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Many theorems can be seen as problems.

König’s lemma
Every infinite, finitely branching tree admits an infinite path.
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Some theorems are more effective than others.

Intermediate value theorem
For every continuous function f over an
interval [a, b] such that f (a) · f (b) < 0, there
is a real x ∈ [a, b] such that f (x) = 0.

König’s lemma
Every infinite, finitely branching tree
admits an infinite path.

a
b
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COMPUTABLE REDUCTION

“Q is at least as hard as P”

Q solver≤T ≤T

P solver

P ≤c Q
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RAMSEY’S THEOREM

RTn
k

Every k-coloring of [N]n admits
an infinite homogeneous set.
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RTn
k 6≤c RTn

`
whenever k > ` ≥ 2 and n ≥ 2.

(P.)

Definition
A problem P preserves m among n hyperimmunities if for
every n-tuple of hyperimmune sets A0, . . . ,An−1 and every
computable P-instance X, there is a solution Y to X such that at
least m among the A’s are Y-hyperimmune.

RT2
` preserves 2 among k hyperimmunities, but RT2

k does not.
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RT1
k =c RT1

`
whenever k, ` ≥ 1.

Refining ≤c

Weihrauch reduction
Consider the uniformity

of reductions

Strong computable reduction
Removes access
to the instance
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STRONG COMPUTABLE REDUCTION

“Q is at least as hard as P”

Q solver≤T ≤T

P solver

P ≤sc Q
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RT1
k 6≤sc RT1

`
whenever k > ` ≥ 2.

(Dzhafarov)

Definition
A problem P strongly preserves m among n hyperimmunities if
for every n-tuple of hyperimmune sets A0, . . . ,An−1 and every
P-instance X, there is a solution Y to X such that at least m
among the A’s are Y-hyperimmune.

RT1
` strongly preserves 2 among k hyperimmunities, but RT1

k
does not.
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RT1
k 6≤sc RT1

`
whenever k > ` ≥ 2.

(Dzhafarov)

The RT1
k-instance witnessing it

defeats all RT1
`-instances.

(Hirschfeldt, Jockusch, P.)
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RT1
k 6≤sc SRT2

`
whenever k > ` ≥ 2.

(Dzhafarov, P., Solomon, Westrick)

SRT2
k : Restriction of RT2

k to stable colorings.

a

b c d e f g
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WKL : Restriction of König’s lemma to binary trees.

WKL ≤c RTn
k

whenever k ≥ 2 and n ≥ 3.

(Jockusch)

WKL 6≤c RT2
k

whenever k ≥ 1.

(Liu)
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Definition
I A function f is a modulus of a set A if every function

dominating f computes A.

I A set A is computably encodable if for every set X ∈ [ω]ω,
there is a set Y ∈ [X]ω computing A.

A is computably encodable⇔ A admits a
modulus⇔ A is hyperarithmetic

(Solovay, Groszek and Slaman)
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WKL 6≤sc RTn
k

whenever n, k ≥ 1.

(Hirschfeldt, Jockusch)

The WKL-instance witnessing it
defeats all RTn

k -instances.
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WWKL : Restriction of WKL to trees of positive measure.

WWKL ≤c RTn
k

whenever k ≥ 2 and n ≥ 3.

(Jockusch)

WWKL 6≤c RT2
k

whenever k ≥ 1.

(Liu)
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Definition
I A function f is a Π0

1 modulus of a set C ⊆ ωω if C has a
non-empty g-computably bounded Π

0,g
1 subset for

every g ≥ f .

I A set C ⊆ ωω is Π0
1 encodable if for every set X ∈ [ω]ω, there

is a set Y ∈ [X]ω such that C admits a non-empty
X-computably bounded Π0,X

1 subset.

C is Π0
1 encodable⇔ C admits a Π0

1 modulus
⇔ C has a non-empty Σ1

1 subset
(Monin, P.)
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WWKL 6≤sc RTn
k

whenever n, k ≥ 1.

(Monin, P.)

The WWKL-instance witnessing it
defeats all RTn

k -instances.
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STRONG OMNISCIENT COMPUTABLE REDUCTION

“Q is at least as hard as P”

Q solver∃ ≤T

P solver

P ≤soc Q
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P ≤oW Q

"*
P ≤soW Q

4<

"*

P ≤oc Q

P ≤W Q

"*

<D

P ≤soc Q

4<

P ≤sW Q

4<

"*

<D

P ≤c Q +3

=E

P ≤ω Q.

P ≤sc Q

4<

<D
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STRONG OMNISCIENT COMPUTABLE REDUCTIONS

Whenever k > ` ≥ 1

I RT1
k 6≤soc RT1

` (Hirschfeldt, Jockusch, P.)

I RT1
k 6≤soc SRT2

` (Dzhafarov, P., Solomon, Westrick)

I WKL 6≤soc RTn
k (Hirschfeldt, Jockusch)

I WWKL 6≤soc RTn
k (Monin, P.)
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OMNISCIENT COMPUTABLE REDUCTIONS

I ACA 6≤oc RT1
k (Dzhafarov)

I WWKL 6≤oc RT1
k (Liu.)

I WWKL 6≤oc FS (P.)

I RT2
2 6≤oc FS (P.)
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DIFFERENCES WITH ≤sc

SRT2
3 6≤sc RT2

2
(P.)

SRT2
<∞ ≤soc RT2

2
(Monin, P.)

Proof sketch : g(x, y) = 1 iff f (x, y) = lims f (y, s)
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DIAGRAM UNDER ≤soc

KL WKL

WWKLRT

RT2
3 RT2

2

SRT2
<∞ SRT2

3 SRT2
2

RT1
<∞ RT1

3 RT1
2

?
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