leq_{\mathcal{L}})$ be a linear order.

 $x \leq_{\mathcal{P}} y \text{ iff } x <_{\mathbb{N}} y \land x \leq_{\mathcal{L}} y$

Any infinite chain or antichain for \mathcal{P} is an ascending or descending sequence for \mathcal{L} .

$\mathsf{ADS} \not\models_c \mathsf{CAC}$

(Lerman, Solomon and Towsner)

 $\varphi(U, V)$ is essential if $(\forall x)(\exists R > x)(\forall y)(\exists S > y)\varphi(R, S)$

X, *Y* are dependently *Z*-hyperimmune if for every essential $\Sigma_1^{0,Z}$ formula $\varphi(U, V)$, $\varphi(R, S)$ holds for some $R \subseteq \overline{X}$ and $S \subseteq \overline{Y}$

Let $\mathcal{W}_{DH}^{X,Y} = \{Z : X, Y \text{ are dependently } Z\text{-hyperimmune}\}$

ADS preserves $W_{DH}^{X,Y}$ for every X, Y, but CAC does not

References

	- 1	۰.

- Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles weaker than Ramsey's theorem for pairs. Journal of Symbolic Logic, 72(1) :171–206, 2007.
- Manuel Lerman, Reed Solomon, and Henry Towsner. Separating principles below Ramsey's theorem for pairs. Journal of Mathematical Logic, 13(02) :1350007, 2013.

Ludovic Patey.

Partial Orders and Immunity in Reverse Mathematics, pages 353–363. Springer International Publishing, Cham, 2016.