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STRENGTH OF A THEOREM

Some theorems are more effective than others.

Theorem (Intermediate value theorem)
For every continuous function f over [a, b] and every y ∈ [f (a), f (b)],
there is some x ∈ [a, b] such that f (x) = y.

Theorem (König’s lemma)
Every infinite, finitely branching tree has an infinite path.
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STRENGTH OF A THEOREM

Provability strength
I Reverse mathematics
I Intuitionistic reverse mathematics

Computational strength
I Computable reducibility
I Uniform reducibility
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Provability approach



INTRODUCTION RAMSEY’S THEOREM THIN SET THEOREM

REVERSE MATHEMATICS

Goal

Determine which axioms are required to prove ordinary
theorems in reverse mathematics.

I Simpler proofs
I More insights

Subsystems of second-order arithmetic.
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BASE THEORY RCA0

I Basic Peano axioms

I Σ0
1 induction scheme

(ϕ(0) ∧ ∀n.(ϕ(n)→ ϕ(n + 1)))→ ∀n.ϕ(n)

where ϕ(n) is any Σ0
1 formula of L2

I ∆0
1 comprehension scheme

∀n(ϕ(n)↔ ψ(n))→ ∃X.∀n.(n ∈ X↔ ϕ(n))

where ϕ(n) is any Σ0
1 formula of L2 in which X does not occur

freely and ψ(n) is any Π0
1 formula of L2.
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STANDARD MODELS OF RCA0

An ω-structure is a structureM = {ω,S, <,+, ·}where
(i) ω is the set of standard natural numbers

(ii) < is the natural order
(iii) + and · are the standard operations over natural numbers
(iv) S ⊆ P(ω)

An ω-structure is fully specified by its second-order part S .
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STANDARD MODELS OF RCA0

Definition (Turing ideal)
A Turing ideal I is a collection of subsets of ω which is closed
under

(i) the Turing reduction: (∀X ∈ I)(∀Y ≤T X)[Y ∈ I]

(ii) the effective join: (∀X,Y ∈ I)[X ⊕ Y ∈ I].
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STANDARD MODELS OF RCA0

Fix an ω-structureM = {ω,S, <,+, ·}.

M |= RCA0 ≡ S is a Turing ideal.
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HOW TO THINK ABOUT RCA0 ?

RCA0 captures computable mathematics

RCA0 a minimal ω-modelM = {ω, I, <,+, ·}
where I is the set of all computable subsets of ω.
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Computational approach
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THEOREMS AS PROBLEMS

Many theorems P are of the form

(∀X)[Φ(X)→ (∃Y)Ψ(X,Y)]

where Φ and Ψ are arithmetic formulas.

We may think of P as a class of problems.
I An X such that Φ(X) holds is an instance.
I A Y such that Ψ(X,Y) holds is a solution to X.
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THEOREMS AS PROBLEMS

Examples:

I (König’s lemma)
Every infinite, finitely branching tree has an infinite path.

I (Ramsey’s theorem)
Every k-coloring has an infinite monochromatic subset.

I (The atomic model theorem)
Every complete atomic theory has an atomic model.

I ...
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COMPUTABLE REDUCIBILITY

Definition (Computable reducibility)
A theorem P is computably reducible to a theorem Q if
every P-instance I computes a Q-instance J such that for every
solution X to J, X ⊕ I computes a solution to I.

Intuition:
If P ≤c Q then solving Q is harder than solving P.
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COMPUTABLE REDUCIBILITY

Q solver≤T ≤T

P solver

Figure: Computable reducibility
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PROVABILITY VS COMPUTATIONAL APPROACH

If we forget induction,

P ≤c Q

can be seen as

RCA0 ` Q→ P

where only one application of Q is allowed.
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Ramsey’s theorem
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RAMSEY’S THEORY

Given some size s, every sufficiently large
collection of objects has a sub-collection of size s,
whose objects satisfy some structural properties.
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RAMSEY’S THEOREM

Definition
Given a coloring f : [N]n → k, a set H is f -homogeneous if there exists
a color i < k such that f ([H]n) = i.

Definition (Ramsey’s theorem)
Every coloring f : [N]n → k has an infinite f -homogeneous set.
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RAMSEY’S THEOREM

RTn
k

Over n-tuples

Using k colors
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RAMSEY’S THEOREM

Fix the number of colors k.
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RAMSEY’S THEOREM FOR n-TUPLES

Theorem (Jockusch, 1972)
Every computable coloring f : [N]n → k has a Π0

n infinite
f -homogeneous set.

Theorem (Jockusch, 1972)
For every n ≥ 3, there is a computable coloring f : [N]n → k such that
every infinite f -homogeneous set computes ∅(n−2).
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RAMSEY’S THEOREM FOR n-TUPLES

Theorem (Simpson, 2009)
For each n,m ≥ 3, RCA0 ` RTn

k ↔ RTm
k .

What about RT2
k ?
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RAMSEY’S THEOREM FOR PAIRS

Theorem (Seetapun, 1995)
For every computable coloring f : [N]2 → k and every
non-computable set C, there is an infinite f -homogeneous set H 6≥T C.

Corollary
RT2

k does not imply RT3
k over RCA0.
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HOW MANY APPLICATIONS?

When 3 ≤ m < n, the proof of

RCA0 ` RTm
k → RTn

k

involves multiple applications of RTm
k .

How many applications of RTm
k are necessary?
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HOW MANY APPLICATIONS?

Theorem (Jockusch, 1972)
For every n ≥ 2, there is a computable coloring f : [N]n → k with no
Σ0

n infinite f -homogeneous set.

Corollary
For every n ≥ 2, RTn

k 6≤c RTn+1
k .

At least 2 applications of RTn
k are necessary to prove RTn+1

k .
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HOW MANY APPLICATIONS?

Theorem (Cholak, Jockusch, Slaman, 2001)
For every n ≥ 2, every set P� ∅(n−1), and every computable
coloring f : [N]n → k, there is an infinite f -homogeneous set H such
that H′ ≤T P.

I At most 3 applications of RT3
k are necessary to prove RT4

k
I Exactly 2 applications of RTn

k are necessary to prove RTn+1
k

whenever n ≥ 4.
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SUMMARY FOR A FIXED k

RT2
k RT2

k

RTn
k , n ≥ 3 RT3

k

RT4
k

Over RCA0 Over ≤c
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RAMSEY’S THEOREM

Fix the size of tuples n.
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RAMSEY’S THEOREM

Theorem (Folklore)
For every k, ` ≥ 2, RCA0 ` RTn

k ↔ RTn
`

Proof for k = `2.
I Take a coloring f : [N]n → `2

I Define g : [N]n → ` by merging colors by blocks of size `
I Apply RTn

` to g to obtain H such that |f ([H]2)| ≤ `.
I Apply again RTn

` to f restricted to H.
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HOW MANY APPLICATIONS?

Theorem (P.)
For every k > ` ≥ 2, RTn

k 6≤c RTn
` .

Theorem (P.)
For every k > ` ≥ 2, there is a ∆0

n partition A0 ∪ · · · ∪ Ak−1 = N
such that every computable RTn

` -instance has a homogeneous set
which computes no infinite subset of one of the A’s.
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A HARD ∆0
2 PARTITION

Definition
A function f is Y-hyperimmune if f is not dominated by any
Y-computable function. A set X is Y-hyperimmune if its
principal function pX is.

If X is Y-hyperimmune, then every infinite Y-computable set
intersects X.
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A HARD ∆0
2 PARTITION

Lemma (Folklore)
This is a ∆0

2 partition A0 ∪ · · · ∪ Ak−1 = N such that the A’s are
hyperimmune.

If suffices to show that every computable RT2
`-instance has a

homogeneous set H such that Ai is H-hyperimmune for at least
two i’s.
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COHESIVENESS

Definition
Given a sequence of sets R0,R1, . . . , an infinite set C is
~R-cohesive if C ⊆∗ Ri or C ⊆∗ Ri for each i ∈ N.

Definition (Cohesiveness)
Every countable sequence of sets ~R admits an ~R-cohesive set.
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COHESIVENESS AND RT2
`

I Fix computable instance f : [N]2 → ` of RT2
` .

I Define Rx,i = {y : f (x, y) = i}.
I Take an ~R-cohesive set C.
I Let Bi = {x ∈ C : limy∈C f (x, y) = i}

Any infinite subset of one of the B’s computes an infinite
f -homogeneous set.
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RT2
` AND HYPERIMMUNITY

We need to prove hyperimmunity preservation results for

I Cohesiveness
I Non-effective RT1

`
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PRESERVATION OF HYPERIMMUNITY

Definition
A Π1

2 statement P admits preservation of hyperimmunity if for
each set Z, each sequence of Z-hyperimmune sets A0,A1, . . . ,
and each P-instance X ≤T Z, there is a solution Y to X such that
the A’s are Y⊕ Z-hyperimmune.
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Preservation of hyperimmunity 6= hyperimmune-free solutions

Theorem (Jockusch & Stephan)
If R0,R1, . . . are the primitive recursive sets
then every ~R-cohesive is hyperimmune.

Theorem (P.)
COH admits preservation of hyperimmunity.
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MATHIAS FORCING

(F,X)
Initial segment Reservoir

F is finite, X is infinite and max(F) < min(X).
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MATHIAS FORCING

A condition (E,Y) extends (F,X) if
(a) F ⊆ E
(b) Y ⊆ X
(c) E \ F ⊆ X

A set G satisfies (F,X) if F ⊆ G and G \ F ⊆ X.
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COH ADMITS PRESERVATION OF HYPERIMMUNITY

I Fix a Z and a sequence of Z-hyperimmune sets A0,A1, . . .

I Fix a Z-computable sequence R0,R1, . . .

We build an ~R-cohesive set with Mathias conditions (F,X)
where the A’s are X ⊕ Z-hyperimmune.
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COH ADMITS PRESERVATION OF HYPERIMMUNITY

Lemma
For every condition c and every pair of indices e, i, there is an
extension d of c which forces ΦG⊕Z

e not to dominate pAi .

Proof (Part I).

I Fix c = (F,X).

I Define f (x) =

{
Φ
(F∪E)⊕Z
e (x) for some E ⊆ X
↑ otherwise

I f is partial X ⊕ Z-computable.
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COH ADMITS PRESERVATION OF HYPERIMMUNITY

Lemma
For every condition c and every pair of indices e, i, there is an
extension d of c which forces ΦG⊕Z

e not to dominate pAi .

Proof (Part II).

I If f is partial, then c forces ΦG⊕Z
e to be partial.

I If f is total, then f (x) ≤ pAi(x) for some x.
I Let E be such that f (x) = Φ

(F∪E)⊕Z
e (x)

I (F ∪ E,X \ [0,max(E)]) forces f (x) ≤ pAi(x)
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NON-EFFECTIVE RT1
`

Lemma
∆0

2-RT1
` does not admit preservation of hyperimmunity.

Proof.
Take C0 ∪ · · · ∪ C`−1 = N be hyperimmune sets.
If H ⊆ Ci, then pH dominates pCi , so Ci is not
H-hyperimmune.
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Definition
Given two integers u, ` ≥ 1, we let π(u, `) denote the
unique a ≥ 1 such that u = a · `− b for some b ∈ [0, `).

If you have u pigeons in ` pigeonholes, one of the holes has at
least π(u, `) pigeons.
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PRESERVATION OF HYPERIMMUNITY

Theorem (P.)
Fix some k ≥ 1 and ` ≥ 2 and k hyperimmune sets A0, . . . ,Ak−1. For
every `-partition B0 ∪ · · · ∪ B`−1 = ω, there exists an infinite
subset H of some Bi such that π(k, `) sets among the A’s are
H-hyperimmune.

Build a set G by Mathias forcing, and let H = G ∩ Bi for
some i < `.
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NON-EFFECTIVE RT1
`

Lemma
For every condition c and every pair of indices e, i, there is an
extension d of c which forces Φ

(G∩Bj)⊕Z
e not to dominate pAi for

some j < `.



INTRODUCTION RAMSEY’S THEOREM THIN SET THEOREM

HOW MANY APPLICATIONS?

Theorem
For every k > ` ≥ 2, RT2

k 6≤c RT2
` .

Proof (Part I).

I Define a ∆0
2 partition A0 ∪ · · · ∪ Ak−1 = N such that the A’s

are hyperimmune.
I Consider its ∆0

2 approximation function as a computable
instance of RT2

k .
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HOW MANY APPLICATIONS?

Theorem
For every k > ` ≥ 2, RT2

k 6≤c RT2
` .

Proof (Part II).

I Fix computable instance f : [N]2 → ` of RT2
` .

I Construct an ~R-cohesive set C such that the A’s are
hyperimmune relative to C.

I Let Bi = {x ∈ C : limy∈C f (x, y) = i}
I Take an infinite subset H of some Bi such that π(k, `)

among the A’s are H ⊕ C-hyperimmune.
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HOW MANY APPLICATIONS?

Theorem (P.)
For every k > ` ≥ 2, RTn

k 6≤c RTn
` .

Proof.
By induction over k ≥ 2 using prehomogeneous sets.



INTRODUCTION RAMSEY’S THEOREM THIN SET THEOREM

SUMMARY FOR A FIXED n

RTn
k , k ≥ 2 RTn

2

RTn
3

RTn
4

Over RCA0 Over ≤c
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COUNTING APPLICATIONS

Question
How many applications needed to prove that RCA0 ` RT2

2 → RT2
5?

Take a ∆0
2 5-partition A0 ∪ · · · ∪A4 = N whose complements are

hyperimmune.

# of apps of RT2
2 # of i’s such that Ai is hyperimmune

0 5

1 π(5, 2) = 3

2 π(3, 2) = 2

3 π(2, 2) = 1
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RAMSEY’S THEOREM

RTn
k

Over n-tuples

Using k colors
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RAMSEY’S THEOREM

RTn
k,r

Over n-tuples

Using k colors

Allows r colors
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THIN SET THEOREM

TSn
k RTn

k,k−1
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ALLOWING MORE COLORS

Theorem (Wang, 2014)
Fix some n and some sufficiently large k’s. For every instance f
of TSn

k and every non-computable set C, there is an infinite solution
to f which does not compute C.

Corollary
For every n and sufficiently large k, TSn

k does not imply RT3
2

over RCA0.
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ALLOWING MORE COLORS

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer, 2015)
RCA0 ` TSns+1

ks → TSn+1
k

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer, 2015)
RCA0 ` TSn+2

2n → TS3
2
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ALLOWING MORE COLORS

Tuples Strong avoidance Computes ∅′

TS1
k k ≥ 2 never

TS2
k k ≥ 3 k = 2

TS3
k k ≥ 7 k ≤ 4

Does any of TS3
5 or TS3

6 admit strong cone avoidance?
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ALLOWING MORE COLORS

Theorem (P.)
For every k ≥ 2,

I TS2
k+1 admits preservation of k hyperimmunities.

I TS2
k does not admit preservation of k hyperimmunities.

Corollary (P.)
For every k ≥ 2, TS2

k+1 does not imply TS2
k over RCA0.
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ALLOWING MORE COLORS

Fix some ` ≥ 2.

Theorem (P.)
For every n and sufficiently large k’s,
TSn

k admits preservation of ` hyperimmunities.

Corollary (P.)
For every n and sufficiently large k’s,
TSn

k does not imply TS2
` over RCA0.
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SUMMARY FOR n = 2

RT2
2

TS2
3

TS2
4

Over RCA0
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CONCLUSION

I Computable reducibility gives a more fine-grained
analysis than reverse mathematics.

I Ramsey’s theorem is not robust for computable
reducibility.

I Changing the number of allowed colors has a great impact
on the strength of Ramsey’s theorem.
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QUESTIONS

Thank you for listening!
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