THIN SET THEOREM

< □ > < @ > < E > < E > E のQ@

The strength of Ramsey's theorem under reducibilities

Ludovic PATEY PPS, Paris 7

November 17, 2015

STRENGTH OF A THEOREM

Some theorems are more effective than others.

Theorem (Intermediate value theorem) For every continuous function f over [a, b] and every $y \in [f(a), f(b)]$, there is some $x \in [a, b]$ such that f(x) = y.

Theorem (König's lemma) *Every infinite, finitely branching tree has an infinite path.*

STRENGTH OF A THEOREM

Provability strength

- Reverse mathematics
- Intuitionistic reverse mathematics

Computational strength

- Computable reducibility
- Uniform reducibility

Provability approach

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

REVERSE MATHEMATICS

Goal

Determine which axioms are required to prove ordinary theorems in reverse mathematics.

- Simpler proofs
- More insights

Subsystems of second-order arithmetic.

BASE THEORY RCA₀

- Basic Peano axioms
- Σ_1^0 induction scheme

 $(\varphi(0) \land \forall n.(\varphi(n) \to \varphi(n+1))) \to \forall n.\varphi(n)$

where $\varphi(n)$ is any Σ_1^0 formula of L_2

• Δ_1^0 comprehension scheme

 $\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X. \forall n. (n \in X \leftrightarrow \varphi(n))$

where $\varphi(n)$ is any Σ_1^0 formula of L_2 in which *X* does not occur freely and $\psi(n)$ is any Π_1^0 formula of L_2 .

STANDARD MODELS OF RCA_0

An ω -structure is a structure $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$ where

- (i) ω is the set of standard natural numbers
- (ii) < is the natural order
- (iii) + and \cdot are the standard operations over natural numbers (iv) $S \subseteq \mathcal{P}(\omega)$

An ω -structure is fully specified by its second-order part S.

STANDARD MODELS OF RCA_0

Definition (Turing ideal)

A Turing ideal \mathcal{I} is a collection of subsets of ω which is closed under

- (i) the Turing reduction: $(\forall X \in \mathcal{I})(\forall Y \leq_T X)[Y \in \mathcal{I}]$
- (ii) the effective join: $(\forall X, Y \in \mathcal{I})[X \oplus Y \in \mathcal{I}]$.

STANDARD MODELS OF RCA_0

Fix an ω -structure $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$.

$\mathcal{M} \models \mathsf{RCA}_0 \equiv \mathcal{S} \text{ is a Turing ideal.}$

・ロト (四) (日) (日) (日) (日) (日)

How to think about RCA_0 ?

RCA₀ captures computable mathematics

RCA₀ a minimal ω -model $\mathcal{M} = \{\omega, \mathcal{I}, <, +, \cdot\}$ where \mathcal{I} is the set of all computable subsets of ω .

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

Computational approach

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THEOREMS AS PROBLEMS

Many theorems P are of the form

 $(\forall X)[\Phi(X) \to (\exists Y)\Psi(X,Y)]$

where Φ and Ψ are arithmetic formulas.

We may think of P as a class of problems.

- An *X* such that $\Phi(X)$ holds is an instance.
- A Y such that $\Psi(X, Y)$ holds is a solution to X.

THEOREMS AS PROBLEMS

Examples:

- (König's lemma)
 Every infinite, finitely branching tree has an infinite path.
- (Ramsey's theorem)
 Every *k*-coloring has an infinite monochromatic subset.
- (The atomic model theorem)
 Every complete atomic theory has an atomic model.

▶ ...

COMPUTABLE REDUCIBILITY

Definition (Computable reducibility)

A theorem P is computably reducible to a theorem Q if every P-instance I computes a Q-instance J such that for every solution X to J, $X \oplus I$ computes a solution to I.

Intuition: If $P \leq_c Q$ then solving Q is harder than solving P.

Computable reducibility

Figure: Computable reducibility

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

PROVABILITY VS COMPUTATIONAL APPROACH

If we forget induction,

$$\mathsf{P} \leq_c \mathsf{Q}$$

can be seen as

$\mathsf{RCA}_0 \vdash \mathsf{Q} \to \mathsf{P}$

where only one application of Q is allowed.

Ramsey's theorem

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

RAMSEY'S THEORY

Given some size *s*, every sufficiently large collection of objects has a sub-collection of size *s*, whose objects satisfy some structural properties.

RAMSEY'S THEOREM

Definition Given a coloring $f : [\mathbb{N}]^n \to k$, a set H is f-homogeneous if there exists a color i < k such that $f([H]^n) = i$.

Definition (Ramsey's theorem) Every coloring $f : [\mathbb{N}]^n \to k$ has an infinite *f*-homogeneous set.

RAMSEY'S THEOREM

< □ > < @ > < E > < E > E のQ@

RAMSEY'S THEOREM

Fix the number of colors *k*.

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

RAMSEY'S THEOREM FOR *n*-TUPLES

Theorem (Jockusch, 1972) Every computable coloring $f : [\mathbb{N}]^n \to k$ has a Π_n^0 infinite *f*-homogeneous set.

Theorem (Jockusch, 1972)

For every $n \ge 3$, there is a computable coloring $f : [\mathbb{N}]^n \to k$ such that every infinite *f*-homogeneous set computes $\emptyset^{(n-2)}$.

RAMSEY'S THEOREM FOR *n*-TUPLES

Theorem (Simpson, 2009) For each $n, m \ge 3$, $\mathsf{RCA}_0 \vdash \mathsf{RT}_k^n \leftrightarrow \mathsf{RT}_k^m$.

What about RT_k^2 ?

RAMSEY'S THEOREM FOR PAIRS

Theorem (Seetapun, 1995) For every computable coloring $f : [\mathbb{N}]^2 \to k$ and every non-computable set *C*, there is an infinite *f*-homogeneous set $H \geq_T C$.

Corollary RT_k^2 does not imply RT_k^3 over RCA_0 .

HOW MANY APPLICATIONS?

When $3 \le m < n$, the proof of

 $\mathsf{RCA}_0 \vdash \mathsf{RT}_k^m \to \mathsf{RT}_k^n$

involves multiple applications of RT_k^m .

How many applications of RT_k^m are necessary?

HOW MANY APPLICATIONS?

Theorem (Jockusch, 1972) For every $n \ge 2$, there is a computable coloring $f : [\mathbb{N}]^n \to k$ with no Σ_n^0 infinite *f*-homogeneous set.

Corollary *For every* $n \ge 2$, $\mathsf{RT}_k^n \not\leq_c \mathsf{RT}_k^{n+1}$.

At least 2 applications of RT_k^n are necessary to prove RT_k^{n+1} .

HOW MANY APPLICATIONS?

Theorem (Cholak, Jockusch, Slaman, 2001) For every $n \ge 2$, every set $P \gg \emptyset^{(n-1)}$, and every computable coloring $f : [\mathbb{N}]^n \to k$, there is an infinite *f*-homogeneous set *H* such that $H' \le_T P$.

- At most 3 applications of RT_k^3 are necessary to prove RT_k^4
- Exactly 2 applications of RT_k^n are necessary to prove RT_k^{n+1} whenever $n \ge 4$.

SUMMARY FOR A FIXED k

Over RCA₀

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RAMSEY'S THEOREM

Fix the size of tuples *n*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RAMSEY'S THEOREM

Theorem (Folklore) For every $k, \ell \geq 2$, $\mathsf{RCA}_0 \vdash \mathsf{RT}_k^n \leftrightarrow \mathsf{RT}_\ell^n$

Proof for $k = \ell^2$.

- Take a coloring $f : [\mathbb{N}]^n \to \ell^2$
- Define $g : [\mathbb{N}]^n \to \ell$ by merging colors by blocks of size ℓ
- Apply RT_{ℓ}^n to g to obtain H such that $|f([H]^2)| \leq \ell$.
- Apply again RT_{ℓ}^n to *f* restricted to *H*.

HOW MANY APPLICATIONS?

Theorem (P.) For every $k > \ell \ge 2$, $\mathsf{RT}_k^n \not\le_c \mathsf{RT}_\ell^n$.

Theorem (P.)

For every $k > \ell \ge 2$, there is a Δ_n^0 partition $A_0 \cup \cdots \cup A_{k-1} = \mathbb{N}$ such that every computable RT_{ℓ}^n -instance has a homogeneous set which computes no infinite subset of one of the A's.

A hard Δ_2^0 partition

Definition A function f is Y-hyperimmune if f is not dominated by any Y-computable function. A set X is Y-hyperimmune if its principal function p_X is.

If \overline{X} is *Y*-hyperimmune, then every infinite *Y*-computable set intersects *X*.

A hard Δ_2^0 partition

Lemma (Folklore) This is a Δ_2^0 partition $A_0 \cup \cdots \cup A_{k-1} = \mathbb{N}$ such that the \overline{A} 's are hyperimmune.

If suffices to show that every computable RT_{ℓ}^2 -instance has a homogeneous set *H* such that \overline{A}_i is *H*-hyperimmune for at least two *i*'s.

COHESIVENESS

Definition Given a sequence of sets R_0, R_1, \ldots , an infinite set *C* is \vec{R} -cohesive if $C \subseteq^* R_i$ or $C \subseteq^* \overline{R_i}$ for each $i \in \mathbb{N}$.

Definition (Cohesiveness) Every countable sequence of sets \vec{R} admits an \vec{R} -cohesive set.

Cohesiveness and RT^2_ℓ

- Fix computable instance $f : [\mathbb{N}]^2 \to \ell$ of RT^2_{ℓ} .
- Define $R_{x,i} = \{y : f(x,y) = i\}.$
- Take an \vec{R} -cohesive set C.
- Let $B_i = \{x \in C : \lim_{y \in C} f(x, y) = i\}$

Any infinite subset of one of the *B*'s computes an infinite *f*-homogeneous set.

< □ > < @ > < E > < E > E のQ@

RT^2_ℓ and hyperimmunity

We need to prove hyperimmunity preservation results for

- Cohesiveness
- Non-effective RT^1_ℓ

PRESERVATION OF HYPERIMMUNITY

Definition A Π_2^1 statement P admits preservation of hyperimmunity if for each set *Z*, each sequence of *Z*-hyperimmune sets A_0, A_1, \ldots , and each P-instance $X \leq_T Z$, there is a solution *Y* to *X* such that the *A*'s are $Y \oplus Z$ -hyperimmune.

Preservation of hyperimmunity \neq hyperimmune-free solutions

Theorem (Jockusch & Stephan) If R_0, R_1, \ldots are the primitive recursive sets then every \vec{R} -cohesive is hyperimmune.

Theorem (P.) COH *admits preservation of hyperimmunity.*

MATHIAS FORCING

F is finite, *X* is infinite and max(F) < min(X).

MATHIAS FORCING

A condition (E, Y) extends (F, X) if (a) $F \subseteq E$ (b) $Y \subseteq X$ (c) $E \setminus F \subseteq X$

A set *G* satisfies (F, X) if $F \subseteq G$ and $G \setminus F \subseteq X$.

COH ADMITS PRESERVATION OF HYPERIMMUNITY

- Fix a *Z* and a sequence of *Z*-hyperimmune sets A_0, A_1, \ldots
- Fix a *Z*-computable sequence R_0, R_1, \ldots

We build an \vec{R} -cohesive set with Mathias conditions (F, X) where the *A*'s are $X \oplus Z$ -hyperimmune.

COH ADMITS PRESERVATION OF HYPERIMMUNITY

Lemma

For every condition *c* and every pair of indices *e*, *i*, there is an extension *d* of *c* which forces $\Phi_e^{G \oplus Z}$ not to dominate p_{A_i} .

Proof (Part I).

• *f* is partial $X \oplus Z$ -computable.

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

COH ADMITS PRESERVATION OF HYPERIMMUNITY

Lemma

For every condition *c* and every pair of indices *e*, *i*, there is an extension *d* of *c* which forces $\Phi_e^{G \oplus Z}$ not to dominate p_{A_i} .

Proof (Part II).

- If *f* is partial, then *c* forces $\Phi_e^{G \oplus Z}$ to be partial.
- If *f* is total, then $f(x) \le p_{A_i}(x)$ for some *x*.
 - Let *E* be such that $f(x) = \Phi_e^{(F \cup E) \oplus Z}(x)$
 - $(F \cup E, X \setminus [0, max(E)])$ forces $f(x) \le p_{A_i}(x)$

NON-EFFECTIVE RT^1_ℓ

Lemma Δ_2^0 -RT $_\ell^1$ does not admit preservation of hyperimmunity.

Proof. Take $C_0 \cup \cdots \cup C_{\ell-1} = \mathbb{N}$ be hyperimmune sets. If $H \subseteq C_i$, then p_H dominates p_{C_i} , so C_i is not *H*-hyperimmune.

Definition Given two integers $u, \ell \ge 1$, we let $\pi(u, \ell)$ denote the unique $a \ge 1$ such that $u = a \cdot \ell - b$ for some $b \in [0, \ell)$.

If you have *u* pigeons in ℓ pigeonholes, one of the holes has at least $\pi(u, \ell)$ pigeons.

PRESERVATION OF HYPERIMMUNITY

Theorem (P.)

Fix some $k \ge 1$ and $\ell \ge 2$ and k hyperimmune sets A_0, \ldots, A_{k-1} . For every ℓ -partition $B_0 \cup \cdots \cup B_{\ell-1} = \omega$, there exists an infinite subset H of some B_i such that $\pi(k, \ell)$ sets among the A's are H-hyperimmune.

Build a set *G* by Mathias forcing, and let $H = G \cap B_i$ for some $i < \ell$.

NON-EFFECTIVE RT^1_ℓ

Lemma

For every condition c and every pair of indices e, i, there is an extension d of c which forces $\Phi_e^{(G \cap B_j) \oplus Z}$ not to dominate p_{A_i} for some $j < \ell$.

HOW MANY APPLICATIONS?

```
Theorem
For every k > \ell \ge 2, \mathsf{RT}_k^2 \not\leq_c \mathsf{RT}_\ell^2.
```

Proof (Part I).

- Define a Δ_2^0 partition $A_0 \cup \cdots \cup A_{k-1} = \mathbb{N}$ such that the \overline{A} 's are hyperimmune.
- ► Consider its Δ⁰₂ approximation function as a computable instance of RT²_k.

HOW MANY APPLICATIONS?

Theorem For every $k > \ell \ge 2$, $\mathsf{RT}_k^2 \not\leq_c \mathsf{RT}_\ell^2$.

Proof (Part II).

- Fix computable instance $f : [\mathbb{N}]^2 \to \ell$ of RT^2_{ℓ} .
- Construct an \vec{R} -cohesive set *C* such that the \overline{A} 's are hyperimmune relative to *C*.
- Let $B_i = \{x \in C : \lim_{y \in C} f(x, y) = i\}$
- ► Take an infinite subset *H* of some B_i such that $\pi(k, \ell)$ among the *A*'s are $H \oplus C$ -hyperimmune.

HOW MANY APPLICATIONS?

Theorem (P.) For every $k > \ell \ge 2$, $\mathsf{RT}_k^n \not\leq_c \mathsf{RT}_\ell^n$. Proof. By induction over $k \ge 2$ using prehomogeneous sets.

SUMMARY FOR A FIXED n

<ロト < 団 > < 三 > < 三 > < 三 > < 三 < つへ ??</p>

COUNTING APPLICATIONS

Question

How many applications needed to prove that $\text{RCA}_0 \vdash \text{RT}_2^2 \rightarrow \text{RT}_5^2$?

Take a Δ_2^0 5-partition $A_0 \cup \cdots \cup A_4 = \mathbb{N}$ whose complements are hyperimmune.

# of apps of RT_2^2	# of <i>i</i> 's such that \overline{A}_i is hyperimmune
0	5
1	$\pi(5,2) = 3$
2	$\pi(3,2)=2$
3	$\pi(2,2) = 1$

< □ > < @ > < E > < E > E のQ@

RAMSEY'S THEOREM

< □ > < @ > < E > < E > E のQ@

RAMSEY'S THEOREM

THIN SET THEOREM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ALLOWING MORE COLORS

Theorem (Wang, 2014)

Fix some *n* and some sufficiently large k's. For every instance *f* of TS_k^n and every non-computable set *C*, there is an infinite solution to *f* which does not compute *C*.

Corollary

For every *n* and sufficiently large *k*, TS_k^n does not imply RT_2^3 over RCA_0 .

ALLOWING MORE COLORS

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer, 2015) RCA₀ \vdash TS^{*ns*+1}_{*k*^s} \rightarrow TS^{*n*+1}_{*k*}

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer, 2015) RCA₀ \vdash TS^{*n*+2}_{2^{*n*}} \rightarrow TS³₂

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

< □ > < @ > < E > < E > E のQ@

ALLOWING MORE COLORS

Tuples	Strong avoidance	Computes ∅′
TS^1_k	$k \ge 2$	never
TS_k^2	$k \ge 3$	k = 2
TS_k^3	$k \ge 7$	$k \leq 4$

Does any of TS_5^3 or TS_6^3 admit strong cone avoidance?

ALLOWING MORE COLORS

Theorem (P.)

For every $k \geq 2$,

- TS_{k+1}^2 admits preservation of k hyperimmunities.
- TS_k^2 does not admit preservation of k hyperimmunities.

Corollary (P.) For every $k \ge 2$, TS_{k+1}^2 does not imply TS_k^2 over RCA_0 .

ALLOWING MORE COLORS

Fix some $\ell \geq 2$.

Theorem (P.) For every *n* and sufficiently large *k*'s, TS_k^n admits preservation of ℓ hyperimmunities.

Corollary (P.) For every *n* and sufficiently large k's, TS_k^n does not imply TS_ℓ^2 over RCA_0 .

SUMMARY FOR n = 2

 RT_2^2 TS_3^2 TS_4^2 ÷

Over RCA₀

CONCLUSION

- Computable reducibility gives a more fine-grained analysis than reverse mathematics.
- Ramsey's theorem is not robust for computable reducibility.
- Changing the number of allowed colors has a great impact on the strength of Ramsey's theorem.

REFERENCES

		Ð
	12	

Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, pages 1–55, 2001.

François G Dorais, Damir D Dzhafarov, Jeffry L Hirst, Joseph R Mileti, and Paul Shafer.

On uniform relationships between combinatorial problems. arXiv preprint arXiv:1212.0157, 2012.

Carl G Jockusch.

Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–280, 1972.

Ludovic Patey.

The weakness of being cohesive, thin or free in reverse mathematics. Submitted, 2015.

Wei Wang.

Some logically weak ramseyan theorems. Advances in Mathematics, 261:1–25, 2014.

Thank you for listening!

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >