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un Lemme de König Faible de Type Ramsey

Stage de Master 2 - MPRI
mars - août 2012
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Le contexte général

Le programme dit des � mathématiques à rebours � (reverse mathematics) est un pro-
gramme de fondation des mathématiques ayant pour objet l’analyse de la force logique des
théorèmes mathématiques les plus standards. Le cadre logique dans lequel se placent les
mathématiques à rebours est celui des sous-systèmes de l’arithmétique du second ordre, et
notamment les systèmes de base RCA0, WKL0 et ACA0. Ces systèmes correspondent en calcu-
labilité à divers niveaux de difficulté. RCA0 est le système correspondant aux mathématiques
calculables. WKL0 correspond à l’utilisation de la compacité, c’est-à-dire à la possibilité d’ex-
traire de toute classe Π0

1 non-vide de réels un élément particulier (ce qui n’est pas constructif
en général). Enfin, ACA0 correspond à l’existence pour tout réel du problème de l’arrêt associé
(dont la non-calculabilité est bien connue et est à la base de toute la théorie moderne de la
calculabilité). La référence en la matière est le livre de Stephen Simpson Subsystems of Second
Order Arithmetic, qui sera bientôt rejoint par le livre en cours d’écriture de Damir Dzhafarov
et Carl Mummert.

Le problème étudié

On s’intéresse dans ce rapport à des sous-systèmes entre RCA0 et WKL0 fondés sur un
principe hybride combinant le lemme de König (existence d’un chemin pour tout arbre infini
à branchement fini) et le théorème de Ramsey (tout coloriage fini de l’ensemble des n-parties
de ω admet un sous-ensemble infini monochromatique) en un principe d’existence dans tout
arbre infini à branchement fini d’un sous-ensemble infini d’un chemin de l’arbre.

La classe RKL ainsi définie a été récemment introduite par Stephen Flood dans son ar-
ticle Reverse Mathematics and a Ramsey-type König’s lemma. L’introduction de nouveaux
principes définissant de nouvelles classes permet souvent d’améliorer la compréhension d’un
système existant en prouvant l’équivalence d’un nouveau principe avec le systeme. La mul-
tiplicité des principes pour définir un même système permet de simplifier les preuves en
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choisissant le principe convenant le mieux à une preuve naturelle pour un problème donné.
Les mathématiques à rebours ont montré que les principaux théorèmes étaient équivalents
à des systèmes faibles, c’est à dire pour la plupart en dessous de ACA0. L’attention des
mathématiciens s’est donc naturellement portée sur l’enrichissement des systèmes faibles pour
affiner la compréhension de la difficulté des théorèmes existants.

En définissant un nouveau principe, Flood a ouvert une série de questions sur le position-
nement du système induit ainsi que de ses variantes dans la hiérarchie des systèmes existants.
S’il y a apporté une réponse partielle en démontrant des implications relatives à ce système,
la question de la caractérisation du système reste ouverte.

La contribution proposée

Afin de mieux cerner l’expressivité d’un principe, la démarche canonique consiste à étudier
des variantes du principe en faisant varier des paramètres.

Ce rapport introduit WRKL, une variante de RKL basée sur le même principe mais
restreint aux arbres de mesure positive, restriction déjà étudiée dans le cadre du lemme de
König en le système WWKL0. La variante WRKL apparâıt être équivalente à une classe déjà
existante nommée DNC.

Nous introduisons également la variante RKL+ imposant des contraintes plus fortes sur
la nature du sous-ensemble infini d’un chemin de l’arbre, et prouvons que cette variante
est équivalente au système WKL0. Sachant que RKL a été prouvé différent de WKL0 par
Flood, nous mettons en exergue par notre variante l’importance de la contrainte imposée
dans l’expressivité du système.

Les arguments en faveur de sa validité

Afin de s’assurer de la robustesse de notre approche ainsi que mieux comprendre les
raisons profondes de l’équivalence entre les deux principes, nous fournissons deux preuves :
une probabiliste et une purement combinatoire. La simplicité des preuves fournies permet au
lecteur attentif de se convaincre de leur validité.

En outre, les principes considérés comportent de fortes connexions avec la théorie de
l’aléatoire de Martin-Löf et le résultat d’équivalence entre WRKL et DNC correspond à un
théorème préexistant en aléatoire.

Le bilan et les perspectives

Le système RKL ayant été introduit très récemment, il n’était pas possible d’évaluer a
priori la difficulté de la question posée. Bien que la question de la nature exacte du système
RKL reste toujours ouverte, nous avons amélioré la compréhension du principe en question en
prouvant respectivement la faiblesse d’une de ses restrictions et la force d’une de ses variantes.
Le système est supposé disjoint de toute autre classe existante. Sa séparation de WKL0 a été
prouvée par Flood. Il reste à prouver sa séparation du système DNC ainsi que de WWKL0.
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Abstract

In this report, we present a weakened version of RKL (see [4]) and characterize it
in terms of diagonally non computable functions using two proofs: a probabilistic and
a combinatorial one. We also try to handle the expressivity of RKL by studying its
variant RKL+, proving its equivalence to the existence of a DNC2 function. However
the separation between DNC and RKL remains still open.
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1 Introduction

Reverse mathematics is a program in mathematical logic that seeks to determine which
axioms are required to prove theorems of mathematics. Set theory being widely used as
foundational formalism for defining mathematics, the axioms choosen for giving a char-
acterization of the strength of everyday theorems are naturally set existence axioms. We
focus on the language of second order arithmetic, because that language is the weakest
one that is rich enough to express and develop the bulk of core mathematics.

As a remarkable empirical observation, most theorems in “ordinary” mathematics
appear to involve only a few principles – weak König’s lemma, arithmetical comprehension,
arithmetical transfinite recursion... – and they live mainly in low classes. Furthermore,
most common theorems are proven to be equivalent to those axioms.

In section 1.1 we will introduce a few notations, then we will define the notion of
subsystem of second order logic in section 1.2. Then we will introduce the weakest and
the most foundamental subsystem RCA0 in section 1.3 as it will be used as a basis to
prove implications between other systems. In sections 1.4, 1.5, 1.6 and 1.7 we will present
definitions of subsystems useful for the understanding of our results. We introduce them
by class of principles together with their main results. Then in section 2 we prove the
equivalence of WRKL and DNC in two ways: a probabilistic one (section 2.1) and a
combinatorial one (section 2.2). In section 3 we put our focus on RKL by discussing
about its separation proof from WKL0 (section 3.1) and proving the equivalence between
its variants RKL+, RKLh and WKL0 (sections 3.2 and 3.3).

1.1 Prerequisites and conventions

The reader is assumed to know basics about computability theory – Sm
n theorem, Rice’s

theorem, Kleene’s recursion theorem –. A good introductory book is Computability Theory
from S.B. Cooper [3]. Notions about reverse mathematics are welcome. The reference book
in this domain is Subsystems of second order arithmetic from S.G. Simpson [17].

We now fix some notations and introduce a few definitions.

Turing machines We write Turing functionnals in upper case greek letters Φ,Ψ... ΦS

denotes the Turing machine with oracle S. It is a well known result that Turing machines
are enumerable. Let (Φe)e∈N be an enumeration of all partial computable functions. We
denote by We the domain of Φe.

Strings, sequences A string is an element of 2<ω. The empty string is written ε.
We write |σ| the length of string σ. We denote by � the prefix relation over strings, ie.

�def
=
{

(σ1, σ2) ∈ 2<ω × 2<ω : |σ1| ≤ |σ2| ∧ ∀i ≤ |σ1| , σ1(i) = σ2(i)
}

We will denote by Γi
n the set of strings having a i at position n:

Γi
n

def
=
{
s ∈ 2<ω : |s| > n ∧ s(n) = i

}
Trees, paths A binary tree T is a subset of ω<ω closed under prefixes. In the remaining
of this report and unless mention, we will consider only infinite binary trees with T ⊆ 2<ω.
A path in T is a sequence P ∈ 2ω such that all finite prefixes of P is in T . We will sometimes
identify P to a function P : ω → {0, 1} such that P (n) = 1 iff the nth bit of P is 1. We
write [[T ]] for the set of paths of T . The measure of a binary tree T is defined as follows.

µ(T )
def
= lim

n→∞

card {σ ∈ T : |σ| = n}
2n
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Note that this limit always exists. A tree T has positive measure if µ(T ) > 0.

1.2 Subsystems of Z2

Since in ordinary mathematics the objects studied are almost always countable or separa-
ble, it would seem appropriate to consider a language in which countable objects occupy
center stage. For this reason, the language of study is second order arithmetic. We will
introduce L2, the langage of second order arithmetic, then we will define Z2, it’s formal
system and will explain notions of subsystems of Z2

Definition 1 (Language of Second Order Arithmetic L2) The language of second order
arithmetic is a two-sorted language – ie. it manipulates two kinds of objects: numbers
and sets of numbers –. Variables of the numbers sort are denoted by x, y, z . . . whereas
variables of sets sort are denoted by capital letters: X,Y, . . . . The numerical terms of L2

are defined as follows:
t ::= 0 | 1 | x | t1 + t2 | t1 · t2

Here + and · are intended to denote addition and multiplication over natural numbers.
Formulas of L2 are defined as follows:

f ::= t1 = t2 | t1 < t2 | t1 ∈ X | ∀x.f | ∃x.f | ∀X.f | ∃X.f | ¬f | f1 ∨ f2

∀x.f and ∃x.f are intended to denote universal and existential quantification over num-
bers, whereas ∀X.f and ∃X.f are quantifications over sets. Formulas used as the base
case of this inductive definition are called atomic formulas. Other connectives are defined
in the usual way – f1 ∧ f2 is a notation for ¬(¬f1 ∨ ¬f2), f1 ⇒ f2 for ¬f1 ∨ f2, f1 ⇔ f2
for (f1 ⇒ f2) ∧ (f2 ⇒ f1) . . . –. A sentence is a formula without free variables.

Definition 2 (Second Order Arithmetic Z2) The axioms of Z2 are the following:

(i) Basic axioms:

n+ 1 6= 0 m+ 1 = n+ 1⇒ m = n
m+ 0 = m m+ (n+ 1) = (m+ n) + 1
m · 0 = 0 m · (n+ 1) = (m · n) +m
¬m < 0 m < n+ 1⇔ (m < n ∨m = n)

(ii) Induction axiom:

(0 ∈ X ∧ ∀n.(n ∈ X ⇒ n+ 1 ∈ X))⇒ ∀n.(n ∈ X)

(iii) Comprehension scheme:
∃X.∀n.(n ∈ X ⇔ ϕ(n))

where ϕ(n) is any formula of L2 in which X does not occur freely.

Definition 3 (L2-Structure, model) A L2-structure is an ordered 7-tuple

M = 〈|M | ,SM ,+M , ·M , 0M , 1M <M 〉

where |M | is the set in which range number variables. SM is a set of subsets of |M | serving
as the range of the set variables. +M and ·M are binary operations over |M |, 0M and 1M
are distinguished elements of |M |. <M is a binary relation over |M |. Formulas of L2 are
interpreted in a L2-structure in the obvious way.
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A model of Z2 is a L2-structure satisfying axioms of second order arithmetic. An
ω-model of Z2 is a L2-structure of the form

〈ω,S,+, ·, 0, 1, <〉

where ω is the set of natural integers, S ⊆ P(ω), + and · are usual operations over integers
and < is the natural ordering, such that S verifies comprehension scheme. Note that basic
axioms and induction axiom are valid in any ω-model. As only SM varies, we sometimes
simply denote an ω-model by its set S.

Definition 4 (Subsystem of Z2) A subsystem T of Z2 is a formal system based on lan-
guage L2 whose axioms are theorems of Z2. A model of T is any L2-structure verifying
axioms of T .

We will be especially interested in weakenings of induction axiom and comprehension
scheme. The following sections will detail some particularily important subsystems which
play an role in our results.

1.3 The system RCA0

RCA0 is the weakest of our studied subsystems and is especially important because
almost all our theorems will be proved in RCA0. The acronym RCA stands for Recursive
Comprehension Axiom, because RCA0 asserts the existence of any set computable in a
few oracles B1, B2, . . . .

Definition 5 (Σ0
1, Π0

1 and ∆0
1 formulas) A L2 formula is Σ0

1 if it is of the form ∃n.φ where
φ is a formula with only bounded quantifiers. We can define dually Π0

1 formulas with
universal quantifier.

A formula is ∆0
1 if it can be expressed equivalently by a Σ0

1 and a Π0
1 formula. Notice

that the notion of ∆0
1 is semantic whereas Σ0

1 and Π0
1 are defined syntactically.

These notions are closely related to Computability Theory as follows

Theorem 1 [Post’s theorem] A set A is computably enumerable (resp. computable)
in B1, B2, . . . iff it is definable by a Σ0

1 formula (resp. ∆0
1 formula) with parameters

B1, B2, . . . .

Definition 6 (System RCA0) The axioms of RCA0 are the following:

(i) Basic axioms of Z2

(ii) Σ0
1 Induction axiom:

(ϕ(0) ∧ ∀n.(ϕ(n)⇒ ϕ(n+ 1)))⇒ ∀n.ϕ(n)

where ϕ(n) is any Σ0
1 formula of L2

(iii) ∆0
1 Comprehension axiom:

∀n(ϕ(n)⇔ ψ(n))⇒ ∃X.∀n.(x ∈ X ⇔ ϕ(n))

where ϕ(n) is any Σ0
1 formula of L2 in which X does not occur freely and ψ(n) is

any Π0
1 formula of L2.

Theorem 1 together with axioms of RCA0 justify its name Recursive Comprehension
Axiom. RCA0 corresponds intuitively to “computable mathematics”. In fact we have a
nice characterization of ω-models of RCA0 in terms of Computability Theory:
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Theorem 2 (ω-models of RCA0) [17] A set S ⊆ P(ω) is an ω-model of RCA0 iff

(i) S 6= ∅
(ii) A and B ∈ S implies A⊕B ∈ S
(iii) A ∈ S and B ≤T A implies B ∈ S
where ≤T is the Turing reduction and A⊕B is the computable join, ie

A⊕B def
= {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}

In particular, RCA0 has a minimal ω-model which is the set of computable sets of
natural numbers. All other subsystems presented in this report will be extensions of
RCA0 with some principles.

1.4 Weak König’s Lemmas

An important class of principles is about the existence of a path in an infinite tree.
König’s lemma in its full generality asserts the existence of a path in any infinite tree
finitely branching. It can be proven withing Z2 and even weaker subsystems.

Given a tree T , the sets of paths of T is written [[T ]] and is called a Π0
1 class. This notion

has been extensively studied since Simpson suggested it could be a natural generalization
of Turing degrees. We can define two notion of reduction between two Π0

1 classes.

Definition 7 (Mučnik and Medvedev reductions) Let C1 and C2 be two Π0
1 classes.

C1 is Mučnik-reducible (or weakly-reducible) to C2 if for every set X2 ∈ C2 there is a
set X1 ∈ C1 such that X1 ≤T X2. We note C1 ≤w C2.
C1 is Medvedev-reducible (or strongly-reducible) to C2 if there is a functionnal Ψ such

that for every set X ∈ C2, ΨX ∈ C1. We note C1 ≤s C2.

Those notions of reductions express intuitively that being given any set of one class we
can produce (uniformly or not) a set in a lower class. Each reduction induce a different
notion of degree in which we can embed Turing degrees. See [6] for a good survey on
Mučnik and Medvedev degrees.

The strongest system related to König’s lemma is ACA0, standing for arithmetical
comprehension axiom. ACA0 appears to be equivalent in RCA0 to the unrestricted
König’s lemma. It can also be seen as a convervative extension of first order arithmetic
as a L1-sentence is a theorem of ACA0 iff it is a theorem of Z1.

Definition 8 (System ACA0) The axioms of RCA0 are the following:

(i) Basic axioms of Z2

(ii) Σ0
1 Induction axiom.

(iii) Arithmetical Comprehension axiom:

∃X.∀n.(x ∈ X ⇔ ϕ(n))

where ϕ(n) is any arithmetical formula of L2 – ie. without set quantifier – in which
X does not occur freely.

ACA0 is a strong class and a lot of theorems live in weaker classes. In our study, we
will be interested in weaker notions of König’s lemma, restricted to infinite subtrees of
2<ω trees. Notice that the restriction to subtrees of 2<ω is different from the restriction
to binary trees as the latter is still equivalent to ACA0.

5



Definition 9 (System WKL0) The axioms of WKL0 are those of RCA0 augmented
with the principle “every infinite subtree of 2<ω has a path”.

WKL0 corresponds to the notion of compactness and is for example equivalent to the
Heine/Borel theorem: Every covering of the closed unit interval 0 ≤ x ≤ 1 by a sequence
of open intervals has a finite subcovering. We can obtain a model of WKL0 by taking the
set of computable sets augmented with low sets – ie. sets X such that X ′ ≡T ∅′ – because
of the low basis theorem [10] stating that any non-empty Π0

1 class has a low member.
An even weaker notion of König’s lemma is the restriction to infinite trees of positive

measure.

Definition 10 (System WWKL0) The axioms of WKL0 are those of RCA0 augmented
with the principle “every infinite subtree of 2<ω of positive measure has a path”.

For the reader who is familiar with the theory of algorithmic randomness, WWKL0

is closely related to Martin-Löf randoms, as any Π0
1 class of positive measure contains all

MLR up to prefixes [12]. WWKL0 is then equivalent to the existence of a MLR and
the latter are used to construct a model of WWKL0. This connection to the theory
of algorithmic randomness will be continued when we will study Ramsey-like König’s
lemmas. See Nies book [14] for a good introduction to randomness.

All previously presented systems are proven to form a strict hierarchy:

Theorem 3 (Simpson et al. [18], [17])

RCA0 ( WWKL0 ( WKL0 ( ACA0

1.5 Ramsey’s Theorems

Another class of principles concerns Ramsey’s theorems which is a generalization of the
pigeonhole principle. Given n ∈ ω, let [N ]n denote the collection of subsets of ω of size n.

Definition 11 (System RT, RTn
k) The axioms of RT are those of RCA0 augmented with

the principle “given n and k ∈ ω, for every function (called a coloring) f ∈ {0, . . . , k − 1}[N ]n
,

there is an infinite set H ⊆ ω which is given one color by f”.
RTn

k is the restriction of RT to a fixed n and k.

A simple argument of color blindness shows that for any fixed n > 0, k1 > 1 and
k2 > 1, RTn

k1
⇔ RTn

k2
. For almost all values of n and k, the strength of RTn

k is known
as states the following theorem.

Theorem 4 (Simpson [17])

(i) For each n ≥ 3 and k ≥ 2 (both n and k fixed), RTn
k is equivalent to ACA0 over

RCA0.

(ii) RT is not provable in ACA0.

Hirst proved in his PhD thesis [7] that RT1
k is provable in RCA0 for each k. However,

the case of RT2
2 remained a long-standing problem. In 1995, Seetapun proved in [16] that

RT2
2 does not imply ACA0. Then Cholak, Jockusch, and Slaman proved in 2001 that

RT2
2 is not provable in WKL0 [2]. It is only in 2011 that Liu proved RT2

2 does not imply
WKL0 [13].
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1.6 Ramsey-Type Weak König’s Lemmas

In his paper Reverse mathematics and a Ramsey-type König’s Lemma, Stephen Flood
emitted the idea of combining König’s lemma and Ramsey principles by creating the
notion of homogeneous set for a path in a tree.

Definition 12 (Homogeneous set) A set H is homogeneous for σ ∈ 2<ω with color c ∈
{0, 1} if σ(x) = c for each x ∈ H s.t. x < |σ|. H is homogeneous for a path trough T if
∃c ∈ {0, 1} s.t. H is homogeneous for σ with color c for arbitrarily long c ∈ T .

Definition 13 (System RKL) The axioms of RKL are those of RCA0 augmented with
the principle “each binary tree T has an infinite set which is homogeneous for a path
through T .”

He proved the following relations between RKL and existings systems:

Theorem 5 (Flood [4]) The following statements are true:

(i) RKL < RT2
2

(ii) RKL < WKL0

(iii) DNC ≤ RKL

The question wether DNC implies RKL in RCA0 is still open. In order to understand
better the expressiveness of the existence of homogeneous set for a path in a tree, we have
been introducing two restrictions of RKL and will give a characterization of them in
further sections.

As the notion of path existence has been studied in terms of tree of positive measure
through the system WWKL0, it seems natural to wonder how powerful the existence of
Ramsey-type König’s principle is with the same restriction.

Definition 14 (System WRKL) WRKL is obtained from RKL by considering only
trees of positive measure.

As WRKL is a weakening of RKL, we can define a stronger statement still restricted
to trees of positive measure and wonder wether is will add enough strength to be equivalent
to RKL.

Definition 15 (System WRKL+) WRKL+ is obtained from WRKL by considering
only homogeneous sets of color 0.

1.7 Diagonally Non-Computable functions

Any principle can be used to define a new axiomatic system. A wide range of studied
systems are defined by the extension of RCA0 verifying a given principle. The whole
difficulty of reverse mathematics consists of relating different principles by proving whether
they are equivalent, one strictly implies the other or wether they are unrelated. DNC-like
functions provide a uniform principle definition framework using function-based principles.
Therefore they help understanding the relations between systems as they are described
under the same aspect.

Rice’s theorem [15] states that no set of partial function verifying non trivial properties
is computable. In this case, these principles state the existence of such sets for some given
properties. Here are a few of them. DNC stands for Diagonally Non Computable and
FPF for Fixpoint-Free Function.
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• DNC: For every set X, there exists a total function f ∈ ωω such that for each
Turing index e, f(e) 6= ΦX

e (e)

• DNCk: For every set X, there exists a total function f ∈ kω such that for each
Turing index e, f(e) 6= ΦX

e (e)

• DNCh (where h is a computable function): For every setX, there exists a h-bounded
total function f ∈ ωω such that for each Turing index e, f(e) 6= ΦX

e (e)

• FPF: For every set X, there exists a total function f ∈ ωω such that for each Turing
index e, ΦX

f(e) 6= ΦX
e

Manipulation of such principles is quite well understood and there is a bunch of sepa-
ration and equality results between function-based principles.

Theorem 6 (Jockusch, Lerman, Soare & Solovay [9]) RCA0 ` DNC = FPF

Theorem 7 (Jockusch [8]) For all k ≥ 2 and f ∈ DNCk+1, there exists a functionnal Γ
such that Γf ∈ DNCk. However the reduction is not uniform.

In other words DNCk ≤w DNCk+1 but DNCk 6≤s DNCk+1.

Theorem 8 (Ambos-Spies, Kjos-Hanssen, Lempp & Slaman [1]) For all computable func-
tion h, there exists a computable function g such that DNCg ( DNCh

The new goal becomes then to express a given system as an extension of RCA0

verifying a function-based principle to reuse our separation tools on it. For example we
have a nice characterization of WKL0:

Theorem 9 (Jockusch [8]) RCA0 `WKL0 = DNC2
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2 The system WRKL

We will first prove that RCA0 ` DNC ⇒WRKL+ by two approaches: a probabilistic
one and a combinatorial one. The proof requires the following general purpose lemma
saying that if we are given a DNC function, for each size-bounded c.e. set we can uniformly
compute an number outside of it.

Lemma 1 (RCA0) Let f be a DNC function, g a computable function, (We)e∈N an
enumeration of c.e. sets such that card(We) ≤ g(e) for all e. Then there is a f -computable
function h such that Wh(e) is infinite and Wh(e) ∩We = ∅.

Proof. Let e be an enumeration index. We construct the Turing machines Φe1 , . . . ,Φeg(e)

as follows

∀n, Φei(n)
def
=

{
Φx(i) if x is the ith element of We

↑ if card(We) < i

If f(ei) = n then for any x such that Φx(e) = n, x is different from the ith element
enumerated by We. So it suffices to choose for h(e) such that for all x ∈ Wh(e), Φx(i) =
f(ei).

We now give the main proofs about DNC = WRKL assuming the following lemma
which will be proven by two ways in further sections.

Lemma 2 (RCA0) There are computable functions g and h ∈ ωω such that for each
binary tree T of measure µ(T ) > 2−m,

card
{
n ∈ ω : µ(T ∩ Γ0

n) ≤ 2−g(m)
}
< h(m)

Proof. See lemma 5 or 9.

Theorem 10 (RCA0) DNC⇒WRKL+

Proof. Let f be a DNC function and T a binary tree of measure µ(T ) > 2−m. Let g and h
be the functions of lemma 2. Using f , we will construct a f -computable strictly increasing
sequence of integers (un) and a decreasing sequence of trees T = T0 ⊆ T1 ⊆ T2 ⊆ . . . of
positive measure verifying the two properties:

Pi : µ(Ti) > 2−g
i(m) Qi : Ti = T

⋂
j≤i

Γ0
uj

At stage i, assume we have a tree Ti verifying above properties. Let’s consider the
following p.c. function:

Φe(n) ↓⇔ µ(Ti ∩ Γ0
n) ≤ 2−g

i+1(m)

By lemma 2, card(We) < h(gi(m)) and using lemma 1 we can compute a value ui+1 6∈
We ∪ {uj : j ≤ i}. We set then Ti+1 = Ti ∩ Γ0

n and begin stage i+ 1.

For the sake of contradiction, if H
def
= {ui : i ∈ ω} is not an infinite homogeneous set

with color 0 for a path in T , then there exists an i such that Hi
def
= {uj : j ≤ i} does

not form a homogeneous set with color 0 for a path in T . And we derive the following
contradiction:

0 = µ(T
⋂
j≤i

Γ0
uj

) = µ(Ti) > 2−g
i(m)

9



Theorem 11 (RCA0) The following classes are equivalent

(i) WRKL

(ii) WRKL+

(iii) DNC

Proof. (ii) ⇒ (i) is obvious. (ii) ⇒ (iii) is the proof of RKL⇒ DNC from Flood [4] by
noticing that the only use of the RKL existence axiom is on a tree of positive measure.
(iii) ⇒ (ii) is theorem 10.

For the reader who knows the theory of algorithmic randomness, this result is confirmed
by the following theorem:

Theorem 12 (Kjos-Hanssen [11], Greenberg & Miller [5]) The following are equivalent:

(i) A computes a DNC function.

(ii) A computes an infinite subset of a Martin Löf random.

WWKL0 is known to be equivalent to the existence of a MLR as Kučera proved in
[12] that any Π0

1 class of positive measure contains all MRL up to prefix modification and
as there exists a Π0

1 class containing only MLRs. Hence intuitively WRKL corresponds
to the existence of an infinite subset of a MRL and hence is equivalent to the existence of
a DNC function.

Note that we could have slightly modified our proof to ensure that the constructed set
is homogeneous both for a path with color 0 and for a path with color 1 in the tree.

The core of the proof of WRKL = DNC relies on lemma 2 saying that the set of bad
candidates for an homogeneous set is finite and moreover uniformly bounded. This lemma
is proved using a probabilistic approach (lemma 5) and a combinatorial one (lemma 8).
We will now develop each approach.

2.1 Probabilistic proof of WRKL = DNC

Here is the intuition of the probabilistic approach: If we fix a set of positions and choose
a binary sequence uniformly, we are unlikely to have much more than half of 1’s in the
chosen positions. However we are given a Π0

1 class C such that if a sequence is in C, the
probability of having much more 1’s than 0’s at the chosen positions is very high. We
can hence construct an upper bound of the measure of C in function of the number of
such positions. As the size of the tree is bounded, the set is finite and the proof gives a
computable bound.

Lemma 3 (RCA0) Let X be a random variable following a uniform distribution over

binary sequences. Let {x1, . . . , xk} be a set of k integers and Xi
def
= X(xi), ie. the value

of the xith digit of X. Then the following holds:

P

[
k∑

i=1

Xi ≥
3k

4

]
≤ 2e−

k
16

Proof. We consider the mutually independant random variables Yi = 2Xi − 1. Let Y =∑k
i=1 Yi = 2

∑k
i=1Xi− k. Using V ar(Y ) = E(Y 2)−E(Y )2 and by a simple induction we

obtain V ar(Y ) = k. By Chernoff bound

P

[
k∑

i=1

Xi ≥
3k

4

]
≤ P

[∣∣∣∣∣2
k∑

i=1

Xi − k

∣∣∣∣∣ ≥ k

2

]
= P

[
|Y | ≥

√
k

2

√
k

]
≤ 2e−

k
16

10



Lemma 4 (RCA0) Let X be a random variable following a uniform distribution over
binary sequences. Let T be an event of positive probability, Γ0

n the event ”there is a 0 at
n-th position of X“ and S = {x1, . . . , xk} a set of k integers such that P

[
Γ0
xi
|T
]
≤ 1

2 . We
write Xi = X(xi). Then the following holds:

P

[
k∑

i=1

Xi ≥
3k

4
|T

]
>

1

2

Proof. Let Yi = 1 − Xi. So E[Yi|T ] < 1
2 . Let Y =

∑k
i=1 Yi. We have E[Y |T ] =∑k

i=1E[Xi|T ] < k
2 . Using Markov inequality

P

[
k∑

i=1

Xi <
3k

4
|T

]
= P

[
k −

k∑
i=1

Xi ≥
k

4
|T

]
= P

[
k∑

i=1

(1−Xi) ≥
k

4
|T

]

= P
[
Y ≥ 3k

4
|T
]
≤ 4E[Y |T ]

k
<

1

2

And we obtain the desired lower bound.

P

[
k∑

i=1

Xi ≥
3k

4
|T

]
= 1− P

[
k∑

i=1

Xi <
3k

4
|T

]
>

1

2

Lemma 5 (RCA0) Let T be a binary tree of measure µ(T ) > 2−n and k ∈ ω such that

2e−
k
16 ≤ 1

2 and

S
def
=
{
n ∈ ω : µ(T ∩ Γ0

n) ≤ 2−n−1
}

Then card(S) < k.

Proof. Let X be a random variable following a uniform distribution over binary sequences.
By abuse of notation, T also denotes the event ”X ∈ [[T ]]“. If there exists a subset

{x1, . . . , xk} of S of size k, then we can define the random variables Xi
def
= X(xi). Let E

be the event ”
∑k

i=1Xi ≥ 3k
4 “. Using lemmas 3 and 4 we obtain the following contradiction.

1

2
≥ 2e−

k
16 ≥ P [E] ≥ P [T ∩ E] = P [T ]P [E|T ] >

1

2

2.2 Combinatorial proof of WRKL = DNC

In this part, will computably bound the measure of a tree T in function of the size of
the set of levels where we can’t choose to build an homogeneous set for a path of T . We
reduce this problem to the question of a maximal set of strings having less 0’s in their
columns than a given value. We bound the size of the maximal set and deduce from it a
bound of the measure of a tree. Then by fixing the measure of the tree, we can extract a
bound of the size of wrong levels for an homogeneous set.

Lemma 6 (RCA0) Let T be a binary tree, m ∈ ω and S = {x1, . . . , xk} a set of k integers
such that µ(T ∩ Γ0

xi
) ≤ 2−m for each i. Then there exists a binary tree T ′ of the same

measure such that
∀n < card(S), µ(T ′ ∩ Γ0

n) ≤ 2−m

11



Proof. We can obtain a tree T ′ from T by giving a ∆0
1 formula which will flip the bits of

S and the first card(S) bits of T . To ensure that we can flip the coins, we only consider
strings of length greater than the maximum value of S, ie. xk an complete the tree with
all strings of length smaller than xk. The measure remains the same.

T ′
def
= 2<xk∪

s ∈ 2<ω : ∃t ∈ T , |t| = |s| ≥ xk ∧ ∀i < |s| , s(i) =

 t(xi) if i < k
t(j) if i = xj
t(i) otherwise



Lemma 7 (RCA0) Let k,m,N,M ∈ ω and S′ be a set of strings of length N such that
k ≤ N and

M−1∑
j=0

(
k − 1

j

)
≥ 2k−m ∀i < k, card {σ ∈ S′ : σ[i] = 0} ≤ 2N−m

Then

card(S′) ≤
M∑
j=0

(
k

j

)
× 2N−k

Proof. Being given a string σ of length N , we denote by 0(σ) the number of zeros in the
k first positions. For a set S of strings of length N , we denote by 0(S) the total number
of 0’s in the k first positions. Let S≤M be the set of strings of length N having at most
M 0’s in the first k positions. The following property holds:

∀i < k, card {σ ∈ S≤M : σ[i] = 0} =

M−1∑
j=0

(
k − 1

j

)
× 2N−k ≥ 2N−m

So for any set S′ verifying required properties, we have 0(S′) ≤ 0(S≤M ). If card(S′ −
S≤M ) > card(S≤M −S′), as for any σ1 ∈ S′−S≤M and σ2 ∈ S≤M we have 0(σ1) ≥ 0(σ2)
then 0(S′ − S≤M ) > 0(S≤M − S′) and we have the following contradiction:

0(S′) = 0(S′ − S≤M ) + 0(S′ ∩ S≤M ) > 0(S≤M − S′) +O(S′ ∩ S≤M ) = 0(S≤M )

So card(S′ − S≤M ) ≤ card(S≤M − S′) and hence

card(S′) = card(S′ ∩ S≤M ) + card(S′ − S≤M )
≤ card(S′ ∩ S≤M ) + card(S≤M − S′)
≤ card(S≤M ) =

∑M
j=0

(
k
j

)
× 2N−k

The intuition behind lemma 7 is very simple: for any M ∈ ω, the set S≤M is optimal,
in the sense that each of the k first columns contains the same number of 0’s – which is
computable in function of M using combinatorics – and each string in S≤M contains the
less posible number of 0’s. So any other set would contains either more 0’s in a column
and hence wouldn’t be a solution, or it would contain strings with more 0’s and hence it
would be a smaller set.

Example 1 Let’s illustrate lemma 7 with k = 4, N = 5, m = 2. We can take M = 2 as

(

M−1∑
j=0

(
k − 1

j

)
)× 2N−k = (

(
3

0

)
+

(
3

1

)
)× 2 = 8 ≥ 23 = 2N−m

12



The choice of M is so that the set S≤M has at least 2N−m = 8 0’s in each k first columns:

N︷ ︸︸ ︷
11110
11111
01110
01111

k︷︸︸︷
1011 0
10111
11010
11011

11100
11101
00110
00111

01010
01011
01100
01101

10010
10011
10100
10101

11000
11001

Notice that this set has cardinality

card(S≤M ) =

M∑
j=0

(
k

j

)
× 2N−k = (

(
4

0

)
+

(
4

1

)
+

(
4

2

)
)× 2 = 22

The lemma claims that there can’t be a set bigger than S≤M verifying required properties,
because S≤M has already at least the maximum number of 0’s in each k first columns,
using strings with the least number of 0’s in each. So the total number of 0’s of a set
verifying required properties must be less than 8× 4 = 32, and if there are strings in such
a set outside S≤M , then it would have more 0’s and so there must be less such strings to
stay under the total bound 32.

Notice that in this particular case, S≤M is a solution and hence its cardinality is the
optimal bound, but sometimes we have strictly more 0’s in the k first columns of S≤M
than the allowed amount. The reasoning remains valid, but the bound isn’t any more
tight.

Lemma 8 (RCA0) Let T be a binary tree, m,M ∈ ω and S a finite set such that

M−1∑
j=0

(
card(S)− 1

j

)
≥ 2card(S)−m ∀n ∈ S, µ(T ∩ Γ0

n) ≤ 2−m

Then

µ(T ) ≤
∑M

j=0

(
card(S)

j

)
2card(S)

Proof. Set card(S) = k. Using lemma 6 we can assume that S = {0, . . . , k − 1}. By hy-

pothesis the following holds:
∑M−1

j=0

(
k−1
j

)
≥ 2k−m. For eachN ∈ ω, SN

def
= {σ ∈ T : |σ| = N}.

If there exists an i < k such that for all N , card {σ ∈ SN : σ[i] = 1} > 2N−m. Then

µ(T ∩ Γ0
i )

def
= lim

N→∞

card {σ ∈ T : |σ| = N ∧ σ[i] = 0}
2N

> lim
N→∞

2N−m

2N
= 2−m

which would contradict the hypothesis. Therefore there exists an N ∈ ω such that

∀i < k, card {σ ∈ SN : σ[i] = 1} ≤ 2N−m

Then by lemma 7

card(SN ) ≤
M∑
j=0

(
k

j

)
× 2N−k

And hence

µ(T )
def
= lim

N→∞

SN

2N
≤
∑M

j=0

(
k
j

)
× 2N−k

2N
=

∑M
j=0

(
card(S)

j

)
2card(S)
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Lemma 9 (RCA0) Let T be a binary tree of measure µ(T ) > 2−n. We can uniformly
compute k ∈ ω such that

card
{
n ∈ ω : µ(T ∩ Γ0

n) ≤ 2−k
}
< k

Proof. Let k,M ∈ ω such that M ≥ 1 and
∑M

j=0

(
k
j

)
≤ 2k−n Let’s assume for the sake of

contradiction that there exists a set S of size k such that ∀n ∈ S, µ(T ∩ Γ0
n) ≤ 2−k. By

setting m = k, we have
∑M−1

j=0

(
k−1
j

)
≥ 1 = 2card(S)−m and using lemma 8 we can derive

the following contradiction.

2−n < µ(T ) ≤
∑M

j=0

(
card(S)

j

)
2card(S)

≤ 2−n
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3 The system RKL

In this section we will introduce some variations of RKL in order to understand better
which aspects of its principle is responsible of its computational power.

3.1 RKL vs WKL0

The proof of RKL < WKL0 given by Flood in [4] exploits a result from Liu [13] saying
that RT2

2 does not imply WKL0: as RKL ≤ RT2
2 we can’t have RKL = WKL0.

However, the result from Liu has been a long standing open question and the proof
involved very powerful technics. There might exist a direct proof of RKL < WKL0 with
would give more insight about what happens really.

A technic could be to define a stronger variant of RKL and characterize it in terms of a
weaker system than WKL0. In the two following sections, we will study two strengthened
versions of RKL which happend to be equivalent to WKL0. Such a result remains of
interest as it gives rise to the importance of some details of the definition to have exactly
the power of RKL. Hence we can rule out any attempt of characterization by a principle
which could construct a set as stated in one of the variants above.

3.2 RKL with fixed color

Theorem 11 shows that in the case of trees of positive measure, assuming the existence
of an infinite homogeneous set of any color for a path is similar to assume its existence
with a fixed color. As the question of separation between WRKL and RKL remains still
open, it is natural to ask wether it is still the case when we remove the assumption of
positive measure.

Definition 16 (System RKL+) RKL+ asserts “each infinite binary tree T with no com-
putable path has an infinite set which is homogeneous with color 0 for a path through
T .

We need to ensure that the tree has no computable path as otherwise, it could have
only path with finite number of left-branching. If such a case happens, the tree has a
computable path as we can hard-code the prefix of the path until there remains only 1’s.

Theorem 13 (RCA0) RKL+ ⇔WKL0

Proof. WKL0 ⇒ RKL+ is obvious because a non-computable path contains an infinity
of 0 and we can then extract an infinite homogeneous set with color 0. Let’s consider the
other direction.

We define a tree whose paths have zeros only at positions corresponding to the initial
segment of a DNC2 function. As we can compute a function from an infinite subset of its
initial segments, we can compute a DNC2 function from an infinite homogeneous set for
a path through this tree with color 0.

T
def
=

 s ∈ 2<ω : ∃s′ ∈ 2|s|, ∀i ≤ |s| , ∀j ≤ i, Φj(j)[i] 6= s′(j)

∧ s(i) =

{
0 if i � σ′
1 otherwise


The formula says that given a guess s′ of an initial segment of a DNC2 function, we add
strings whose only bits at 0 are those which corresponds to a prefix of s′. So any path in
T will be a set of initial segments of a DNC2 function.

Le H be an infinite homogeneous set for a path in T with color 0. Let e be a Turing
index and let k be such that Φe(e)[k] = Φe(e). We search for an i ∈ H such that |i| ≥ e.
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As H is homogeneous for a path in T , i � s1 ≺ s2 ≺ s3 . . . and hence |sk| ≥ k. By
construction of T the following holds

∀j ≤ |sk|Φj(j)[k] 6= s′(j)

Then Φe(e) = Φe(e)[k] 6= s′(e).

However, this result isn’t enough to conclude that WRKL and RKL are distinct.

3.3 RKL with bounded sparsity

The homogeneous sets of RKL can be arbitrarily sparse. One might wonder wether
restricting this sparsity by imposing a computable bound to the nth element of the set
would make the system strictly stronger. In fact, such a variation raises the new system
to the power of WKL0.

Definition 17 (System RKLh) Let h ∈ ωω be a computable function. RKLh asserts
“each infinite binary tree T has two infinite sets H1 and H2 such that

(i) H1 is homogeneous with color 0 for a path through T .

(ii) H2 is homogeneous with color 1 for a path through T .

(iii) ∀n ∈ ω, card((H1 ∪H2) � h(n)) ≥ n.

Theorem 14 (RCA0) For any strictly increasing computable function h, RKLh ⇔
WKL0

Proof. Let T be a binary tree. We will construct a ”elongated“ tree so that the homo-
geneous subset will give each of the bits of a path in T . We will create redundancy in
bits of T by define a sequence (un)n∈ω such that either H1 or H2 will have an element
in [un, un+1). One may be tempted to choose [h(n− 1), h(n)) but there is a tricky point:
nth is assumed to be lower then h(n), but it can be also lower then h(n − 1) and hence
(H1 ∪H2) ∩ [h(n− 1), h(n)) might be empty. So we must introduce more redundancy so
that we can use the pigeonhole principle. Let’s consider the following sequence:

un
def
=

{
u0 = 0
un+1 = h(un + 1)

This sequence is chosen such that (H1 ∪H2) ∩ [un, un+1) is never empty for any n. This
is an easy consequence of the pigeonhole principle which is provable in RCA0.

T ′
def
=
{
s′ ∈ 2<ω : ∃s ∈ T , |s′| = u|s| ∧ ∀i < |s| , ∀j < ui+1, j ≥ ui ⇒ s′(j) = s(i)

}
For example, if h : n 7→ 2n, then a string 10101 in T will correspond in T ′ to

u1−u0︷︸︸︷
11

u2−u1︷︸︸︷
0000

u3−u2︷ ︸︸ ︷
11111111

u4−u3︷ ︸︸ ︷
0000000000000000

u4−u3︷ ︸︸ ︷
11111111111111111111111111111111

We conjecture that imposing a bound to WRKL would give a system equivalent to
DNCh for a computable function h uniformly related to the bound.
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4 Conclusion

Although the exact strength of RKL – ie. its relation to DNC and WWKL0 – remains
an open problem, we have deepened our comprehension of Ramsey-type König’s lemma
principle by characterizing some of its variants in terms of existing systems. It’s restriction
to classes of positive measure (WRKL) is equivalent to the existence of a diagonally non
computable function (DNC). It’s strengthenings RKL+ by fixing the color or RKLh by
bounding the sparsity of the homogeneous sets makes it equivalent to weak König’s lemma
(WKL0). Using connections between reverse mathematics and randomness theory, we
have given another way of proving the computability of an infinite subset of a Martin Löf
random using a DNC function.
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[6] P.G. Hinman. A survey of Mučhnik and Medvedev degrees. Arxiv preprint
arXiv:1007.2376, 2010.

[7] J.L. Hirst. Combinatorics in subsystems of second order arithmetic. PhD thesis,
Pennsylvania State University., 1987.

[8] C.G. Jockusch Jr. Degrees of functions with no fixed points. 1989.

[9] C.G. Jockusch Jr, M. Lerman, R.I. Soare, and R.M. Solovay. Recursively enumer-
able sets modulo iterated jumps and extensions of Arslanov’s completeness criterion.
Journal of Symbolic Logic, pages 1288–1323, 1989.

[10] C.G. Jockusch Jr and R.I. Soare. Classes and Degrees of Theories. Transactions of
the American Mathematical Society, pages 33–56, 1972.

[11] B. Kjos-Hanssen. Infinite subsets of random sets of integers. Math. Res. Lett,
16(1):103–110, 2009.
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