
LOWNESS AND
AVOIDANCE

A gentle introduction
to iterated jump control

LUDOVIC LEVY PATEY

Contents

Contents i

1 Introduction 1
1.1 Mathematical problems . 2
1.2 Separation theory . 3
1.3 Jump control . 5
1.4 Audience . 6
1.5 Book structure . 6

2 Prerequisites 9
2.1 Computability theory . 9
2.2 Reverse mathematics . 12
2.3 Effective forcing . 14

First jump control 17

3 Cone avoidance 19
3.1 Context and motivation . 19
3.2 First examples . 20
3.3 Forcing question . 23
3.4 Seetapun’s theorem . 26
3.5 Preserving definitions . 31
3.6 Preserving hyperimmunities . 33

4 Lowness 37
4.1 Motivation . 37
4.2 Indices . 39
4.3 Coding ideals . 40
4.4 Basic constructions . 43
4.5 Weak preservation . 45
4.6 Beyond ∅′ . 46
4.7 Ramsey’s theorem for pairs . 48

5 Compactness avoidance 53
5.1 PA avoidance . 53
5.2 Weak merging . 55
5.3 Ramsey-type WKL . 58
5.4 Liu’s theorem . 60
5.5 Randomness . 62
5.6 Avoiding closed classes . 65
5.7 DNC and compactness . 69
5.8 DNC avoidance . 71

5.9 Comparing avoidances . 72

6 Custom properties 75
6.1 Separation framework . 75
6.2 Immunity and variants . 76
6.3 Hyperimmunity and WKL . 78
6.4 Erdős-Moser theorem . 79
6.5 Partial orders . 83
6.6 Linear orders . 88

7 Conservation theorems 93
7.1 Context and motivation . 93
7.2 Induction and collection . 94
7.3 Conservation over RCA0 . 97
7.4 Isomorphism theorem . 103
7.5 Conservation over BΣ0

2 . 109
7.6 Shore blocking and BME . 115

8 Forcing design 123
8.1 Core concepts . 123
8.2 Erdős-Moser theorem . 124
8.3 Free set theorem . 129

Higher jump control 135

9 Jump cone avoidance 137
9.1 Context and motivation . 137
9.2 Use first-jump control . 138
9.3 Forcing and density . 139
9.4 Weak König’s lemma . 141
9.5 Cohesiveness principle . 143
9.6 Partition regularity . 146
9.7 Pigeonhole principle . 153

10 Jump compactness avoidance 159
10.1 Context and motivation . 159
10.2 Jump PA avoidance . 160
10.3 Mathias forcing and COH . 163
10.4 Product largeness . 165
10.5 Product Mathias forcing . 169
10.6 Pigeonhole principle . 173
10.7 Jump DNC avoidance . 181

11 Higher jump cone avoidance 183
11.1 Context and motivation . 183
11.2 First examples . 184
11.3 Pigeonhole principle . 185
11.4 Computable ordinals . 190
11.5 Hyperarithmetic hierarchy . 192
11.6 Higher recursion theory . 194
11.7 Transfinite jump control . 197

Bibliography 205

Alphabetical Index 211

Introduction 1
1.1 Mathematical problems . . . 2
1.2 Separation theory 3
1.3 Jump control 5
1.4 Audience 6
1.5 Book structure 6

The mathematical practice is full of meta-mathematical considerations, even at
the high school level. It is common to find in textbooks statements such as “the
intermediate value theorem is equivalent to the least upper bound property” or
“give an elementary proof of Euclid’s theorem”. Every mathematician will be
convinced that the use of Fermat’s last theorem to prove the irrationality of 21/𝑛

is overly sophisticated, and the very distinction between a theorem and a corol-
lary – which are both mathematically true and logically equivalent statements
– is purely meta-mathematical. What does it mean for one theorem to imply
another? What are the optimal axioms necessary to prove ordinary theorems?
These are all questions that reverse mathematics tries to answer. Reverse
mathematics is originally a meta-mathematical program started in 1972 by
Harvey Friedman, seeking for the optimal axioms to prove ordinary theorems,
using subsystems of second-order arithmetic. The appellation took over time a
broader meaning, encompassing all the sets of tools from proof theory and
computability theory to study theorems from a computational perspective.

Intuitively, a theorem 𝐴 implies a theorem 𝐵, or a statement 𝐵 is a corollary
of a theorem 𝐴 if one can prove 𝐵 with only elementary methods, using 𝐴 as
a blackbox. The whole difficulty is to find a robust, theory-agnostic notion of
“elementary methods”1 1: Beware, we make here an important dis-

tinction between “elementary proof” and
“simple proof”. The former concept should
be understood as “logically elementary”,
that is, involving only logically weak axioms,
while the latter is a more human concept
which seems harder to formalize. In particu-
lar, one can win a Fields medal by proving
theorems requiring only weak axioms.

to formalize this intuition. This is where computability
theory comes into play: Thanks to the Church-Turing thesis, there is a consen-
sual and robust formalization of the ontological concept of “effective process”.
Furthermore, with the popularization of computers and their integration in every-
day’s life, the notion of algorithm started to be part of the common knowledge.
Last, but not least, by a theorem of Gödel, there is a correspondence between
the computably enumerable sets, and the sets definably by aΣ1-formula in first-
order arithmetic, paving the way to a translation of the computability-theoretic
concepts to the proof-theoretic realm. All these considerations make the notion
of “computable” a good candidate for the definition of “elementary”.

The formal setting of reverse mathematics is therefore subsystems of second-
order arithmetic, that is, theories in a two-sorted language with a set of integers
and collection of sets of integers.2 2: Hilbert and Bernays used second-order

arithmetic as a foundational language to re-
prove ordinary mathematics. They showed
through their book Grundlagen der Mathe-
matik that a large part of classical mathemat-
ics could be casted in this setting and proven
using second-order Peano arithmetic (Z2).

The base theory, RCA0, captures “com-
putable mathematics”. Thanks to the correspondence between computability
and definability, proofs of implications are often witnessed by a computable pro-
cedure, and separation proofs mainly consist in constructing models of RCA0
satisfying some specific computability-theoretic weakness properties.

Since the start of reverse mathematics, many theorems have been studied
from the core areas of mathematics, including analysis, algebra, topology, and
highlighted two main empirical phenomena. First of all, mathematics seem
very structured, that is, most theorems from ordinary mathematics are either
computationally trivial, or computably equivalent to one of four subsystems of
second-order arithmetic, linearly ordered by the implication. Second, a large
part of ordinary mathematics requires very weak axiomatic and computability-
theoretic power. As mentioned, these phenomena are empirical observations,
and there exist two main areas of mathematics escaping these observations:
logics and Ramsey theory. Logics, by essence, is meta-mathematical and
contains constructions that are designed to outgrow the usual proof-theoretic
strengths. Ramsey theory, on the other hand, has no a priori reason to be a

2 1 Introduction

counter-example to these phenomena, and its study represents one of the
most active branches of modern reverse mathematics.

Beyond the comparison of theorems based on a formal notion of elementary
proof, reverse mathematics play an important foundational and philosophical
role in mathematics thanks to these empirical observations. Indeed, the second
observation yields that mathematics is somewhat robust, in the sense that if
some inconsistencies were to be discovered in ZFC, one could safely remove
many strong axioms while keeping a large part of mathematics. Moreover,
all the finitary consequences of RCA0 are already provable over primitive
recursive arithmetic (PRA), a very weak theory arguably capturing finitary
mathematics. From this perspective, reverse mathematics can be seen as a
partial realization of Hilbert’s program as an answer to the foundational crisis
of mathematics [1].

1.1 Mathematical problems

Many theorems from ordinary mathematics can be seen as mathematical prob-
lems, formulated in terms of instances and solutions. Consider for example the
intermediate value theorem (IVT), which states, for every continuous function
𝑓 : [0, 1] → ℝ with 𝑓 (0) < 0 < 𝑓 (1) or 𝑓 (1) < 0 < 𝑓 (0), the existence of a
real number 𝑥 ∈ [0, 1] such that 𝑓 (𝑥) = 0. An instance of IVT is a continuous
function 𝑓 : [0, 1] → ℝ changing its sign over the interval, and a solution to 𝑓
is a real number 𝑥 ∈ [0, 1] such that 𝑓 (𝑥) = 0. What is the axiomatic power
needed to prove the intermediate value theorem?

First of all, one needs to cast this theorem in the setting of second-order
arithmetic, with an appropriate coding. A real number can be represented as
a fast-converging Cauchy sequence of rational numbers, hence as a set of
integers. At first sight, a continuous function from ℝ to [0, 1] is a third-order
object, but since it is fully specified by its values on the rationals, one can also
represent a continuous function in second-order arithmetic. Having fixed the
representation, both the frameworks of subsystems of second-order arithmetic
and computability theory can be applied to the intermediate value theorem.

Thanks to the choice of the base theory, RCA0, the proof-theoretic analysis
of the intermediate value theorem translates to the following computability-
theoretic question: Given a computable instance of the intermediate value
theorem, what is the computational content of a solution? The classical proof
of the intermediate value theorem provides an algorithm to find the solution:
a dichotomic search. Following the proof, given a computable instance 𝑓 :
[0, 1] → ℝ, one can define a computable fast-converging Cauchy sequence
whose limit is a real number 𝑥 such that 𝑓 (𝑥) = 0, with one subtlety: the
natural order between Cauchy sequences is not decidable. Thankfully, one
can circumvent this issue using a case analysis, and show the existence of a
computable solution. On the other hand, there is provably no single algorithm
which takes a code of such a continuous function as an input, and outputs
a solution. From a proof-theoretic perspective, the dichotomic search can
be formalized with weak induction assumptions, and the intermediate value
theorem is provable over RCA0.

More generally, the reverse mathematical analysis of a theorem, seen as a
mathematical problem, answers two families of problematics:

1.2 Separation theory 3

▶ The strength of the theorem as an individual. What axioms are neces-
sary and sufficient to prove a theorem? Based on the correspondence
between definability and computability, these questions are reformulated
in the computability-theoretic language as “What is the computational
strength of a theorem?” One proves lower bounds by constructing in-
stances such that every solution is computationally strong, and upper
bounds by proving that every instance admits some computationally
weak solution. Consider for example König’s lemma (KL), which states
that every infinite, finitely branching tree admits an infinite path. By a
classical result in computability theory, every computable infinite, finitely
branching tree admits an infinite ∅′′-computable path, while there exists
a computable infinite, finitely branching tree such that every infinite path
computes ∅′. In the reverse mathematical formalism, this translates into
an equivalence between KL and ACA0 over RCA0, where ACA0 is a
system capturing the arithmetic hierarchy.

▶ The comparison of two theorems. Does theorem 𝐴 imply theorem 𝐵

over RCA0? Let us compare for example König’s lemma, and Ramsey’s
theorem for pairs and two colors (RT2

2). The latter theorem states the
existence, for every graph with infinitely many vertices, of an infinite
subset of vertices such that the induced sub-graph is either a clique, or
an anti-clique. Given an infinite graph (𝑉, 𝐸), one can easily compute
an infinite, finitely branching tree such that every infinite path codes for
a clique or an anti-clique. Intuitively, König’s lemma, seen as a math-
ematical problem, is at least as hard to solve as Ramsey’s theorem
for pairs. In reverse mathematics, this construction yields a proof that
KL implies RT2

2 over RCA0. On the other hand, the reverse implication
does not hold: a famous theorem from Seetapun states that Ramsey’s
theorem for pairs and two colors has no coding power, in the sense
that for every computable instance of RT2

2, if every solution computes a
fixed set of integers 𝐴, then 𝐴 is computable. From this, one can build
a model of RCA0 + RT2

2 which does not contain the halting set, and
therefore is not a model of KL, thus RT2

2 does not imply KL over RCA0.
Note that, while the implication from KL to RT2

2 is elementary, the proof of
Seetapun’s theorem involves some very clever techniques from effective
forcing.

As it happens, when a problem P implies another problem Q from a proof-
theoretic or computability-theoretic viewpoint, the reduction is most of the
time rather short, if not straightforward, while the proofs of separations usu-
ally involve elaborate forcing arguments to preserve a computability-theoretic
weakness property. Separating problems in reverse mathematics and proving
upper bounds was at the origin of many developments in effective forcing, with
the design of new notions of forcing and preservations properties, tailored to
witness subtle combinatorial differences between problems. This resulted into
a coherent whole of what could be now called a separation theory.

1.2 Separation theory

In classical reverse mathematics, proving that a problem P does not imply
another problem Q over RCA0 requires to construct a model of RCA0+P which
is not a model of Q. Furthermore, one usually wants to build counter-examples

4 1 Introduction

which are as close to the intended model a possible. In the case of second-
order arithmetic, structures are of the form M= (𝑀, 𝑆, <,+,×, 0, 1) where
𝑀 denotes the integers of the model (the first-order part) and 𝑆 ⊆ P(𝑀)
represents the sets of integers (the second-order part). Almost all the proofs of
separations in reverse mathematics involve models Mwhere the set 𝑀 is the
true set of integers 𝜔, equipped with the standard operations. These models
are called 𝜔-models, and are fully specified by their second-order part 𝑆. It is
convenient to identify an 𝜔-model Mwith the set 𝑆. To summarize, the goal is
to obtain an 𝜔-model of RCA0 + P which is not a model of Q.

Models of RCA0 are well-understood and easy to construct, thank to the clear
computability-theoretic interpretation of the axioms of RCA0. An 𝜔-model M
with second-order part 𝑆 satisfies RCA0 if and only if 𝑆 is a Turing ideal, that
is, 𝑆 is a collection of sets satisfying the following two closure properties: First,
if 𝑋 ∈ 𝑆 and 𝑋 computes a set 𝑌, then 𝑌 ∈ 𝑆. Second, if 𝑋 and 𝑌 belong
to 𝑆, then their effective union 𝑋 ⊕ 𝑌 = {2𝑛 : 𝑛 ∈ 𝑋} ∪ {2𝑛 + 1 : 𝑛 ∈ 𝑌}
also belongs to 𝑆. For instance, the collection of all the computable sets
forms a Turing ideal, and more generally, given any fixed set 𝑋, the collection
{𝑌 : 𝑌 ≤𝑇 𝑋} is a Turing ideal. Last, a union of an increasing sequence of
Turing ideals is again a Turing ideal.

The idea to construct an 𝜔-model of RCA0 + P which is not a model of Q goes
as follows: First, construct a computable instance 𝑋Q of Q with no computable
solution. The solutions of this instance should be as hard to compute as
possible, to simplify the construction of the model M. Let M0 be the 𝜔-model
whose second-order part consists of the computable sets. In particular, M0 |=
RCA0 but M0 does not satisfy Q, as the instance 𝑋Q belongs to M0, but has
no solution in M0. The problem is that M0 will usually not satisfy P either.

Given an instance 𝑋0 ∈ M0 of P with no solution in M0, we shall construct a
solution 𝑌0, and and extend M0 into another model M1 of RCA0 containing 𝑌0.
In order to obtain a model of RCA0, the second-order part M1 must not only
contain 𝑌0, but all the 𝑌0-computable sets. The initial model M0 might contain
infinitely many P-instances with no solution in M0, and when extending M0
into M1, one might add even more P-instances. We shall therefore carefully list
all these instances, and build an increasing sequence M0 ⊊ M1 ⊊ M2 ⊊ . . .

of 𝜔-models of RCA0, such that every P-instance 𝑋 ∈ M𝑛 has a solution
in M𝑚 for some 𝑚 ≥ 𝑛. Then, letting M=

⋃
𝑛 M𝑛 , the second-order part is

again a Turing ideal, so M |= RCA0, and by construction, M |= P.

There is an important issue in the previous construction: when extending a
model M𝑛 into a larger model M𝑛+1 containing a solution𝑌𝑛 to a P-instance𝑋𝑛 ,
one adds many sets, including the 𝑌𝑛-computable ones, but also the 𝑌𝑛 ⊕ 𝑍-
computable ones for any 𝑍 ∈ M𝑛 . During this extension process, one might
inadvertently add a solution to the Q-instance 𝑋Q, loosing our witness of failure
of Q. If one is not careful, the final model Mwill also satisfy Q. Thankfully, there
is some degree of freedom in the choice of a solution 𝑌𝑛 to a P-instance 𝑋𝑛 .
With an appropriate construction, if M𝑛 does not contain any Q-solution to 𝑋Q,
one might build a P-solution 𝑌𝑛 to 𝑋𝑛 such that M𝑛+1 still does not contain
any Q-solution to 𝑋Q.

Not containing a solution to 𝑋Q is usually not the good invariant, and part
of the difficulty of a proof of separation consists in finding the appropriate
computability-theoretic notion of weakness, such that

▶ There exists a computable instance 𝑋Q of Q with no weak solution.
▶ For every weak instance 𝑋 of P, there exists a weak solution.

1.3 Jump control 5

Thus, a proof of separation of a problem P from a problem Q in reverse
mathematics reduces to proving lower bounds to Q and upper bounds to P for
an appropriate computability-theoretic notion specific for P and Q.

1.3 Jump control

There are two main families of constructions of solutions to an instance of a
problem P: effective constructions and forcing constructions, the former being
often an effectivization of the latter. Forcing therefore plays a central role in
reverse mathematics, and in computability theory in general.

Forcing was originally introduced by Paul Cohen to answer open problems in
set theory. The main idea is to start with a ground model M, and construct
a new mathematical object 𝐺 by approximating it with a set ℙ of conditions.
These conditions are partially ordered by a relation ≤, intuitively meaning that
𝑞 ≤ 𝑝 if 𝑞 is a more precise approximation of 𝐺 than 𝑝. The resulting object 𝐺,
combined with the model M, defines an extended model M[𝐺], which may not
satisfy the same properties. Surprisingly, complex properties of the extended
model can already be decided by conditions, in the sense that there exists a
forcing relation ⊩ between conditions and properties such that, if 𝑝 ⊩ 𝜑(𝐺),
then the property 𝜑(𝐺) will hold for every appropriate construction containing 𝑝.
Moreover, the forcing relation is definable with only parameters in the ground
model, and because of this, many properties of the extended model M[𝐺] are
inherited from the ground model M. Indeed, thanks to the forcing relation, a
formula with parameters in the extended model can be translated into another
formula in the ground model.

The forcing technique in the computability-theoretic setting shares many fea-
tures with the set-theoretic setting, with some notable differences: The compre-
hension scheme in set theory being over all definable formulas, it is sufficient
for the forcing relation to be definable in the ground model, to propagate many
properties from the ground model to the extended model. In computability the-
ory, on the other hand, the computational content of definable sets is sensitive
to the complexity of the defining formula, and one needs to have a forcing
relation which is not only definable, but also preserves the complexity of the
formulas it forces, in order to propagate computability-theoretic properties. Un-
fortunately, except for some simple cases such as Cohen forcing, the notions
of forcing considered in computability theory do not admit a forcing relation
with the desired definitional properties.

The novelty of this book is the emphasis of a related concept, called forcing
question, which usually admits better definitional features that the associated
forcing relation, and is sufficient to propagate computability-theoretic properties
from the ground model to the extended model. This notion is not relevant in
set theory, as the axioms are coarse enough to define a trivial forcing question
from the forcing relation, but are of central interest in computability theory. We
call “forcing question” any relation ?⊢ between a condition 𝑝 and a formula
𝜑(𝐺), such that if 𝑝 ?⊢𝜑(𝐺) holds, then there is an extension 𝑞 ≤ 𝑝 forcing
𝜑(𝐺), and it not, then there is an extension 𝑞 ≤ 𝑝 forcing ¬𝜑(𝐺). A forcing
question can be thought of as a completion of the forcing relation, dividing the
set of conditions into two categories. Contrary to the forcing relation, there is
no canonical forcing question, as any condition which forces neither a formula
nor its negation can be put in either category. The whole difficulty is to design

6 1 Introduction

a forcing question with the appropriate definitional complexity. As we shall see
throughout the book, beyond the definitional complexity of the forcing question,
its combinatorial properties have a strong impact on the computability-theoretic
features of the constructed object. The 𝑛th-fold Turing jump of 𝐺 being Σ0

𝑛(𝐺)-
complete, the set of techniques for deciding Σ0

𝑛-formulas is known as 𝑛th jump
control, and essentially consists in designing a forcing question forΣ0

𝑛-formulas
with the appropriate definitional and combinatorial properties.

Although our main motivation is reverse mathematics, the techniques of iterated
jump control have applications in many domains of computability theory and
weak arithmetic.

1.4 Audience

This book aims at bridging the gap between the general introductory textbooks
on computability theory and reverse mathematics on one hand, and the state-
of-the-art research articles in reverse mathematics on the other hand. It is
therefore not meant to be read as first intention, and assumes a prior knowledge
of computability theory. Some familiarities with reverse mathematics would
also be beneficial to the reader to give some motivation, although the basic
concepts are re-introduced in Chapter 2.

The primary audience is graduate students in computability theory and re-
searcher from other fields wanting to get familiar with the techniques used in
reverse mathematics, but I believe it could also be of interest to some other
well-established researchers in computability theory, given the recent identifica-
tion of the forcing question as a central tool to study the computability-theoretic
weakness of a forcing notion.

1.5 Book structure

This monograph is not meant to be read linearly, but each chapter forms almost
a monolithic block focusing on one aspect of iterated jump control. Because of
this, each chapter starts with a list of dependencies.

▶ Chapter 2: Prerequisites presents computability theory, reverse mathe-
matics and forcing in a nutshell. It should not be considered as a proper
introduction to these theories, and mostly fixes notation. This chapter
can be safely skipped by any researcher familiar with them.

▶ Chapter 3: Cone avoidance introduces the core idea of forcing ques-
tion through the simplest notion of avoidance, namely, cone avoidance.
Although not technically difficult, this is a conceptually important chap-
ter, as it contains many of the important concepts which will be used
throughout the book. The highlight application is Seetapun’s theorem,
stating that Ramsey’s theorem for pairs admits cone avoidance.

▶ Chapter 4: Lowness presents an effective version of first-jump control,
enabling to construct sets belonging to the arithmetic hierarchy. Be-
sides the intrinsic interest of classifying sets thanks to their definitional
complexity, this chapter contains a proof of the low basis theorem for
Π0

1 classes and defines coded Turing ideals, both important notions for

1.5 Book structure 7

higher jump control. It also contains a proof of a theorem by Cholak, Jock-
such and Slaman, stating that every computable instance of Ramsey’s
theorem for pairs admits solutions of low2 degree.

▶ Chapter 5: Compactness avoidance summarizes the interrelationship
between the use of compactness argument in theorems and structural
properties of the forcing question. It contains, among others, a proof
of Liu’s theorem, which says that Ramsey’s theorem for pairs does not
imply weak König’s lemma.

▶ Chapter 6: Custom properties gives some examples of separations
between combinatorial theorems with custom preservation properties,
when the classical computability-theoretic notions fail to separate them.
These separations involve the Erdős-Moser theorem, the ascending
descending sequence and the chain anti-chain principles.

▶ Chapter 7: Conservation theorems applies a formalized version of the
first-jump control techniques to prove conservation theorems over weak
theories of second-order arithmetic. It contains a proof of the isomor-
phism theorem for weak König’s lemma by Fiori-Carones, Kołodziejczyk,
Wong and Yokoyama. This chapter can be skipped by anyone interested
in purely computability-theoretic results.

▶ Chapter 8: Forcing design is the missing link in the thought process lead-
ing to a separation between two combinatorial theorems. It rationalizes
the steps to design a notion of forcing with a good first-jump control,
through the examples of the Erdős-Moser and the free set theorems.
This is an independent chapter which, although quite short, I believe is
of great importance for the researcher in reverse mathematics. It can
be read after Chapter 3.

▶ Chapter 9: Jump cone avoidance studies the relationships between the
forcing question and second-jump control through jump cone avoidance.
The non-continuous nature of jump functionals raise many new chal-
lenges, and the core concepts introduced are of central importance for
the remaining chapters. It contains a proof by Monin and Patey that
every instance of the pigeonhole principle admits a solution of non-high
degree.

▶ Chapter 10: Jump compactness avoidance is probably the most technical
chapter of this book, as it combines the complexity of second-jump
control with the techniques of compactness avoidance, which happens
to raise many issues. The main theorem of this chapter is a theorem by
Monin and Patey that every Δ0

2 set admits an infinite subset in its or its
complement whose jump is not of PA degree over ∅′.

▶ Chapter 11: Higher jump cone avoidance generalizes first and second
jump control to higher levels of the arithmetic and the hyperarithmetic
hierarchy. The conceptual difficulty mainly comes from the generalization
of computability theory to the transfinite realm, known as higher recursion
theory.

2: Prerequisites

3: Cone
avoidance

4: Lowness

5: Compactness
avoidance

6: Custom
properties

7: Conservation
theorems

8: Forcing
design

9: Jump cone
avoidance

10: Jump compact-
ness avoidance

11: Higher jump
cone avoidance

Figure 1.1: Dependencies between the
chapters

2: Depending on the context, we may fur-
thermore assume that the programs are
{0, 1}-valued, or satisfy some additional de-
cidable structural properties.

Prerequisites 2
2.1 Computability theory 9
2.2 Reverse mathematics 12
2.3 Effective forcing 14

This textbook is not an introduction to computability theory or to reverse math-
ematics. The reader is assumed to have attended at least a first course in
computability theory, and have a general background in mathematical log-
ics, especially first-order logic and forcing. This chapter will recall basic facts
of common knowledge, for the sake of self-containment and mostly to fix
notation.

This book is a pedagogical resource to learn some specific techniques for
computability-theoretic analysis for combinatorial theorems. It tries to bridge
the gap between introductory textbooks in computability theory, and research
articles on the field. The emphasis is put on the intellectual process of research
rather than the actual theorems and end-results.

Where to learn computability theory? There are many books about com-
putability theory. Cooper [2] is probably the most accessible resource for a first
introduction to the subject. Soare [3] is a good alternative, although slightly
more technical. Monin and Patey [4] provides a general overview of both
computability theory and reverse mathematics.

Where to learn reverse mathematics? The field being younger, there are only
a few options to learn reverse mathematics. The historical book is Simpson [5],
is still a good reference, but its very formal style might be off-putting. A first
reader might prefer Dzhafarov and Mummert [6] or Monin and Patey [4] as a
gentle introduction. Hirschfeldt [7] monograph is also a good starting point for
a reader familiar with computability theory.

2.1 Computability theory

Computability theory is essentially the study of mathematical objects or pro-
cesses from a computational perspective. It has a primary focus on the structure
of the degrees of computation, known as Turing degrees.

Definition 2.1.1. Fix a reasonable programming language. A set 𝑋 ⊆ ℕ

is computable1 1: Computability theory used to be called
Recursion theory. Some literature might use
recursive for computable and recursively
enumerable for computably enumerable.

if there is an algorithm which, on input 𝑛 ∈ ℕ, decides
whether 𝑛 belongs to 𝑋 or not. ♦

All mainstream programming languages are mutually interpretable, thus the
notion of computable set is robust. Moreover, by the Church-Turing thesis, this
captures the informal notion of effectively computable set. One of the main
features of models of computation is their relativization to oracles. A set 𝑋 is
𝑌-computable or Turing reducible to 𝑌 (written 𝑋 ≤𝑇 𝑌) if it is computable in
a programming language enriched with the characteristic function of 𝑌 as a
primitive.

We write Φ𝑌0 ,Φ
𝑌
1 ,Φ

𝑌
2 , . . . for an effective listing of all programs2 with oracle 𝑌.

The notation Φ𝑌𝑒 (𝑥) ↓= 𝑣 means that the 𝑒th program with oracle 𝑌 halts
on input 𝑥 and outputs 𝑣. If the program does not halt, we write Φ𝑌𝑒 (𝑥) ↑.
Similarly, the notation Φ𝑌𝑒 (𝑥)[𝑠]↓= 𝑣 means that Φ𝑌𝑒 (𝑥)↓= 𝑣 in at most 𝑠 steps
of computation. By convention, if Φ𝑌𝑒 (𝑥)[𝑠]↓= 𝑣, then 𝑣, 𝑥 < 𝑠. Otherwise,

10 2 Prerequisites

5: We write ≤𝑇 for the Turing reduction
over sets, and ≤ for the reduction over Tur-
ing degrees. We use small boldface letters
a, b, . . . to denote Turing degrees.

6: High degrees used to be defined as b ≤
0′ and b′ ≥ 0′′. Indeed, 0′ and 0′′ are re-
spectively the lowest and the highest value
that can take the jump of a degree d ≤ 0′,
so low and high degrees where Turing de-
grees at these extremes.

Φ𝑌𝑒 (𝑥)[𝑠] ↑. We may further abstract oracle programs, and consider them
as Turing functionals from 2ℕ to 2ℕ , defined by 𝑌 ↦→ Φ𝑌𝑒 . We then use
Φ0 ,Φ1 ,Φ2 , . . . as an effective listing of all Turing functionals.

Whenever a program halts, it halts on finite time, and thus with finitely many
calls to its oracle. Thus, if Φ𝑌𝑒 (𝑥)↓, not only there is some 𝑠 ∈ ℕ such that
Φ𝑌𝑒 (𝑥)[𝑠]↓, but furthermore there is a shortest initial segment 𝜎 ≺ 𝑌 such
Φ𝑍
𝑒 (𝑥)[𝑠]↓= Φ𝑌𝑒 (𝑥) for every 𝑍 ≻ 𝜎. This finite binary string3

3: We write 2<ℕ for the set of all finite binary
strings. Elements of 2<ℕ are written with
small greek letters 𝜎, 𝜏, 𝜌, We denote
by |𝜎| the length of the string 𝜎 and write
𝜎 ⪯ 𝜏 if 𝜎 is a prefix of 𝜏.

𝜎 is called the
use of the computation. From a topological viewpoint, this means that Turing
functionals are partial continuous functions over the Cantor space4

4: We write 2ℕ for the class of all infinite
binary sequences, also known as Cantor
space. It is in one-to-one correspondence
with the class of sets of integers, seeing an
infinite binary sequence as the character-
istic function of a set of integers. We shall
therefore identify the two notions and write
indistinctly 𝑋 ∈ 2ℕ and 𝑋 ⊆ ℕ.

2ℕ . We
extend Turing functionals to partial oracles, and write Φ𝜎

𝑒 (𝑥)↓= 𝑣 to say that
the 𝑒th program with oracle 𝜎 halts on input 𝑥 and outputs 𝑣 in less than |𝜎|
steps, whose only calls to the oracle are within its domain of definition.

2.1.1 Turing degree

Sets of integers are not the appropriate notion to capture the notion of com-
putational power. For instance, if 𝑋 equals 𝑌 up to finite changes, or if we
let 𝑌 = {2𝑛 : 𝑛 ∈ 𝑋}, then 𝑋 and 𝑌 are mutually computable. The Turing
reduction ≤𝑇 is a pre-order on 2ℕ . It induces an equivalence relation defined
by 𝑋 ≡𝑇 𝑌 iff 𝑋 ≤𝑇 𝑌 and 𝑌 ≤𝑇 𝑋.

Definition 2.1.2. A Turing degree is an equivalence class over 2ℕ/≡𝑇 . ♦

We write deg𝑇(𝑋) = {𝑌 ∈ 2ℕ : 𝑋 ≡𝑇 𝑌} for the Turing degree of 𝑋.
The Turing reduction naturally extends to the Turing degrees. The Turing
degrees5 (D,≤) form an upper semilattice, with join deg𝑇(𝑋) ∪ deg𝑇(𝑌) =
deg𝑇(𝑋 ⊕𝑌), where 𝑋 ⊕𝑌 = {2𝑛 : 𝑛 ∈ 𝑋} ∪ {2𝑛 + 1 : 𝑛 ∈ 𝑌}. The Turing
degree 0 of the computable sets is the smallest element of this semilattice.

The Turing jump of a set 𝑋 is the set 𝑋′ = {𝑒 : Φ𝑋
𝑒 (𝑒) ↓}. The operator

𝑋 ↦→ 𝑋′ is Turing-invariant, and therefore induces an operation a ↦→ a′ over
the Turing degrees. By the undecidability of the halting set, a < a′ for every
Turing degree a. The Turing jump can be iterated as follows: a(0) = a, and
a(𝑛+1) = (a(𝑛))′. Any Turing degree a such that a′ = 0′ is low, and the degrees
b such that b′ ≥ 0′′ are high.6

2.1.2 Arithmetic hierarchy

Arithmetically definable sets of integers can be classified based on alternations
of quantifiers.

Definition 2.1.3. For 𝑛 ≥ 1, a set 𝑋 is Σ0
𝑛 if it can be written of the form

{𝑥 ∈ ℕ : ∃𝑦1∀𝑦2 . . . 𝑄𝑦𝑛 𝑃(𝑥, 𝑦1 , . . . , 𝑦𝑛)}

where 𝑃 is a computable predicate, and 𝑄 = ∀ if 𝑛 even and 𝑄 = ∃ if 𝑛 is
odd. Π0

𝑛 sets are defined accordingly by starting with a universal quantifier.
A set is Δ0

𝑛 if it is both Σ0
𝑛 and Π0

𝑛 . ♦

By Post theorem, there is a correspondence between definability and com-
putability. The Δ0

1 sets are precisely the computable sets, and the Σ0
1 sets are

the computably enumerable (c.e.) ones, that is, sets of the form𝑊𝑒 = domΦ𝑒

2.1 Computability theory 11

for some 𝑒 ∈ ℕ. We write 𝑊0 ,𝑊1 , . . . for an effective enumeration of the c.e.
sets. More generally, the hierarchy can be relativized to any oracle 𝑌 by con-
sidering 𝑌-computable predicates 𝑃. A set is Δ0

𝑛(𝑌) iff it is 𝑌(𝑛−1)-computable,
and Σ0

𝑛(𝑌) if it is 𝑌(𝑛−1)-c.e.7

7: There are three important families of
sets:

Computable sets: Given 𝑛, it is possible to
know whether it belongs to 𝑋 or not, after a
finite amount of time.

C.e. sets: If 𝑛 ∈ 𝑋, then it will be enumer-
ated in 𝑋 after some point, but if 𝑛 ∉ 𝑋, we
might never known whether it belongs to 𝑋
or not.

Δ0
2 sets: These are the ∅′-computable sets.

Given some 𝑛, our belief of ownership to 𝑋
might change finitely often over time, and
then stabilize. However, we never know
whether we have reached our limit or not.

A c.e. set 𝑋 can be approximated by an uniformly computable sequence of
increasing sets 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ . . . with 𝑋 =

⋃
𝑠 𝑋𝑠 . Such a sequence

is a called a c.e. approximation of 𝑋. Indeed, if 𝑋 = domΦ𝑒 , one can let
𝑋𝑠 = {𝑥 : Φ𝑒(𝑥)[𝑠] ↓}. By Shoenfield’s limit lemma, a Δ0

2 set 𝑋 can be
approximated by a uniformly computable sequence of sets 𝑋0 , 𝑋1 , 𝑋2 , . . .

such that for every 𝑛 ∈ ℕ, lim𝑠 𝑋𝑠(𝑛) exists and equals 𝑋(𝑛). Such an
approximation is called a Δ0

2 approximation of 𝑋.8

8: Formally, a Δ0
2 approximation of 𝑋 is

nothing but a computable function 𝑓 :
ℕ2 → 2 such that for every 𝑛, lim𝑠 𝑓 (𝑛, 𝑠)
exists an equals 𝑋(𝑛).

2.1.3 Function growth

There is a duality between function growth and computational power. For
example, any function dominating the halting time of programs computes
the halting set. A function 𝑓 : ℕ → ℕ dominates a function 𝑔 : ℕ → ℕ

if 𝑓 (𝑥) ≥ 𝑔(𝑥) for every 𝑥 ∈ ℕ. The principal function 𝑝𝑋 of an infinite
set 𝑋 = {𝑥0 < 𝑥1 < . . . } is defined by 𝑝𝑋(𝑛) = 𝑥𝑛 .

Definition 2.1.4. A function 𝑓 is hyperimmune if it is not dominated by any
computable function. An infinite set 𝑋 is hyperimmune it its principal function
is hyperimmune.9

9: Equivalently, an infinite set 𝑋 is hyperim-
mune if for every c.e. array {𝐹𝑛 : 𝑛 ∈ ℕ},
there is some 𝑛 ∈ ℕ such that 𝑋 ∩ 𝐹𝑛 = ∅.
A c.e. array is a c.e. sequence of finite coded
non-empty sets which are pairwise disjoint.

♦

A Turing degree d is hyperimmune if it computes (or equivalently contains) a hy-
perimmune function. Otherwise, d is computably dominated or hyperimmune-
free. Every non-computable Δ0

2 set is of hyperimmune degree, but there exists
non-zero computably dominated degrees.

Definition 2.1.5. A function 𝑓 is dominating if it eventually dominates every
computable function. ♦

By Martin’s domination theorem, a function is dominating iff it is of high degree.
These degrees are precisely those able to uniformly list the computable sets,
with repetitions.

2.1.4 DNC and PA degrees

By Kleene’s recursion theorem, there is no total computable function 𝑓 : ℕ →
ℕ such that Φ 𝑓 (𝑒) ≠ Φ𝑒 for every 𝑒 ∈ ℕ. The Turing degrees of fixpoint-free
functions are those of diagonally non-computable functions.

Definition 2.1.6. A function 𝑓 is diagonally non-computable10 10: A DNC function must always give a
value, even if Φ𝑒 (𝑒)↑. An immediate diago-
nal argument shows that no such function
is computable.

(DNC) if for
every 𝑒, 𝑓 (𝑒) ≠ Φ𝑒(𝑒). ♦

It might be useful to think of a DNC degree as the power, given a finite c.e.
set 𝑊𝑒 and a bound 𝑏 > card𝑊𝑒 , to find a value outside of 𝑊𝑒 . A degree is
DNC or high iff it contains a function which is almost-everywhere different from
every total computable function.

A binary tree is a set 𝑇 ⊆ 2<ℕ closed under prefix. A path through 𝑇 is an
infinite binary sequence 𝑃 ∈ 𝑐𝑠 such that every initial segment belongs to 𝑇.

12 2 Prerequisites

12: By “ordinary”, we mean theorem which
belong to the core of mathematics, outside
logics. Indeed, constructions in logics are
metamathematical, and thus are often de-
signed to escape the axiomatic strength of
the standard mathematical practice.

13: There exists variants of reverse math-
ematics using the higher-order setting, or
intuitionistic logic.

14: Robinson arithmetic is Peano arithmetic
without the induction scheme.

We write [𝑇] for the class of all paths through 𝑇. A class P ⊆ 2ℕ is Π0
1 if

it is for the form [𝑇] for some computable (or equivalently for some co-c.e.)
tree 𝑇 ⊆ 2<ℕ . The Π0

1 classes are the effectively closed classes in Cantor
space.

Definition 2.1.7. A degree d is PA1111: Historically, a degree is PA if it contains
a completion of Peano Arithmetic. The new
definition is more useful in practice.

if for every infinite computable binary
tree 𝑇 ⊆ 2<ℕ , d computes an infinite path. ♦

The PA degrees are precisely those which compute (or equivalently contain) a
{0, 1}-valued DNC function. The class of such functions is Π0

1, hence there
exists a universal computable tree. By the low basis theorem and the com-
putably dominated basis theorem, there are low and computably dominated
PA degrees, respectively. A degree is PA or high iff it codes a uniform list of
sets which contain, among others, all the computable sets.

2.2 Reverse mathematics

Reverse mathematics is a foundational program at the intersection of com-
putability theory and proof theory, whose goal is to find optimal axioms to prove
ordinary theorems.12 The general idea consists in fixing a very weak base the-
ory capturing computable mathematics, and given a theorem 𝑇, finding a set of
axioms provably equivalent to 𝑇 over this base theory. More recently, the term
“reverse mathematics” took the broader meaning of studying mathematical
theorems from the viewpoint of computability theory and proof theory.

Traditional reverse mathematics13 use the language of second-order arith-
metic, that is, a two-sorted language with integers and sets of integers. In
this language, every infinite mathematical object is represented by a set of
integers. This enables to apply the framework of computability theory thanks to
the correspondence between computability and definability. There are however
two drawbacks: First, this restricts the scope to countable mathematics, or at
least to mathematics which can be approximated through countable objects.
Second, one must define an appropriate coding for every mathematical object.
Thankfully, in many cases, the various natural representations of the same
mathematical object are computably equivalent.

2.2.1 Base theory

The base theory RCA0, standing for Recursive Comprehension Axiom, consists
of Robinson arithmetic Q, together with the Σ0

1-induction scheme and the Δ0
1-

comprehension scheme. More precisely, Robinson arithmetic14 is the universal
closure of the following axioms:

(1) 𝑥 + 1 ≠ 0
(2) 𝑥 = 0∨∃𝑦 (𝑥 = 𝑦+ 1)
(3) 𝑥+1 = 𝑦+1 → 𝑥 = 𝑦

(4) 𝑥 + 0 = 𝑥

(5) 𝑥 + (𝑦 + 1) = (𝑥 + 𝑦) + 1
(6) 𝑥 × 0 = 0
(7) 𝑥 × (𝑦 + 1) = (𝑥 × 𝑦) + 𝑥
(8) 𝑥 < 𝑦 ↔ ∃𝑧 (𝑧 ≠ 0 ∧ 𝑥 + 𝑧 = 𝑦)

A formula is arithmetic if it does not contain any second-order quantifier, but
may contain second-order parameters. One can define a syntactic hierarchy
of arithmetic formulas similar to the arithmetic hierarchy, by replacing the

2.2 Reverse mathematics 13

16: Being Δ0
1 is not a syntactic notion.

One therefore uses the trick of adding
∀𝑥(𝜑(𝑥) ↔ 𝜓(𝑥)) as a premise, to ensure
that the predicate is Δ0

1.

computable predicate with a Δ0
0 formula.15

15: Note that some computable sets (and
even some primitive recursive sets) are not
definable by Δ0

0 formulas, but every c.e. set
is definable by a Σ0

1 formula, so the hierar-
chies coincide.

A Δ0
0 formula contains only bounded

first-order quantifiers, that is, quantifiers of the form ∀𝑥 < 𝑦 and ∃𝑥 < 𝑦.

The Σ0
1-induction scheme says, for every Σ0

1 formula 𝜑(𝑥),

𝜑(0) ∧ ∀𝑥(𝜑(𝑥) → 𝜑(𝑥 + 1)) → ∀𝑥 𝜑(𝑥)

Restricting the induction scheme to capture computable mathematics might
seem strange at first sight, as this scheme seems talk only about integers.
An integer is a finite object, hence is computable. However, in non-standard
models, a bounded set is considered as finite from inside the model, but if the
bound is non-standard, it is actually infinite from an external viewpoint, and
might be non-computable. Restricting induction restricts the complexity of the
finite sets in the model.

The Δ0
1-comprehension scheme16 says, for every Σ0

1 formula 𝜑(𝑥) and Π0
1

formula 𝜓(𝑥),

∀𝑥(𝜑(𝑥) ↔ 𝜓(𝑥)) → ∃𝑋∀𝑦(𝜑(𝑦) ↔ 𝑦 ∈ 𝑋)

By relativization of Post’s theorem, 𝑋 ≤𝑇 𝑌 iff 𝑋 is Δ0
1(𝑌). Therefore, the

Δ0
1-comprehension scheme ensures that the second-order part is downward-

closed under the Turing reduction.

2.2.2 Models of RCA0

A model in second-order arithmetic is of the form

M= (𝑀, 𝑆,+,×, <, 0, 1)

where 𝑆 ⊆ P(𝑀). The first-order part 𝑀 constitutes the integers, and
the second-order part 𝑆 are the sets of integers. An 𝜔-model is a model
whose first-order part is the set of standard integers 𝜔, together with the usual
operations +,×, <. An 𝜔-model is therefore fully specified by its second-order
part, and is often identified with it. The 𝜔-models of RCA0 are precisely those
whose second-order part is a Turing ideal.

Definition 2.2.1. A Turing ideal17 17: Natural classes of Turing ideals are rare
in computability theory. Besides topped Tur-
ing ideals of the form {𝑍 ∈ 2ℕ : 𝑍 ≤𝑇 𝑋}
for a fixed set 𝑋, the most notable ideal is
the K-trivials, used in algorithmic random-
ness. The low degrees do not form a Turing
ideal: there exists two low degrees joining
to 0′.

is a class I ⊆ 2ℕ closed under the
following two operations:

(1) Turing reduction: ∀𝑋 ∈ I∀𝑌 ≤𝑇 𝑋 𝑌 ∈ I;
(2) Effective join: ∀𝑋 ∈ I∀𝑌 ∈ I𝑋 ⊕ 𝑌 ∈ I. ♦

The class of all computable sets is the smallest Turing ideal for inclusion. Thus,
RCA0 admits a least 𝜔-model, consisting of only computable sets. It follows
that if a theorem implies the existence of a non-computable object, then it is not
provable over RCA0. In this sense, RCA0 captures computable mathematics.

2.2.3 Big Five

The early study of reverse mathematics witnessed the emergence of four
main systems of axioms, linearly ordered by logical strength, such that most
of mathematics is either provable in RCA0, or provably equivalent to one of
the four systems over RCA0. These systems, together with RCA0, are known

14 2 Prerequisites

18: For instance, König’s lemma is the prob-
lem whose instances are infinite, finitely
branching trees, and a solution to a tree
is an infinite path.

20: The term “extension” suggests that 𝑝
carries more information than 𝑞, thus the de-
creasing order might be confusing. It might
be helpful to think of 𝑝 and 𝑞 in terms of
interpretation. Then the decreasing order
represents the decreasing in candidates.

as the Big Five. We shall focus on the first two systems, namely, WKL0 and
ACA0.

▶ WKL0, standing for Weak König’s lemma, is RCA0 augmented with the
statement “Every infinite binary tree admits an infinite path”. This system
informally captures compactness arguments. It is equivalent to the Borel-
Lebesgue compactness theorem and Gödel’s completeness theorem,
among others. Contrary to RCA0, WKL0 does not admit a least 𝜔-model.
The second-order parts of its 𝜔-models are closed under PA degrees,
and are called Scott ideals.

▶ ACA0, standing for Arithmetic Comprehension Axiom, is RCA0 with the
comprehension scheme for every arithmetic formula. Many important
theorems, such as the Bolzano-Weierstrass theorem, are equivalent
to ACA0. Since the halting set is Σ0

1-definable, the second-order parts of
its 𝜔-models are closed under the Turing jump, and called jump ideals.
ACA0 admits a least 𝜔-model, whose second-order part corresponds to
the arithmetic sets.

2.2.4 Computable reductions

More recently, the reverse mathematical framework was enriched with new
reductions belonging to the computability-theoretic realm. A problem18 is a
relation P ⊆ 2ℕ × 2ℕ . An instance of P is an element of dom P = {𝑋 ∈
2ℕ : ∃𝑌 (𝑋,𝑌) ∈ P}. Given an instance 𝑋 of P, we denote by P(𝑋) = {𝑌 :
(𝑋,𝑌) ∈ P} the class of solutions to 𝑋.

Definition 2.2.2. A problem P is computably reducible to Q (denoted P ≤𝑐
Q) if for any instance 𝑋 of P, there exists an instance �̃� of Q computable
in 𝑋, such that for any Q-solution �̃� to �̃�, 𝑋 ⊕ �̃� computes a P-solution
to 𝑋.1919: One can see a computable reduction

as the construction of a P-solver using a Q-
solver, with only computable manipulations.
Note that the original instance 𝑋 of P can
be used in the computation of the solution.

♦

When the problems P and Q can be formulated as a second-order sentences,
a reduction P ≤𝑐 Q can be seen as an implication Q → P over 𝜔-models, in
which only one application of Q is allowed.

2.3 Effective forcing

The framework of forcing was originally introduced by Paul Cohen to prove
independence results in set theory. It is a central tool in computability theory
to build sets of integers with specific computational properties, and can be
seen as an elaboration of the finite extension method. The simplicity of its
use in computability theory makes the setting ideal for a gentle introduction to
forcing.

Definition 2.3.1. A notion of forcing is a partial order (ℙ,≤) together with an
interpretation function [·] : ℙ → P(2ℕ) such that if 𝑝 ≤ 𝑞, then [𝑝] ⊆ [𝑞].♦

Elements of ℙ are called conditions. If 𝑝 ≤ 𝑞, then 𝑝 is an extension20 of 𝑞.
Informally, a condition 𝑝 is a partial approximation of the constructed object 𝐺,
and [𝑝] is the class of all “candidate” objects. If 𝑞 ≤ 𝑝, then the approximation 𝑞
is “more precise” than 𝑝, hence has less candidates.

2.3 Effective forcing 15

21: The distinction between the two notions
is not relevant in computability theory, and
one might think of a filter as an infinite de-
creasing sequence of conditions.

22: The concept of “sufficient genericity”
alone does not exist, and always depends
on a property 𝜑(𝐺). We shall however
sometimes say “Let F be a sufficiently
generic filter” to mean that its level of gener-
icity will be determined by the future proper-
ties we want 𝐺F to satisfy.

Example 2.3.2. The following are notions of forcing

▶ Cohen forcing: 2<ℕ with 𝜏 ≤ 𝜎 if 𝜎 is a prefix of 𝜏. The interpretation
of 𝜎 is [𝜎] = {𝑋 ∈ 2ℕ : 𝜎 ≺ 𝑋}.

▶ Jockusch-Soare forcing: ℙ is the partial order of computable infinite
binary trees, ordered by inclusion. The interpretation of 𝑇 is the class
of its paths [𝑇].

2.3.1 Filter and genericity

Infinite objects are usually constructed by successive refinement of approxi-
mations. In the forcing setting, this would correspond to the construction of an
infinite, decreasing sequence of conditions.

Definition 2.3.3. A filter on (ℙ,≤) is a non-empty class F⊆ ℙ satisfying:

1. upward-closure: ∀𝑝 ∈ F∀𝑞 ∈ ℙ (𝑝 ≤ 𝑞 → 𝑞 ∈ F)
2. compatibility: ∀𝑝, 𝑞 ∈ F∃𝑟 ∈ F(𝑟 ≤ 𝑝, 𝑞). ♦

Filters are a generalization of decreasing sequences of conditions21, in that
every sequence 𝑝0 ≥ 𝑝1 ≥ . . . induces a filter F= {𝑞 ∈ ℙ : ∃𝑛 𝑝𝑛 ≤ 𝑞}.
When the filter is appropriately chosen, there is a unique element 𝐺F ∈⋂
𝑝∈F[𝑝], which is the object constructed by the filter.

Definition 2.3.4. A class D ⊆ ℙ is dense if for every 𝑝 ∈ ℙ, there is
some 𝑞 ≤ 𝑝 in D. ♦

Intuitively, a class is dense if, when defining an infinite decreasing sequence
of conditions, it is never too late to intersect D. Indeed, at any point 𝑝𝑛 of the
construction, there exists an extension 𝑝𝑛+1 ≤ 𝑝𝑛 in D.

Definition 2.3.5. A filter F is generic for a family of classes {D𝑖}𝑖∈𝐼 if F∩
D𝑖 ≠ ∅ for every 𝑖 ∈ 𝐼. ♦

One can easily see by a greedy construction of an infinite decreasing sequence
of conditions that every countable family of dense classes admits a generic filter.
Given a notion of forcing (ℙ,≤) and a property 𝜑(𝐺), the statement “Every
sufficiently generic22 set satisfies 𝜑(𝐺)” means that there exists a countable
sequence of dense classes {𝐷𝑛}𝑛∈ℕ such that, for every {𝐷𝑛}𝑛∈ℕ-generic
filter F, 𝜑(𝐺F) holds.

All the notions of forcing we shall consider satisfy the following property:

(†) For every 𝑛 ∈ ℕ, the following class is dense:

D𝑛 = {𝑝 ∈ ℙ : ∃𝜎 ∈ 2𝑛 [𝑝] ⊆ [𝜎]}

In particular, for every {𝐷𝑛}𝑛∈ℕ-generic filter F, the intersection
⋂
𝑝∈F[𝑝] will

be a singleton.

16 2 Prerequisites

2.3.2 Forcing relation

The core feature of forcing is the ability, given only an approximation 𝑝 ∈ ℙ of
the object under construction, to already determine some properties the set
will satisfy, no matter the remainder of the construction. Surprisingly, a very
large class of properties can be determined in advance by approximations.

Definition 2.3.6. A condition 𝑝 ∈ ℙ forces2323: The naive approach would be to say
that a condition 𝑝 forces a property 𝜑(𝐺) if
it holds for every 𝐺 ∈ [𝑝]. This relation is
too strong and does not enjoy the desirable
properties of a forcing relation.

a property 𝜑(𝐺) if for every
sufficiently generic filter Fcontaining 𝑝, 𝜑(𝐺F) holds. ♦

The above definition shall be referred to as a semantic definition. From a defi-
nitional viewpoint, the semantic definition is very complicated, as it requires to
quantify over filters, which are higher-order objects. Thankfully, there exists an
inductive syntactic definition of the forcing relation with much better definitional
features.

In our setting, we shall be interested only in arithmetic properties.

Proposition 2.3.7. Let (ℙ,≤) be a notion of forcing satisfying (†) and 𝜑(𝐺)
be an arithmetic formula.

1. If 𝑝 forces 𝜑(𝐺) and 𝑞 ≤ 𝑝, then 𝑞 forces 𝜑(𝐺).
2. The class {𝑝 ∈ ℙ : 𝑝 forces 𝜑(𝐺) or 𝑝 forces ¬𝜑(𝐺)} is dense. ★

This last property is essential, as it says that every arithmetic property can
be decided by some condition. In particular, for every sufficiently generic
filter F, and every arithmetic formula 𝜑(𝐺), then 𝜑(𝐺F) holds iff there is a
condition 𝑝 ∈ F forcing 𝜑(𝐺).

First jump control

2: For example, weak König’s lemma is the
problem whose instances are infinite binary
trees, and whose solutions are infinite paths

Cone avoidance 3
3.1 Context and motivation . . . 19
3.2 First examples 20
3.3 Forcing question 23
3.4 Seetapun’s theorem 26
3.5 Preserving definitions . . . 31
3.6 Preserving hyperimmunities 33

Prerequisites: Chapter 2

The appellation first-jump control1

1: The name might be confusing at first,
since the technique is about computation
and not jump computation. Actually, by de-
ciding Σ0

1(𝐺) properties, the first-jump con-
trol determines what the jump 𝐺′ is, not
what it computes. Moreover, since the predi-
cate Φ𝐺𝑒 (𝑥)↓ is Σ0

1(𝐺), the first-jump control
enables to decide 𝐺-computation.

encompasses the set of techniques to build
a set 𝐺 while controlling its Σ0

1(𝐺) properties. An immediate application is
the construction of sets of low degree whenever the process is Δ0

2. With the
development of reverse mathematics, the subject gained a whole lot of interest,
as being the main tool to prove separations over RCA0. We shall see a variety
of preservation properties (cone avoidance, PA avoidance, ...) motivated by
specific subsystems of second-order arithmetic, such as ACA0 and WKL0.
Nowadays, these techniques are part of the mandatory toolbox of a researcher
in reverse mathematics.

The general setting is the following: One wants to build a set 𝐺 satisfying some
structural properties (being a path through a tree, being homogeneous for a
coloring, or more generally being a solution to an instance of a mathematical
problem), while preserving some computational weakness properties (not
computing a fixed set, not being of PA degree, being of low degree). There
is a tension between the computational strength induced by the structural
properties, and the desired computational weakness. As it turns out, all these
proofs have a common denominator: the design of a so-called forcing ques-
tion with good definitional properties. The study of the relation between the
forcing question and iterated jump control constitutes the main subject of this
textbook.

The first weakness property that we shall consider is called cone avoidance.
Proofs of cone avoidance are good examples of the use of the forcing question,
and they do not require to make the whole construction effective, as in proofs
of lowness.

3.1 Context and motivation

Consider a mathematical problem P, formulated in term of instances and
solutions.2 The computability-theoretic study of P consists in identifying, given
a (computable) instance 𝑋 of P, the computational power of computing a
solution to 𝑋. For this, one proves lower bounds, of the form “There exists a
(computable) instance of P such that every solution is computationally strong”
and upper bounds of the form “Every (computable) instance of P admits a
computationally weak solution”.

One of the first questions to ask about the strength of a problem is its ability to
encode a Turing degree. More precisely, given a set 𝐶, is there a computable
instance of P such that every solution computes 𝐶? This question is about
the computational strength of P. One can ask the same question with no
computable restriction to the instance of P. It is then about the combinatorial
strength of P. The notion of cone avoidance is a strong negative answer to the
first question.

Definition 3.1.1.
It might be simpler to think of its unrela-
tivized version, where 𝑍 = ∅. Every known
natural problem which satisfies the unrel-
ativized version also satisfies the general
statement. However, one can create artificial
problems which do not.

A problem P admits cone avoidance if for every set 𝑍 and
every non-𝑍-computable set 𝐶, every 𝑍-computable instance 𝑋 of P admits
a solution 𝑌 such that 𝐶 is not 𝑍 ⊕ 𝑌-computable. ♦

20 3 Cone avoidance

Informally, if a problem admits cone avoidance, then it is not able to encode any
non-computable Turing degree. If one drops the restriction by replacing “every
𝑍-computable instance 𝑋 of P” with “every instance 𝑋 of P”, one obtains the
notion of strong cone avoidance.

A proof of cone avoidance of a problem P is an interesting statement in its own
right, but it also has useful consequences in reverse mathematics. Recall that
ACA0 is the base system RCA0 augmented with the comprehension axiom for
arithmetical formulas with parameters. Since the halting set ∅′ is Σ0

1-definable,
every 𝜔-model of ACA0 contains the halting set. 3

3: By the same argument, every 𝜔-model
of ACA0 is closed under the Turing jump.
Actually, there exists a smallest 𝜔-model
of ACA0 whose second-order part is exactly
the arithmetical sets. On the other hand, if a Π1

2 problem P admits cone avoidance4

4: A problem P is Π1
2 if if the relations

𝑋 ∈ dom P and 𝑌 ∈ P(𝑋) are both arith-
metically definable. Then, M |= P if

M |= ∀𝑋 ∈ dom P ∃𝑌 ∈ P(𝑋)

, then it admits
an 𝜔-model which avoids the halting set, hence is not a model of ACA0.

Proposition 3.1.2. Fix a non-computable set 𝐶. Let P be a Π1
2 problem which

admits cone avoidance. There exists an 𝜔-model of RCA0 + P which does not
contain 𝐶. ★

Proof. Recall that an 𝜔-model is fully characterized by its second-order part,
and that it satisfies RCA0 iff its second-order part is a Turing ideal. Also recall
that ⟨·, ·⟩ : ℕ2 → ℕ is Cantor’s pairing function.

We are going to define a sequence of sets 𝑍0 ≤𝑇 𝑍1 ≤𝑇 . . . such that for
all 𝑛 ∈ ℕ,

(1) if 𝑛 = ⟨𝑒 , 𝑠⟩ and Φ
𝑍𝑠
𝑒 is a P-instance 𝑋, then 𝑍𝑛+1 computes a solution

to 𝑋;
(2) 𝐶 ≰𝑇 𝑍𝑛 .

𝑍0 = ∅. Suppose we have defined 𝑍𝑛 and say 𝑛 = ⟨𝑒 , 𝑠⟩. If Φ𝑍𝑠
𝑒 is not a

P-instance, then let 𝑍𝑛+1 = 𝑍𝑛 . Otherwise, by cone avoidance of P relativized
to 𝑍𝑛 , there is a solution𝑌 to Φ

𝑍𝑠
𝑒 such that 𝐶 ≰𝑇 𝑍𝑛⊕𝑌. Let 𝑍𝑛+1 = 𝑍𝑛⊕𝑌.

Let I= {𝑋 ∈ 2ℕ : ∃𝑛 𝑋 ≤𝑇 𝑍𝑛}. By construction, the class I is a Turing
ideal. Moreover, by (1), every P-instance 𝑋 ∈ Iadmits a solution in I. Last,
by (2), 𝐶 ∉ I.

3.2 First examples

Before starting the development of an abstract framework to prove cone avoid-
ance, let us start with a few basic proofs, in order to see some emerging
patterns.

The most basic example of cone avoidance is Cohen genericity. Indeed, this
notion of forcing enjoys very nice computability-theoretic features: the partial
order is computable, with a computable domain. Recall that Cohen forcing is
the notion of forcing whose conditions are finite strings, partially ordered by
the suffix relation.

Theorem 3.2.1
Let 𝐶 be a non-computable set. For every sufficiently Cohen generic set 𝐺,
𝐶 ≰𝑇 𝐺.

Proof. It suffices to prove the following lemma, where Φ𝐺
𝑒 ≠ 𝐶 is a shorthand

for ∃𝑥Φ𝐺
𝑒 (𝑥)↑ ∨∃𝑥Φ𝐺

𝑒 (𝑥)↓≠ 𝐶(𝑥).

3.2 First examples 21

5: In other words,𝑈 is a set of pairs (input/-
value) such that one can find an extension
forcing Φ𝐺𝑒 (𝑥) to halt and output 𝑣. This set
will be recurrent in the proofs of cone avoid-
ance, with the 3-case analysis pattern.

8: The notation 𝑓 ⊆ 𝐴 → 𝐵 is used for
partial functions from 𝐴 to 𝐵.

Lemma 3.2.2. For every condition 𝜎 ∈ 2<ℕ and every Turing index 𝑒 ∈ ℕ,
there is an extension 𝜏 ⪰ 𝜎 forcing Φ𝐺

𝑒 ≠ 𝐶. ★

Proof. Fix a condition 𝜎. Consider the following set5

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : ∃𝜏 ⪰ 𝜎 Φ𝜏
𝑒 (𝑥)↓= 𝑣}

Note that the set 𝑈 is Σ0
1. There are three cases:6

6: The idea is the following: the set 𝑈
claims to be a nice (Σ0

1) description of a
set 𝐶 which is hard to describe (not com-
putable). Thus, either𝑈 gives only partial in-
formation about 𝐶 (Case 2) or it gives some
wrong information (Case 1).

▶ Case 1: (𝑥, 1 − 𝐶(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ. Let 𝜏 ⪰ 𝜎 witness
(𝑥, 1 − 𝐶(𝑥)) ∈ 𝑈 , that is, let 𝜏 ⪰ 𝜎 be such that Φ𝜏

𝑒 (𝑥)↓= 1 − 𝐶(𝑥).
Then 𝜏 forces Φ𝐺

𝑒 ≠ 𝐶.
▶ Case 2: (𝑥, 𝐶(𝑥)) ∉ 𝑈 for some 𝑥 ∈ ℕ. We claim that 𝜎 already

forces Φ𝐺
𝑒 ≠ 𝐶. Indeed, if for some 𝑍 ∈ [𝜎], Φ𝑍

𝑒 = 𝐶, then by the
use property, these is some 𝜏 ⪯ 𝑍 such that Φ𝜏

𝑒 (𝑥)↓= 𝐶(𝑥), and by
choosing 𝜏 long enough, it would witness (𝑥, 𝐶(𝑥)) ∈ 𝑈 , contradiction.

▶ Case 3: None of Case 1 and Case 2 holds. Then𝑈 is a Σ0
1 graph of the

characteristic function of 𝐶, hence 𝐶 is computable. This contradicts
our hypothesis.7

7: We assume here that the functional Φ𝑒
is {0, 1}-valued.

We are now ready to prove Theorem 3.2.1. Given 𝑒 ∈ ℕ, let D𝑒 be the set of
all conditions 𝜏 forcing Φ𝐺

𝑒 ≠ 𝐶. It follows from Lemma 3.2.2 that every D𝑒 is
dense, hence every {D𝑒 : 𝑒 ∈ ℕ}-generic set 𝐺 satisfies 𝐶 ≰𝑇 𝐺.

Theorem 3.2.1 can be used to prove the existence of incomparable Turing
degrees, as shows the following exercise:

Exercise 3.2.3.

1. Fix a set 𝐶. Show that for every sufficiently Cohen generic set 𝐺, 𝐶
does not compute 𝐺.

2. Use Theorem 3.2.1 and the previous question to deduce the existence
of incomparable Turing degrees. ★

The following example shows that every set 𝐴 admits a Δ0
2 description which

avoids a cone. It is a fundamental bridge between computational weaknesses
and combinatorial weaknesses of theorems, as we shall see later.

Theorem 3.2.4
Fix a set 𝐴 and a non-computable set 𝐶. There exists a set 𝐺 such that
𝐺′ ≥𝑇 𝐴 and 𝐺 ≱𝑇 𝐶.

Proof. By Shoenfield’s limit lemma [8], 𝐺′ ≥𝑇 𝐴 iff there is a 𝐺-computable
function 𝑓 : ℕ2 → 2 such that for every 𝑥 ∈ ℕ, lim𝑦 𝑓 (𝑥, 𝑦) exists and
equals 𝐴(𝑥). We are therefore going to build directly the function 𝑓 by forcing,
and let 𝐺 be the graph of 𝑓 . The forcing conditions are pairs (𝑔, 𝑛), such that

▶ 𝑔 ⊆ ℕ × ℕ → {0, 1} is a partial function8 with two parameters whose
domain is finite, representing an initial segment of the function 𝑓 that
we are building.

▶ 𝑚 is an integer “locking” the 𝑚 first columns of 𝑓 to the 𝑚 first bits of 𝐴,
meaning that from now on, when we extend the domain of 𝑔 with a new
pair (𝑥, 𝑦), if 𝑥 < 𝑚 then 𝑔(𝑥, 𝑦) = 𝐴(𝑥).

22 3 Cone avoidance

Note that set of conditions is computable,
but unlike Cohen forcing, the partial order is
not. Thankfully, for a fixed condition (𝑔, 𝑛),
the set of all conditions extending (𝑔, 𝑛)
is computable. Indeed, it suffices to “hard
code” the initial segment 𝐴↾𝑛 in the algo-
rithm, which is a finite piece of information.

In other words the first 𝑚 columns of the function 𝑓 have already reached their
limit behavior, which is 𝐴↾𝑚 . The interpretation [𝑔, 𝑚] of a condition (𝑔, 𝑚) is
the class of all partial or total functions ℎ ⊆ ℕ2 → 2 such that

(1) 𝑔 ⊆ ℎ, i.e. dom 𝑔 ⊆ dom ℎ and for all (𝑥, 𝑦) ∈ dom 𝑔, 𝑔(𝑥, 𝑦) =

ℎ(𝑥, 𝑦);
(2) for all (𝑥, 𝑦) ∈ dom ℎ \ dom 𝑔, if 𝑥 < 𝑚, then ℎ(𝑥, 𝑦) = 𝐴(𝑥).

A condition (ℎ, 𝑛) extends (𝑔, 𝑚) (denoted (ℎ, 𝑛) ≤ (𝑔, 𝑚)) if 𝑛 ≥ 𝑚 and
ℎ ∈ [𝑔, 𝑚]. Every filter F for this notion of forcing induces a function 𝑓F =⋃{𝑔 : (𝑔, 𝑛) ∈ F}. In particular, 𝑓F ∈ ⋂{[𝑔, 𝑛] : (𝑔, 𝑛) ∈ F}. Moreover,
if F is sufficiently generic, then 𝑓F is total, and lim𝑥 𝑓F(𝑥, 𝑦) = 𝐴(𝑥).

Lemma 3.2.5. For every condition (𝑔, 𝑛) and every Turing index 𝑒 ∈ ℕ, there
is an extension (ℎ, 𝑛) ≤ (𝑔, 𝑛) forcing Φ

𝑓
𝑒 ≠ 𝐶. ★

Proof. Fix a condition (𝑔, 𝑛). Consider the following set

This is the second appearance of the set𝑈
of all pairs (input/value) such that one can
find an extension forcing Φ

𝑓
𝑒 (𝑥) to halt and

output 𝑣.

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : ∃ℎ ∈ [𝑔, 𝑛] Φℎ
𝑒 (𝑥)↓= 𝑣}

Note that the set𝑈 is Σ0
1 since by the use property, the existential quantifier is

first-order. There are three cases:

We have the same 3-case analysis as in the
proof Lemma 3.2.2, and which is character-
istic of proofs of cone avoidance.

▶ Case 1: (𝑥, 1 − 𝐶(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ. Let ℎ ∈ [𝑔, 𝑛] witness
(𝑥, 1−𝐶(𝑥)) ∈ 𝑈 , that is, let ℎ ∈ [𝑔, 𝑛] be such that Φℎ

𝑒 (𝑥)↓= 1−𝐶(𝑥).
Then (ℎ, 𝑛) forces Φ

𝑓
𝑒 ≠ 𝐶.

▶ Case 2: (𝑥, 𝐶(𝑥)) ∉ 𝑈 for some 𝑥 ∈ ℕ. We claim that (𝑔, 𝑛) already
forces Φ

𝑓
𝑒 ≠ 𝐶. Indeed, if for some 𝑓 ∈ [𝑔, 𝑛], Φ 𝑓

𝑒 = 𝐶, then by the
use property, these is some finite ℎ ⊆ 𝑓 such that Φℎ

𝑒 (𝑥) ↓= 𝐶(𝑥),
and by choosing dom ℎ ⊇ dom 𝑔, it would witness (𝑥, 𝐶(𝑥)) ∈ 𝑈 ,
contradiction.

▶ Case 3: None of Case 1 and Case 2 holds. Then𝑈 is a Σ0
1 graph of the

characteristic function of 𝐶, hence 𝐶 is computable. This contradicts
our hypothesis.

We are now ready to prove Theorem 3.2.4. Let F be a sufficiently generic
filter for this notion of forcing, and let 𝑓 = 𝑓F. The set of conditions (𝑔, 𝑛)
such that 𝑥 ∈ dom 𝑔 is dense, thus 𝑓 is total. Moreover, for every 𝑘 ∈ ℕ, the
set of conditions (𝑔, 𝑛) such that 𝑛 ≥ 𝑘 is also dense, so for every 𝑥 ∈ ℕ,
lim𝑦 𝑓 (𝑥, 𝑦) = 𝐴(𝑥). Last, by Lemma 3.2.5, 𝑓 ≱𝑇 𝐶. This completes the
proof of Theorem 3.2.4.

Recall that a set 𝐺 is of high degree if 𝐺′ ≥𝑇 ∅′′. It follows from Theorem 3.2.4
that if 𝐶 is a non-computable set, there exists a set 𝐺 of high degree such that
𝐶 ≰𝑇 𝐺.

Our last example is the famous cone avoidance Π0
1 basis theorem. It says

that if every path of an infinite computable binary tree computes a single set,
then this set is computable. This will be our first example of the use of an
over-approximation because the natural formula does not have the desired
complexity.

3.3 Forcing question 23

Theorem 3.2.6 (Jockusch and Soare [9])
Fix a non-computable set 𝐶 and a non-empty Π0

1 class P ⊆ 2ℕ . There
exists a member 𝐺 ∈ P such that 𝐺 ≱𝑇 𝐶.

Proof. Jockusch-Soare forcing is the notion of forcing whose conditions are
infinite computable binary trees 𝑇 ⊆ 2<ℕ , partially ordered by the subset
relation. The interpretation [𝑇] of a tree 𝑇 is the class of its paths. Every
sufficiently filter F for this notion of forcing induces a path 𝐺F which is the
unique element of

⋂{[𝑇] : 𝑇 ∈ F}.

Lemma 3.2.7. For every condition 𝑇 and every Turing index 𝑒 ∈ ℕ, there is
an extension 𝑆 ⊆ 𝑇 forcing Φ𝐺

𝑒 ≠ 𝐶. ★

Proof. Fix a condition 𝑇. Consider the following set

A natural first attempt would be to define U

as the set

{(𝑥, 𝑣) : ∃𝜎 extendible in 𝑇 Φ𝜎
𝑒 (𝑥)↓= 𝑣}

However, being extendible is aΠ0
1 predicate,

hence𝑈 would be Σ0
2. The third case would

then yield that 𝐶 is ∅′-computable, which
does not contradict our hypothesis.

The over-approximation is the following: at
every length, at least one node must be ex-
tendible in 𝑇, so it suffices to ask the prop-
erty to hold for every nodes of a given length.

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : ∃ℓ ∈ ℕ∀𝜎 ∈ 2ℓ ∩ 𝑇 Φ𝜎
𝑒 (𝑥)↓= 𝑣}

Note that the set 𝑈 is Σ0
1. There are three cases:

We still have the same 3-case analysis as in
the proof Lemma 3.2.2, but the situation is
slightly different: instead of taking a proper
extension in Case 1 and already forcing the
property in Case 2, the situation is inverted.

▶ Case 1: (𝑥, 1 − 𝐶(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ. We claim that 𝑇 already
forces Φ𝐺

𝑒 ≠ 𝐶. Indeed, for every 𝐺 ∈ [𝑇], letting 𝜎 = 𝐺↾ℓ , where ℓ
witnesses (𝑥, 1 − 𝐶(𝑥)) ∈ 𝑈 , we have 𝜎 ∈ 2ℓ ∩ 𝑇, hence Φ𝜎

𝑒 (𝑥)↓=
1 − 𝐶(𝑥). By the use property, Φ𝐺

𝑒 (𝑥)↓= 1 − 𝐶(𝑥)
▶ Case 2: (𝑥, 𝐶(𝑥)) ∉ 𝑈 for some 𝑥 ∈ ℕ. Let

𝑆 = {𝜎 ∈ 𝑇 : ∀𝑠 < |𝜎| Φ𝜎
𝑒 (𝑥)[𝑠]↑ ∨Φ𝜎

𝑒 (𝑥)[𝑠]↓≠ 𝐶(𝑥)}

Since (𝑥, 𝐶(𝑥)) ∉ 𝑈 , 𝑆 contains a string of every length. Moreover, 𝑆
is closed under prefix, so it is an infinite binary subtree of 𝑇. Again, by
the use property, 𝑆 forces Φ𝐺

𝑒 ≠ 𝐶.
▶ Case 3: None of Case 1 and Case 2 holds. Then𝑈 is a Σ0

1 graph of the
characteristic function of 𝐶, hence 𝐶 is computable. This contradicts
our hypothesis.

We are now ready to prove Theorem 3.2.6. Let Fbe a sufficiently generic filter
for this notion of forcing, and let 𝐺 = 𝐺F. By Lemma 3.2.7, 𝐺 ≱𝑇 𝐶. This
completes the proof of Theorem 3.2.6.

Exercise 3.2.8. A (computable) Mathias condition is a pair (𝜎, 𝑋) where 𝜎 ∈
2<ℕ and 𝑋 ⊆ ℕ is an infinite (computable) set with |𝜎| < min𝑋. The
interpretation [𝜎, 𝑋] of a (computable) Mathias condition is the class {𝑌 ∈
2ℕ : 𝜎 ⊆ 𝑌 ⊆ 𝜎 ∪ 𝑋}, identifying 𝜎 with the finite set {𝑛 < |𝜎| : 𝜎(𝑛) = 1}.
Intuitively, 𝜎 is the initial segment of the set that we construct, and 𝑋 is an
infinite reservoir which restricts the futur elements of the set.

A condition (𝜏, 𝑌) extends a condition (𝜎, 𝑋) if 𝜏 ⪰ 𝜎, 𝑌 ⊆ 𝑋 and 𝜏 \ 𝜎 ⊆ 𝑋.
Every filter Ffor this notion of forcing induces a set 𝐺F =

⋃{𝜎 : (𝜎, 𝑋) ∈ F}.

Prove that if 𝐶 is a non-computable set, then for every sufficiently generic filter
F, 𝐶 ≰𝑇 𝐺F. ★

3.3 Forcing question

One can easily see an emerging pattern in all the previous proofs of cone
avoidance. In every case, given a condition 𝑝, one defines a set 𝑈 of pairs

24 3 Cone avoidance

(𝑥, 𝑣) such that such that there is an extension forcing Φ𝐺
𝑒 (𝑥)↓= 𝑣. Moreover,

for every pair (𝑥, 𝑣) outside𝑈 , there is an extension forcing the opposite. This
motivates the following definition:

Definition 3.3.1. Given a notion of forcing (ℙ,≤) and a family of formulas
Γ, a forcing question is a relation ?⊢ : ℙ × Γ such that, for every 𝑝 ∈ ℙ and
𝜑(𝐺) ∈ Γ,

1. If 𝑝 ?⊢𝜑(𝐺), then there is an extension 𝑞 ≤ 𝑝 forcing 𝜑(𝐺) ;
2. If 𝑝 ?⊬𝜑(𝐺), then there is an extension 𝑞 ≤ 𝑝 forcing ¬𝜑(𝐺). ♦

One can see a forcing question as a completion of the forcing relation. In-
tuitively, given a formula 𝜑(𝐺) ∈ Γ, one can divide the conditions in ℙ into
three categories: the ones which force 𝜑(𝐺), those which force ¬𝜑(𝐺), and
the ones which do not decide 𝜑(𝐺). A forcing question has no degree of
freedom when considering conditions of the first two categories: it must give
the appropriate answer. On the other hand, a condition belonging to the third
category has extensions forcing 𝜑(𝐺) and other extensions forcing ¬𝜑(𝐺). A
forcing question draws a dividing line within this category.

Figure 3.1: The yellow part and the dark
blue part represent the conditions forcing a
fixed Σ0

1 and its negation, respectively. The
light blue part represent the conditions of the
third category. In the proof of Theorem 3.2.6,
the dividing line is at the left-most position,
while for Cohen forcing, the dividing line is
at the opposite position.

Forcing Π0
1Forcing Σ0

1

Jockusch-Soare
forcing question

Cohen
forcing question

Exercise 3.3.2. Show that a relation ?⊢ : ℙ× Γ is a forcing question for Γ iff it
satisfies the following properties:

1. If 𝑝 forces 𝜑(𝐺), then 𝑝 ?⊢𝜑(𝐺) ;
2. If 𝑝 forces ¬𝜑(𝐺), then 𝑝 ?⊬𝜑(𝐺). ★

In each cone avoidance proof, one then considers the following set:

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : 𝑝 ?⊢Φ𝐺
𝑒 (𝑥)↓= 𝑣}

By definition of a forcing question, the two first cases can be handled abstractly.
On the other hand, the contradiction of the third case lies on the complexity of
the set 𝑈 . This is our last ingredient of the proof.

Definition 3.3.3. Given a notion of forcing (ℙ,≤) and a family of formulas
Γ, a forcing question is Γ-preserving if for every 𝑝 ∈ ℙ and every formula
𝜑(𝐺, 𝑥) ∈ Γ, the relation 𝑝 ?⊢𝜑(𝐺, 𝑥) is in Γ uniformly in 𝑥. ♦

We are now ready to prove our abstract theorem of cone avoidance.

Theorem 3.3.4
Let (ℙ,≤) be a notion of forcing with a Σ0

1-preserving forcing question.

3.3 Forcing question 25

For every non-computable set 𝐶 and every sufficiently generic filter F,
𝐶 ≰𝑇 𝐺F.

Proof. It suffices to prove the following lemma:

Lemma 3.3.5. For every condition 𝑝 ∈ ℙ and every Turing index 𝑒 ∈ ℕ, there
is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 ≠ 𝐶. ★

Proof. Consider the following set

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : 𝑝 ?⊢Φ𝐺
𝑒 (𝑥)↓= 𝑣}

Since the forcing question is Σ0
1-preserving, the set 𝑈 is Σ0

1. There are three
cases:

▶ Case 1: (𝑥, 1−𝐶(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ. By Property (1) of the forcing
question, there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 (𝑥)↓= 1 − 𝐶(𝑥).
▶ Case 2: (𝑥, 𝐶(𝑥)) ∉ 𝑈 for some 𝑥 ∈ ℕ. By Property (2) of the forcing

question, there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺
𝑒 (𝑥)↑ or Φ𝐺

𝑒 (𝑥)↓≠ 𝐶(𝑥).
▶ Case 3: None of Case 1 and Case 2 holds. Then𝑈 is a Σ0

1 graph of the
characteristic function of 𝐶, hence 𝐶 is computable. This contradicts
our hypothesis.

We are now ready to prove Theorem 3.3.4. Given 𝑒 ∈ ℕ, let D𝑒 be the set of
all conditions 𝑞 ∈ ℙ forcing Φ𝐺

𝑒 ≠ 𝐶.. It follows from Lemma 3.3.5 that every
D𝑒 is dense, hence every sufficiently generic filter F is {D𝑒 : 𝑒 ∈ ℕ}-generic,
so 𝐶 ≰𝑇 𝐺F. This completes the proof of Theorem 3.3.4.

By the abstract theorem above, the question whether a problem admits cone
avoidance is reduced to the question whether one can construct solutions using
a notion of forcing which admits a forcing question with the right definitional
property.

We can revisit the previous proofs in terms of forcing questions.

Exercise 3.3.6. Given a string 𝜎 ∈ 2<ℕ and a Σ0
1 formula 𝜑(𝐺), define

𝜎 ?⊢𝜑(𝐺) to hold if there is some 𝜏 ⪰ 𝜎 such that 𝜑(𝜏) holds. Prove that the
relation is a Σ0

1-preserving forcing question for Cohen forcing. ★

Exercise 3.3.7. Given a computable infinite binary tree 𝑇 ⊆ 2<ℕ and a Σ0
1

formula 𝜑(𝐺), define 𝑇 ?⊢𝜑(𝐺) to hold if there is some level ℓ ∈ ℕ such
that 𝜑(𝜎) holds for every node 𝜎 at level ℓ in 𝑇. Prove that the relation is a
Σ0

1-preserving forcing question for Jockusch-Soare forcing. ★

The notion of forcing question is more useful as a unifying terminology than
as a formal notion. We shall see in the next section a disjunctive notion of
forcing building two generic sets simultaneously. Although the concept of
forcing question will need some adaptation to the current setting, the similarity
of terminology will help emphasize the common features with the previous
proofs of cone avoidance.

26 3 Cone avoidance

9: We shall often identify [𝑋]𝑛 with the
set of increasing ordered 𝑛-tuples,
and write 𝑓 (𝑥0 , . . . , 𝑥𝑛−1) rather
than 𝑓 ({𝑥0 , . . . , 𝑥𝑛−1}), assuming
𝑥0 < · · · < 𝑥𝑛−1.

10: Ramsey’s theorem is formulated in
terms of colorings of [ℕ]𝑛 . However, it
is a set-theoretic statement, and it still
holds when replacing ℕ with any infinite
set. One can prove prove this stronger
statement as a blackbox: Given an infinite
set 𝑋 ⊆ ℕ and a coloring 𝑓 : [𝑋]𝑛 → 𝑘,
define the coloring 𝑔 : [ℕ]𝑛 → 𝑘 by
𝑔(𝐹) = 𝑓 (𝜄[𝐹]), where 𝜄 : ℕ → 𝑋 is
the canonical bijection. For any infinite
𝑔-homogeneous set 𝐻 ⊆ ℕ, the set 𝜄[𝐻]
is an infinite 𝑓 -homogeneous subset of 𝑋.

When using the stronger statement,
one must take into account the compu-
tational strength of the set 𝑋, as the
𝑓 -homogeneous set is 𝐻 ⊕ 𝑋-computable.

11: It might be useful to consider sets 𝐴 ∈
2ℕ as instances of RT1

2. A solution to 𝐴 is
then an infinite subset 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴.

3.4 Seetapun’s theorem

In short, Seetapun’s theorem states that Ramsey’s theorem for pairs admits
cone avoidance. It is one of the most celebrated theorems of reverse math-
ematics. Given a set 𝑋 ⊆ ℕ, we let [𝑋]𝑛 denote the set of all 𝑛-element
subsets of 𝑋.9 A set 𝐻 ⊆ ℕ is homogeneous for a coloring 𝑓 : [ℕ]𝑛 → 𝑘

if 𝑓 is monochromatic on [𝐻]𝑛 . Ramsey’s theorem for 𝑛-tuples and 𝑘 colors
is the problem RT𝑛

𝑘
whose instances are colorings 𝑓 : [ℕ]𝑛 → 𝑘 and whose

solutions are infinite 𝑓 -homogeneous sets.10

In particular, RT1
𝑘

is the infinite pigeonhole principle11, while the statement RT2
𝑘

states that if the edges of an infinite clique is 𝑘-colored, then there is an infinite
subset of vertices whose induced subgraph is monochromatic. The question
whether Ramsey’s theorem for pairs implies ACA0 over RCA0 was open for
a decade, before Seetapun [10] answered it negatively by proving that RT2

2
admits cone avoidance. Since then, the original proof was simplified [11] and
extended to other preservation properties [12]. We will present the simplified
version and leave the original one as an exercise.

The modern version of Seetapun’s theorem is divided into two steps, based on
the decomposition of Ramsey’s theorem for pairs into the cohesiveness and
the pigeonhole principles. An infinite set 𝐶 ⊆ ℕ is cohesive for a sequence
of sets ®𝑅 = 𝑅0 , 𝑅1 , . . . if for every 𝑛 ∈ ℕ, 𝐶 ⊆∗ 𝑅𝑛 or 𝐶 ⊆∗ 𝑅𝑛 , where
⊆∗ means “included up to finite changes”. The cohesiveness principle is the
problem COH whose instances are infinite sequences of sets, and whose
solutions are infinite cohesive sets.

We start with a proof of Ramsey’s theorem for pairs using the cohesiveness
principle and the pigeonhole principle, with no computability-theoretic consid-
eration.

Theorem 3.4.1 (Ramsey)
Every coloring 𝑓 : [ℕ]2 → 2 admits an infinite 𝑓 -homogeneous set.

Proof. The proof is divided into three steps.

From a computability-theoretic perspective,
the sequence ®𝑅 is 𝑓 -computable, the col-
oring 𝑓 is Δ0

2(𝑓 ⊕ 𝑋), and the set 𝐻 is
𝑓 ⊕ 𝑋 ⊕ 𝑌-computable.

Cohesive step: Let ®𝑅 = 𝑅0 , 𝑅1 , . . . be the sequence of sets defined for
every 𝑥 ∈ ℕ by 𝑅𝑥 = {𝑦 ∈ ℕ : 𝑓 (𝑥, 𝑦) = 1}. By COH, there is an infinite
®𝑅-cohesive set 𝑋 ⊆ ℕ. In particular, for every 𝑥 ∈ 𝑋, lim𝑦∈𝑋 𝑓 (𝑥, 𝑦) exists.

Pigeonhole step: Let 𝑓 : 𝑋 → 2 be the limit coloring of 𝑓 , that is, 𝑓 (𝑥) =
lim𝑦∈𝑋 𝑓 (𝑥, 𝑦). By RT1

2, there is an infinite 𝑓 -homogeneous set 𝑌 ⊆ 𝑋 for
some color 𝑖 < 2.

Post-processing: Since for every 𝑥 ∈ 𝑌, lim𝑦∈𝑌 𝑓 (𝑥, 𝑦) = 𝑖, one can thin out
the set 𝑌 to obtain an infinite 𝑓 -homogeneous subset 𝐻 ⊆ 𝑌.

Seetapun’s theorem will therefore be proven by combining cone avoidance of
the cohesiveness principle and strong cone avoidance of the pigeonhole prin-
ciple. There exists a simple proof of cone avoidance of COH using computable
Mathias forcing.

3.4 Seetapun’s theorem 27

12: One could have used a variant of Math-
ias forcing where conditions are pairs (𝜎, 𝑋)
such that 𝐶 ≰𝑇 𝑋. In general, one requires
the reservoirs to satisfy the desired property
of the theorem.

The natural proof of COH consists in decid-
ing which one of 𝑅0 or 𝑅0 is infinite (say
𝑅0), then picking an element 𝑥0 ∈ 𝑅0, then
deciding which one of 𝑅0 ∩ 𝑅1 or 𝑅0 ∩ 𝑅1
is infinite (say 𝑅0 ∩ 𝑅1), then picking an
element 𝑥1 ∈ 𝑅0 ∩ 𝑅1, and so on. The
class C(®𝑅) represents the collection of all
“valid” decisions, that is, choices which will
not yield a finite set.

13: The proof of Ramsey’s theorem in-
volves only Δ0

2 instances of the pigeon-
hole principle. Thus, at first sight, it seems
too strong to consider arbitrary instances.
However, by Theorem 3.2.4, every instance
of RT1

2 is Δ0
2 relative to a cone avoiding de-

gree, so considering arbitrary instances or
Δ0

2 instances is equivalent.

Theorem 3.4.2
Let 𝐶 be a non-computable set. For every uniformly computable sequence
of sets 𝑅0 , 𝑅1 , . . . , there is an infinite ®𝑅-cohesive set 𝐺 such that 𝐶 ≰𝑇 𝐺.

Proof. Recall the notion of computable Mathias forcing12 from Exercise 3.2.8.
Given a condition (𝜎, 𝑋) and aΣ0

1 formula 𝜑(𝐺), one can define aΣ0
1-preserving

forcing question (𝜎, 𝑋) ?⊢𝜑(𝐺) which holds if there is some 𝜌 ⊆ 𝑋 such that
𝜑(𝜎 ∪ 𝜌) holds. Thus, for every sufficiently generic filter F, 𝐶 ≰𝑇 𝐺F. We
now show that 𝐺F is ®𝑅-cohesive.

Given some 𝑛 ∈ ℕ, let D𝑛 be the set of all conditions (𝜎, 𝑋) such that either
𝑋 ⊆ 𝑅𝑛 , or 𝑋 ⊆ 𝑅𝑛 . The set D𝑛 is dense, since given a computable Mathias
condition (𝜎, 𝑋), either 𝑋 ∩ 𝑅𝑛 is infinite, or 𝑋 ∩ 𝑅𝑛 is infinite (say the former
case holds), in which case (𝜎, 𝑋 ∩𝑅𝑛) ∈ D𝑛 . Thus, if F is {D𝑛}𝑛∈ℕ-generic,
then 𝐺F is ®𝑅-cohesive.

Actually, the exact computational strength of the cohesiveness principle is well-
understood: given a uniformly computable sequence of sets ®𝑅 = 𝑅0 , 𝑅1 , . . . ,
and 𝜎 ∈ 2<ℕ , one can define the set 𝑅𝜎 as follows:

𝑅𝜎 =
⋂

𝜎(𝑛)=0
𝑅𝑛

⋂
𝜎(𝑛)=1

𝑅𝑛

Then, let C(®𝑅) be the Π0
1(∅′) class of all 𝑃 ∈ 2ℕ such that for every 𝜎 ≺ 𝑃,

𝑅𝜎 is infinite.

Exercise 3.4.3 (Jockusch and Stephan [13]).

1. Fix a uniformly computable sequence of sets ®𝑅 = 𝑅0 , 𝑅1 , Show
that the degrees of the ®𝑅-cohesive sets are exactly the degrees whose
jump computes a a member of C(®𝑅).

2. Show that for every Π0
1(∅′) class P ⊆ 2ℕ , there exists a uniformly

computable sequence of sets ®𝑅 = 𝑅0 , 𝑅1 , . . . such that C(®𝑅) = P. ★

It follows from Exercise 3.4.3 that the computability-theoretic study of COH
is inherited from the study of Π0

1 classes. In particular, since there exists a
universal Π0

1 class whose members are of PA degree, there exists a maximally
difficult sequence of uniformly computable sets ®𝑅 = 𝑅0 , 𝑅1 , . . . such that the
jump of every ®𝑅-cohesive set is of PA degree over ∅′.

Exercise 3.4.4. Combine Exercise 3.4.3 and Theorem 3.2.4 to give an alter-
native proof of Theorem 3.4.2. ★

Exercise 3.4.5 (Patey [14]). Use Exercise 3.4.3 to prove that if a computable
instance of COH admits a solution of low degree, then it admits a computable
solution. ★

The last component of our proof of Seetapun’s theorem is strong cone avoid-
ance of the pigeonhole principle.13

Theorem 3.4.6 (Dzhafarov and Jockusch [11])
Let 𝐶 be a non-computable set. For every set 𝐴, there is an infinite sub-
set 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴 such that 𝐶 ≰𝑇 𝐻.

28 3 Cone avoidance

14: One could use Posner’s trick, saying
that if 𝐺0 and 𝐺1 both compute 𝐶, then
there is a single Turing functional Φ𝑒 such
that Φ𝐺0

𝑒 = Φ
𝐺1
𝑒 = 𝐶. Then, the require-

ment becomes R𝑒 : Φ𝐺0
𝑒 ≠ 𝐶 ∨Φ

𝐺1
𝑒 ≠ 𝐶.

16: The naïve set to consider would
be 𝑈 = {(𝑥, 𝑣) : ∃𝑖 < 2 ∃𝜌 ⊆
𝑋 ∩𝐴𝑖 Φ

𝜎𝑖∪𝜌
𝑒𝑖

(𝑥)↓= 𝑣}. It would yield valid
forcing question, but with a bad definitional
complexity: the set 𝑈 is Σ0

1(𝑋 ⊕ 𝐴). The
third case would yield that 𝐶 ≤𝑇 𝑋 ⊕ 𝐴,
which is not a contradiction.

One must get rid of the set 𝐴 which is
arbitrary complex. For this, we use an
over-approximation by considering all
instances of RT1

2. Since the class of all
instances of RT1

2 is efffectively closed in
Cantor space, hence effectively compact,
this over-approximation yields a Σ0

1(𝑋) set.

17: Consider the tree of finite 2-partitions
of initial segments of ℕ.

Proof. Fix 𝐶 and 𝐴. The first difficulty of this theorem is the disjunctive nature
of the statement. One does not know in advance what side of𝐴 is more suitable
to build an infinite subset. This is why we are going to build two sets 𝐺0 , 𝐺1
simultaneously, with 𝐺0 ⊆ 𝐴 and 𝐺1 ⊆ 𝐴. For simplicity, let 𝐴0 = 𝐴 and
𝐴1 = 𝐴.

The two sets will be constructed through a variant of Mathias forcing, whose
conditions are triples (𝜎0 , 𝜎1 , 𝑋) where

1. (𝜎𝑖 , 𝑋) is a Mathias condition for each 𝑖 < 2 ;
2. 𝜎𝑖 ⊆ 𝐴𝑖 ;
3. 𝐶 ≰𝑇 𝑋.

There is an easy way to see that at least
one of the two initial segments is extendible
into an infinite solution: Given a condition
(𝜎0 , 𝜎1 , 𝑋), there is some 𝑖 < 2 such that
𝑋 ∩ 𝐴𝑖 is infinite. Thus, 𝜎𝑖 ∪ (𝑋 ∩ 𝐴𝑖) is
an infinite subset of 𝐴𝑖 .

One must really think of a condition as a pair of Mathias conditions which share
a same reservoir. The interpretation [𝜎0 , 𝜎1 , 𝑋] of a condition (𝜎0 , 𝜎1 , 𝑋) is
the class

[𝜎0 , 𝜎1 , 𝑋] = {(𝐺0 , 𝐺1) : ∀𝑖 < 2 𝜎𝑖 ⪯ 𝐺𝑖 ⊆ 𝜎𝑖 ∪ 𝑋}Note that throughout the proof, the only ma-
nipulations of the reservoir are finite trun-
cation and splitting based on a Π0

1 class
of 2-colorings. Thus, the whole argument
would work by fixing a Scott ideal M such
that 𝐶 ∉ M and requiring 𝑋 ∈ M.

A condition (𝜏0 , 𝜏1 , 𝑌) extends (𝜎0 , 𝜎1 , 𝑋) if (𝜏𝑖 , 𝑌) Mathias extends (𝜎𝑖 , 𝑋)
for each 𝑖 < 2. Any filter F induces two sets 𝐺F,0 and 𝐺F,1 defined by
𝐺F,𝑖 =

⋃{𝜎𝑖 : (𝜎0 , 𝜎1 , 𝑋) ∈ F}. Note that (𝐺F,0 , 𝐺F,1) ∈
⋂{[𝜎0 , 𝜎1 , 𝑋] :

(𝜎0 , 𝜎1 , 𝑋) ∈ F}.

The goal is therefore to build two infinite sets 𝐺0 , 𝐺1, satisfying the following
requirements for every 𝑒0 , 𝑒1 ∈ ℕ: 14

R𝑒0 ,𝑒1 : Φ𝐺0
𝑒0 ≠ 𝐶 ∨Φ

𝐺1
𝑒1 ≠ 𝐶

If every requirement is satisfied, then an easy pairing argument15

15: A pairing argument says that if for every
(𝑎, 𝑏) ∈ ℕ2, either 𝑎 ∈ 𝐴 or 𝑏 ∈ 𝐵, then
either 𝐴 = ℕ or 𝐵 = ℕ.

shows that
either 𝐶 ≰𝑇 𝐺0, or 𝐶 ≰𝑇 𝐺1. However, in general, it is not possible to ensure
that 𝐺0 and 𝐺1 are both infinite. For example, 𝐴 could be finite or co-finite.
Thankfully, in any of these cases, there is a simple computable solution. More
generally, we make the following assumption:

There is no infinite set 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴 such that 𝐶 ≰𝑇 𝐻. (H1)

Under this assumption, one can prove that if F is sufficiently generic, then
both 𝐺F,0 and 𝐺F,1 are infinite.

Lemma 3.4.7. Suppose (H1). Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition and 𝑖 < 2.
There is an extension (𝜏0 , 𝜏1 , 𝑌) of 𝑝 and some 𝑛 > |𝜎𝑖| such that 𝑛 ∈ 𝜏𝑖 .★

Proof. If 𝑋 ∩ 𝐴𝑖 is empty, then 𝑋 ⊆ 𝐴1−𝑖 , but 𝐶 ≰𝑇 𝑋, which contradicts
(H1). Thus, there is 𝑛 ∈ 𝑋 ∩ 𝐴𝑖 . Let 𝜏𝑖 = 𝜎𝑖 ∪ {𝑛}, and 𝜏1−𝑖 = 𝜎1−𝑖 .
Then, (𝜏0 , 𝜏1 , 𝑋 \ {0, . . . , 𝑛 − 1}) is an extension of 𝑝 such that 𝑛 ∈ 𝜏𝑖 .

We will now prove the core lemma.

Lemma 3.4.8. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition, and 𝑒0 , 𝑒1 ∈ ℕ. There is
an extension (𝜏0 , 𝜏1 , 𝑌) of 𝑝 forcing R𝑒0 ,𝑒1 . ★

Proof. Consider the following set16

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : ∀𝑍0 ⊔ 𝑍1 = 𝑋 ∃𝑖 < 2 ∃𝜌 ⊆ 𝑍𝑖 Φ
𝜎𝑖∪𝜌
𝑒𝑖 (𝑥)↓= 𝑣}

At first sight, this set seems computationally very strong, as it contains a
universal second-order quantification. However, by a compactness argument17,

3.4 Seetapun’s theorem 29

Because of the use of an over-
approximation, in Case 2, the instance 𝐵
of RT1

2 witnessing the negation has nothing
to do with the original instance 𝐴. The
instance 𝐵 is chosen so that every solution
to it will satisfy the Π0

1 fact. By committing
to be simultaneously a solution to 𝐴

and 𝐵, one can create a solution to 𝐴

which forces the Π0
1 fact. This ability to

be simultaneously a solution to multiple
instances is a feature of Ramsey-type
statements.

the set can be equivalently defined as

{(𝑥, 𝑣) ∈ ℕ × 2 : ∃ℓ ∈ ℕ∀𝑍0 ⊔ 𝑍1 = 𝑋↾ℓ ∃𝑖 < 2 ∃𝜌 ⊆ 𝑍𝑖 Φ
𝜎𝑖∪𝜌
𝑒𝑖 (𝑥)↓= 𝑣}

Thus, the set 𝑈 is Σ0
1(𝑋). There are three cases:

▶ Case 1: (𝑥, 1 − 𝐶(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ. Letting 𝑍0 = 𝐴0 ∩ 𝑋

and 𝑍1 = 𝐴1 ∩ 𝑋, there is some 𝑖 < 2 and some 𝜌 ⊆ 𝑍𝑖 such
that Φ𝜎𝑖∪𝜌

𝑒𝑖 (𝑥) ↓= 1 − 𝐶(𝑥). Letting 𝜏𝑖 = 𝜎𝑖 ∪ 𝜌 and 𝜏1−𝑖 = 𝜎1−𝑖 ,
the condition (𝜏0 , 𝜏1 , 𝑋 \ {0, . . . ,max 𝜌}) is an extension of 𝑝 forcing
Φ
𝐺𝑖
𝑒𝑖 (𝑥) ↓≠ 𝐶(𝑥).

▶ Case 2: (𝑥, 𝐶(𝑥)) ∉ 𝑈 for some 𝑥 ∈ ℕ. Consider the class P of all
sets 𝐵 ∈ 2ℕ such that, letting 𝐵0 = 𝐵 and 𝐵1 = 𝐵, for every 𝑖 < 2,
and every 𝜌 ⊆ 𝑋 ∩ 𝐵𝑖 , Φ𝜎𝑖∪𝜌

𝑒𝑖 (𝑥)↑ or Φ𝜎𝑖∪𝜌
𝑒𝑖 (𝑥)↓≠ 𝐶(𝑥). The class P

is Π0
1(𝑋), so by the cone avoidance basis theorem (Theorem 3.2.6),

there is some 𝐵 ∈ P such that 𝐶 ≰𝑇 𝑋 ⊕ 𝐵. Since 𝑋 is infinite, there is
some 𝑖 < 2 such that 𝑋 ∩ 𝐵𝑖 is infinite. The condition (𝜎0 , 𝜎1 , 𝑋 ∩ 𝐵𝑖)
is an extension of 𝑝 forcing Φ

𝐺𝑖
𝑒𝑖 (𝑥)↑ ∨Φ𝐺𝑖

𝑒𝑖 (𝑥)↓≠ 𝐶(𝑥).
▶ Case 3: None of Case 1 and Case 2 holds. Then𝑈 is a Σ0

1(𝑋) graph
of the characteristic function of 𝐶, hence 𝐶 is 𝑋-computable. This
contradicts our hypothesis.

We are now ready to prove Theorem 3.4.6. Let Fbe a sufficiently generic filter
for this notion of forcing, and for each 𝑖 < 2, let 𝐺𝑖 = 𝐺F,𝑖 . By Lemma 3.4.7,
both sets are infinite. Moreover, by Lemma 3.4.8, either 𝐶 ≰𝑇 𝐺0 or 𝐶 ≰𝑇 𝐺1.
Letting 𝐻 be this set, it satisfies the statement of Theorem 3.4.6.

One can formulate the proof of Theorem 3.4.6 in terms of forcing question,
with the appropriate disjunctive definition.

Definition 3.4.9. Given a disjunctive notion of forcing (ℙ,≤) and a family
of formulas Γ, a forcing question is a relation ?⊢ : ℙ × Γ such that, for
every 𝑝 ∈ ℙ and every pair of formulas 𝜑0(𝐺), 𝜑1(𝐺) ∈ Γ, Note that if 𝑝 ?⊬𝜑0(𝐺0)∨𝜑1(𝐺1), one does

not force ¬𝜑0(𝐺0)∧¬𝜑1(𝐺1), but their dis-
junction.1. If 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1), then there is an extension 𝑞 ≤ 𝑝 forc-

ing 𝜑𝑖(𝐺𝑖) for some 𝑖 < 2 ;
2. If 𝑝 ?⊬𝜑0(𝐺0) ∨ 𝜑1(𝐺1), then there is an extension 𝑞 ≤ 𝑝 forc-

ing ¬𝜑𝑖(𝐺𝑖) for some 𝑖 < 2. ♦

Exercise 3.4.10. Fix a non-computable set 𝐶, a set 𝐴, and consider the
notion of forcing of Theorem 3.4.6. Given a condition 𝑝 = (𝜎0 , 𝜎1 , 𝑋) and two
Σ0

1 formulas 𝜑0(𝐺), 𝜑1(𝐺), define 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1) to hold if for every
2-partition 𝑍0 ⊔𝑍1 = 𝑋, there is some 𝑖 < 2 and a finite set 𝜌 ⊆ 𝑍𝑖 such that
𝜑(𝜎𝑖 ∪ 𝜌) holds.

1. Show that the relation 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1) is Σ0
1(𝑋).

2. Prove that it is a forcing question in the sense of Definition 3.4.9. ★

We now have all the necessary ingredients to prove Seetapun’s theorem.

Theorem 3.4.11 (Seetapun [10])
Let 𝐶 be a non-computable set. For every computable coloring 𝑓 : [ℕ]2 →
ℕ, there is an infinite 𝑓 -homogeneous set 𝐻 such that 𝐶 ≰𝑇 𝐻.

30 3 Cone avoidance

Proof. The proof follows the one of Theorem 3.4.1, using cone avoidance of
COH (Theorem 3.4.2) and strong cone avoidance of RT1

2 (Theorem 3.4.6).

Fix 𝐶 and 𝑓 . Let ®𝑅 = 𝑅0 , 𝑅1 , . . . be the computable sequence of sets defined
for every 𝑥 ∈ ℕ by 𝑅𝑥 = {𝑦 ∈ ℕ : 𝑓 (𝑥, 𝑦) = 1}. By Theorem 3.4.2, there
is an infinite ®𝑅-cohesive set 𝑋 ⊆ ℕ such that 𝐶 ≰𝑇 𝑋. In particular, for
every 𝑥 ∈ 𝑋, lim𝑦∈𝑋 𝑓 (𝑥, 𝑦) exists. Let 𝑓 : 𝑋 → 2 be the limit coloring
of 𝑓 , that is, 𝑓 (𝑥) = lim𝑦∈𝑋 𝑓 (𝑥, 𝑦). By Theorem 3.4.6, there is an infinite
𝑓 -homogeneous set 𝑌 ⊆ 𝑋 for some color 𝑖 < 2 such that 𝐶 ≰𝑇 𝑌 ⊕ 𝑋.
Since for every 𝑥 ∈ 𝑌, lim𝑦∈𝑌 𝑓 (𝑥, 𝑦) = 𝑖, one can thin out the set𝑌 to obtain
an infinite 𝑓 -homogeneous subset 𝐻 ⊆ 𝑌.

The original proof of Seetapun’s theorem [10] was more direct, using a notion
of forcing to build homogeneous sets for colorings of pairs. We leave it as an
exercise.

Exercise 3.4.12 (Seetapun and Slaman [10]). Fix a computable coloring 𝑓 :
[ℕ]2 → 2 and a non-computable set 𝐶. Consider the notion of forcing whose
conditions18

18: One can apply the same trick as in
Theorem 3.4.6 to see that one of the ini-
tial segments is extendible. Given a condi-
tion (𝜎0 , 𝜎1 , 𝑋), apply Ramsey’s theorem
for pairs to 𝑓 ↾[𝑋]2 to obtain an infinite 𝑓 -
homogeneous subset 𝐻 ⊆ 𝑋 for some
color 𝑖 < 2. The properties of the condi-
tion are designed to ensure that 𝜎𝑖 ∪ 𝐻 is
𝑓 -homogeneous.

are 3-tuples (𝜎0 , 𝜎1 , 𝑋) such that for every 𝑖 < 2,

1. (𝜎𝑖 , 𝑋) is a Mathias condition ;
2. For every 𝑥 ∈ 𝑋, 𝜎𝑖 ∪ {𝑥} is 𝑓 -homogeneous for color 𝑖 ;
3. 𝐶 ≰𝑇 𝑋.

The extension relation is the same as in the proof of Theorem 3.4.6. Given
a condition 𝑝 = (𝜎0 , 𝜎1 , 𝑋) and two Σ0

1 formulas 𝜑0(𝐺) and 𝜑1(𝐺), let
𝑝 ?⊢𝜑0(𝐺0)∨𝜑1(𝐺1) iff for every 2-partition 𝑍0⊔𝑍1 = 𝑋, there is some 𝑖 < 2
and a finite 𝑓 -homogeneous set 𝜌 ⊆ 𝑍𝑖 for color 𝑖 such that 𝜑𝑖(𝜎𝑖 ∪ 𝜌)
holds.19

19: Notice the strong similarity of this forc-
ing question with the one in Theorem 3.4.6.
The only difference is that one requires 𝜌 to
be 𝑓 -homogeneous as well. 20

20: If the coloring 𝑓 is stable, that is,
lim𝑦 𝑓 (𝑥, 𝑦) always exists, then the inter-
pretation of the 2-partition 𝑍0 ⊔ 𝑍1 = 𝑋 is
clear: it is the limit coloring of 𝑓 . This forc-
ing question might be more confusing in the
general case, since 𝑓 has no limit behav-
ior. This is where compactness comes into
play: find a bound to quantify over finite 2-
partitions, then “stabilize” the behavior of 𝑓
over this finite initial segment, by thinning
out the remaining reservoir. This limit be-
havior induces a 2-partition of the initial seg-
ment.

1. Prove that the relation 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1) is Σ0
1(𝑋).

2. Show that it is a forcing question in the sense of Definition 3.4.9.
3. Prove Seetapun’s theorem using this notion of forcing. ★

It is sometimes useful to think of instances of COH as countably many instances
of RT1

2, where a solution is an infinite set which is simultaneously homogeneous
for all instances of RT1

2, up to finite changes. With this intuition in mind, one
can strengthen Theorem 3.4.2 to prove that it holds even when considering
arbitrary instances of COH.

Exercise 3.4.13 (Wang [15]). Fix a non-computable set 𝐶 and an arbitrary
countable sequence ®𝑅 = 𝑅0 , 𝑅1 , . . . of sets, with no effectiveness restriction
whatsoever. Consider the variant of Mathias forcing, whose conditions2121: Note that contrary to the proof of cone

avoidance of COH, one needs to use Math-
ias conditions (𝜎, 𝑋) where 𝐶 ≰𝑇 𝑋 in-
stead of computable Mathias conditions.

are
pairs (𝜎, 𝑋) where 𝐶 ≰𝑇 𝑋.

1. Use Theorem 3.4.6 to show that the set D𝑛 = {(𝜎, 𝑋) : 𝑋 ⊆ 𝑅𝑛 ∨𝑋 ⊆
𝑅𝑛} is dense.

2. Deduce the existence of an infinite ®𝑅-cohesive set 𝐺 such that 𝐶 ≰𝑇 𝐺.
★

Cone avoidance fails when considering computable colorings of 3-tuples. The
reason is that one can create computable coloring 𝑓 : [ℕ]3 → 2 such that
every infinite homogeneous set 𝐻 is so sparse, that its principal function
𝑝𝐻 is very fast-growing, and dominates the modulus of ∅′. Recall that the
principal function 𝑝𝑋 of an infinite set 𝑋 = {𝑥0 < 𝑥1 < . . . } is defined by
𝑝𝑋(𝑛) = 𝑥𝑛 .

3.5 Preserving definitions 31

22: The proof of preservation of non-Σ0
1 def-

initions is simpler and arguably more natural
than the one of cone avoidance. This nat-
urality comes from the fact that, in some
sense, Σ0

1 sets are more natural than com-
putable ones, as they form a syntactic family
and thus have a better behavior.

Exercise 3.4.14 (Jockusch [16]).

1. Show that for every function 𝑔 : ℕ → ℕ, there is a 𝑔-computable
coloring 𝑓 : [ℕ]2 → 2 such that for every infinite 𝑓 -homogeneous
set 𝐻, the principal function 𝑝𝐻 dominates 𝑔.

2. Show that for every ∅′-computable coloring 𝑓 : [ℕ]2 → 2, there is a com-
putable coloring ℎ : [ℕ]3 → 2 such that every infinite ℎ-homogeneous
set is 𝑓 -homogeneous.

3. Deduce the existence of a computable coloring ℎ : [ℕ]3 → 2 such that
every infinite ℎ-homogeneous set computes ∅′. ★

One can actually go one step further, and construct a computable coloring
𝑓 : [ℕ]3 → 2 such that every infinite homogeneous set is of PA degree
over ∅′.

Exercise 3.4.15 (Hirschfeldt and Jockusch [17]).
A set 𝑃 ⊆ ℕ is pre-homogeneous for a coloring 𝑓 : [ℕ]𝑛+1 → 2 if for
every 𝐹 ∈ [𝑃]𝑛 and every 𝑥, 𝑦 ∈ 𝑃 with max 𝐹 < 𝑥, 𝑦, then 𝑓 (𝐹 ∪ {𝑥}) =
𝑓 (𝐹 ∪ {𝑦}). Construct a computable coloring 𝑓 : [ℕ]3 → 2 such that every
infinite pre-homogeneous set is of PA degree over ∅′. ★

3.5 Preserving definitions

The existence of a notion of forcing with a Σ0
1-preserving forcing question

enables to prove abstractly some stronger weakness properties, such as
preservation of one non-Σ0

1 definition. Some sets such as ∅′ can be used to
“simplify” the definition of other sets in the arithmetic hierarchy. For example,
any Σ0

2 set is Σ0
1(∅′). The notion of preservation of 1 non-Σ0

1-definition reflects
the unability of a problem to simplify the description of a non-Σ0

1 set to make it
Σ0

1 relative to a solution.

Definition 3.5.1. A problem P admits preservation of 1 non-Σ0
1 definition if

for every set 𝑍 and every non-Σ0
1(𝑍) set 𝐶, every 𝑍-computable instance 𝑋

of P admits a solution 𝑌 such that 𝐶 is not Σ0
1(𝑍 ⊕ 𝑌). ♦

Thanks to Post’s theorem, preservation of 1 non-Σ0
1 definition implies cone

avoidance:

Exercise 3.5.2. Prove that if a problem P admits preservation of 1 non-Σ0
1

definition, then it admits cone avoidance. ★

The proof of Theorem 3.3.4 can be strengthened to prove an abstract theorem
about preservation of 1 non-Σ0

1 definition.22

Theorem 3.5.3
Let (ℙ,≤) be a notion of forcing with a Σ0

1-preserving forcing question. For
every non-Σ0

1 set 𝐶 and every sufficiently generic filter F, 𝐶 is not Σ0
1(𝐺F).

Proof. It suffices to prove the following lemma:

Lemma 3.5.4. For every condition 𝑝 ∈ ℙ and every Turing index 𝑒, there is
an extension 𝑞 ≤ 𝑝 forcing 𝐶 ≠𝑊𝐺

𝑒 . ★

32 3 Cone avoidance

23: The proof of Exercise 3.5.2 also holds
when considering non-relativized versions
of cone avoidance of preservation of 1 non-
Σ0

1 definitions. On the other hand, the re-
verse direction uses a different set 𝑍. One
can construct artificial problems which admit
non-relativized cone avoidance but not non-
relativized preservation of 1 non-definition.

Proof. Consider the following set

𝑈 = {𝑥 ∈ ℕ : 𝑝 ?⊢ 𝑥 ∈𝑊𝐺
𝑒 }

Since the forcing question is Σ0
1-preserving, the set 𝑈 is Σ0

1. There are three
cases:

▶ Case 1: there is some 𝑥 ∈ 𝑈 \𝐶. By Property (1) of the forcing question,
there is an extension 𝑞 ≤ 𝑝 forcing 𝑥 ∈𝑊𝐺

𝑒 .
▶ Case 2: there is some 𝑥 ∈ 𝐶 \𝑈 . By Property (2) of the forcing question,

there is an extension 𝑞 ≤ 𝑝 forcing 𝑥 ∉𝑊𝐺
𝑒 .

▶ Case 3: 𝑈 = 𝐶. Then 𝐶 is Σ0
1, contradiction.

In the first two cases, the extension 𝑞 forces 𝑊𝐺
𝑒 ≠ 𝐶.

We are now ready to prove Theorem 3.5.3. Given 𝑒 ∈ ℕ, let D𝑒 be the set of
all conditions 𝑞 ∈ ℙ forcing 𝑊𝐺

𝑒 ≠ 𝐶. It follows from Lemma 3.5.4 that every
D𝑒 is dense, hence every sufficiently generic filter F is {D𝑒 : 𝑒 ∈ ℕ}-generic,
so 𝐶 is not Σ0

1(𝐺F). This completes the proof of Theorem 3.5.3.

It follows from Theorem 3.5.3 that the proofs of cone avoidance for Cohen
genericity and Π0

1 classes have a straightforward adaptation to prove preser-
vation of 1 non-Σ0

1 definition. We leave these adaptations as an exercise:

Exercise 3.5.5. Let 𝐶 be a non-Σ0
1 set. Prove that for every sufficiently Cohen

generic set 𝐺, 𝐶 is not Σ0
1(𝐺). ★

Exercise 3.5.6. Let 𝐶 be a non-Σ0
1 set. Prove that for every non-empty Π0

1
class P⊆ 2ℕ , there is a member 𝐺 ∈ P such that 𝐶 is not Σ0

1(𝐺). ★

It is natural to wonder whether some problems admit cone avoidance but not
preservation of 1 non-Σ0

1 definition. Actually, this happens not to be the case,
thanks to the relativized formulation of both notions.23

Theorem 3.5.7 (Downey et al. [18])
Let 𝐶 be a non-Σ0

1 set. There is a set 𝑍 and a set 𝐷 ≰𝑇 𝑍 such that for
every set 𝐺 such that 𝐶 is Σ0

1(𝐺 ⊕ 𝑍), 𝐷 ≤𝑇 𝐺 ⊕ 𝑍.

The proof of Theorem 3.5.7 is quite technical and outside the scope of this
book.

Corollary 3.5.8 (Downey et al. [18])
A problem P admits preservation of 1 non-Σ0

1 definition iff it admits cone
avoidance.2424: Given the simplicity of the forward direc-

tion, the technicality of the reciprocal, and
the naturality of the proof of preservation of
1 non-Σ0

1 definition using a Σ0
1-preserving

forcing question, it is preferable to directly
prove preservation of 1 non-Σ0

1 definition
when the result is needed.

Proof. The forward direction is Exercise 3.5.2. Let us prove reciprocal. Sup-
pose P admits cone avoidance. Fix a set 𝑍 and a non-Σ0

1(𝑍) set 𝐶 and let
𝑋 ≤𝑇 𝑍 be an instance of P. By Theorem 3.5.7 relativized to 𝑍, there is
a set 𝑍1 and a set 𝐷 ≰𝑇 𝑍 ⊕ 𝑍1 such that for every set 𝐺 such that 𝐶 is
Σ0

1(𝐺 ⊕ 𝑍 ⊕ 𝑍1), 𝐷 ≤𝑇 𝐺 ⊕ 𝑍 ⊕ 𝑍1. By cone avoidance of P relativized
to 𝑍 ⊕ 𝑍1, there is a solution 𝑌 to 𝑋 such that 𝐷 ≰𝑇 𝑌 ⊕ 𝑍 ⊕ 𝑍1. By choice
of 𝑍1 and 𝐷, it follows that 𝐶 is not Σ0

1(𝑌 ⊕ 𝑍 ⊕ 𝑍1). In particular, 𝐶 is not
Σ0

1(𝑌 ⊕ 𝑍).

3.6 Preserving hyperimmunities 33

3.6 Preserving hyperimmunities

There exists a well-known duality between computing sets and computing
fast-growing functions. The simplest example is the correspondence between
the halting set ∅′, and the halting time function 𝜇∅′ : ℕ → ℕ which to 𝑒
associates the smallest time 𝑡 such that Φ𝑒(𝑒)[𝑡]↓, if it exists, and equals 0
otherwise. The function 𝜇 is ∅′-computable, and every function dominating 𝜇∅′
computes ∅′. More generally, a function 𝑓 : ℕ → ℕ is a modulus of a set 𝑋 if
every function dominating 𝑓 computes 𝑋. If furthermore 𝑓 is 𝑋-computable,
then it is a self-modulus. By Solovay [19], the sets admitting a modulus are
exactly the Δ1

1 sets, or equivalently the hyperarithmetic sets. On the other hand,
there exist Δ0

3 sets with no self-modulus.

Proposition 3.6.1 (Martin and Miller [20]). EveryΔ0
2 set admits a self-modu-

lus. ★

Proof. Let𝐴 be aΔ0
2 set, withΔ0

2 approximation𝐴0 , 𝐴1 , . . . The computation
function 𝑐𝐴 : ℕ → ℕ maps 𝑥 to the smaller integer 𝑛 ≥ 𝑥 such that 𝐴𝑛↾𝑥 =
𝐴↾𝑥 . Let 𝑓 be a function dominating 𝑐𝐴. Let ℎ(𝑥) be the largest 𝑦 ≤ 𝑥 such that
for all 𝑥 ≤ 𝑡 ≤ 𝑓 (𝑥), 𝐴𝑡↾𝑦 = 𝐴 𝑓 (𝑥)↾𝑦 . The function ℎ is total 𝑓 -computable.
Moreover, ℎ tends towards+∞, because the approximation of𝐴 beingΔ0

2, it will
stabilize on increasingly larger initial segments. Finally, as 𝑥 ≤ 𝑐𝐴(𝑥) ≤ 𝑓 (𝑥),
then if ℎ(𝑥) = 𝑦, 𝐴𝑥↾𝑦 = 𝐴𝑐𝐴(𝑥)↾𝑦 = 𝐴↾𝑦 . Then, to decide if 𝑛 ∈ 𝐴, it
suffices to find an integer 𝑥 such that ℎ(𝑥) > 𝑛, then test if 𝑛 ∈ 𝐴𝑥 . This
procedure is 𝑓 -computable.

Recall that a function 𝑓 : ℕ → ℕ is hyperimmune if it is not dominated by
any computable function. In particular, if a function 𝑓 is a modulus of a non-
computable set 𝐶, then it is hyperimmune. Moreover, if it is a self-modulus,
then avoiding the cone above 𝐶 is equivalent to preserving the hyperimmunity
of the function 𝑓 . This motivates the following definition:

Definition 3.6.2. A problem P admits preservation of 1 hyperimmunity if
for every set 𝑍 and every 𝑍-hyperimmune function 𝑓 , every 𝑍-computable
instance 𝑋 of P admits a solution 𝑌 such that 𝑓 is 𝑍 ⊕ 𝑌-hyperimmune. ♦

At first sight, the sole existence of a Σ0
1-preserving forcing question does not

seem to be sufficient to prove preservation of 1 hyperimmunity. One furthermore
needs the forcing question to satisfy some kind of compactness as follows:

Definition 3.6.3. Given a notion of forcing (ℙ,≤), a forcing question is Σ0
𝑛-

compact if for every 𝑝 ∈ ℙ and every Σ0
𝑛 formula 𝜑(𝐺, 𝑥), if 𝑝 ?⊢ ∃𝑥𝜑(𝐺, 𝑥)

holds, then there is a finite set 𝐹 ⊆ ℕ such that 𝑝 ?⊢ ∃𝑥 ∈ 𝐹 𝜑(𝐺, 𝑥). ♦

All the forcing questions seen in this chapter are Σ0
1-compact. Thanks to this

compactness property, one can prove preservation of 1 hyperimmunity.

Theorem 3.6.4
Let (ℙ,≤) be a notion of forcing with a Σ0

1-compact, Σ0
1-preserving forcing

question. For every hyperimmune function 𝑓 : ℕ → ℕ and every sufficiently
generic filter F, 𝑓 is 𝐺F-hyperimmune.

Proof. It suffices to prove the following lemma:

34 3 Cone avoidance

Lemma 3.6.5. For every condition 𝑝 ∈ ℙ and every Turing index 𝑒, there is
an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 not to dominate 𝑓 .2525: By this, we mean forcing eitherΦ𝐺𝑒 to be
partial, or Φ𝐺𝑒 (𝑥) < 𝑓 (𝑥) for some 𝑥 ∈ ℕ.

★

Proof. Suppose first that 𝑝 ?⊬∃𝑣Φ𝐺
𝑒 (𝑥) ↓= 𝑣 for some 𝑥 ∈ ℕ. Then by

Property (2) of the forcing question, there is an extension 𝑞 ≤ 𝑝 forcingΦ𝐺
𝑒 (𝑥)↑,

and we are done. Suppose now that for every 𝑥 ∈ ℕ, 𝑝 ?⊢ ∃𝑣Φ𝐺
𝑒 (𝑥)↓= 𝑣.

By Σ0
1-compactness of the forcing question, for every 𝑥 ∈ ℕ, there is a finite

set 𝐹𝑥 ⊆ ℕ such that 𝑝 ?⊢ ∃𝑣 ∈ 𝐹𝑥 Φ𝐺
𝑒 (𝑥)↓= 𝑣. Let ℎ : ℕ → ℕ be the function

which on input 𝑥, looks for some finite set 𝐹𝑥 such that 𝑝 ?⊢ ∃𝑣 ∈ 𝐹𝑥 Φ𝐺
𝑒 (𝑥)↓=

𝑣 and outputs max 𝐹𝑥 . Such a function is total by hypothesis, and computable
by Σ0

1-preservation of the forcing question. Since 𝑓 is hyperimmune, ℎ(𝑥) <
𝑓 (𝑥) for some 𝑥 ∈ ℕ. By Property (1) of the forcing question, there is an
extension 𝑞 ≤ 𝑝 forcing ∃𝑣 ∈ 𝐹𝑥Φ𝐺

𝑒 (𝑥)↓= 𝑣. Since 𝑓 (𝑥) > max 𝐹𝑥 , 𝑞 forces
Φ𝐺
𝑒 (𝑥)↓< 𝑓 (𝑥).

We are now ready to prove Theorem 3.6.4. Given 𝑒 ∈ ℕ, let D𝑒 be the
set of all conditions 𝑞 ∈ ℙ forcing Φ𝐺

𝑒 not to dominate 𝑓 . It follows from
Lemma 3.5.4 that every D𝑒 is dense, hence every sufficiently generic filter F
is {D𝑒 : 𝑒 ∈ ℕ}-generic, so 𝑓 is 𝐺F-hyperimmune. This completes the proof
of Theorem 3.6.4.

Contrary to preservation of 1 non-Σ0
1 definition, there is no immediate link

between preservation of 1 hyperimmunity and cone avoidance. Furthermore,
preservation of 1 hyperimmunity seems to require an extra property which
may not always be satisfied. However, the two notions turn out again to be
equivalent in their relativized form. Recall Theorem 3.2.4 which informally says
that every set can become Δ0

2 while avoiding a cone.

Theorem 3.6.6 (Downey et al. [18])
If a problem P admits preservation of 1 hyperimmunity, then it admits cone
avoidance.

Proof. Fix a set 𝑍, a set 𝐶 ≰𝑇 𝑍 and an instance 𝑋 ≤𝑇 𝑍 of P. By Theo-
rem 3.2.4, there is a set 𝑍1 such that 𝐶 ≰𝑇 𝑍 ⊕ 𝑍1 and 𝐶 ≤𝑇 (𝑍 ⊕ 𝑍1)′. By
Proposition 3.6.1 relative to 𝑍⊕𝑍1, there is a 𝐶⊕𝑍⊕𝑍1-computable function
𝑓 : ℕ → ℕ such that for every function 𝑔 dominating 𝑓 , 𝐶 ≤𝑇 𝑔 ⊕ 𝑍 ⊕ 𝑍1. In
particular, 𝑓 is 𝑍 ⊕ 𝑍1-hyperimmune. Since P admits preservation of 1 hyper-
immunity, there is a solution 𝑌 to 𝑋 such that 𝑓 is 𝑌 ⊕ 𝑍 ⊕ 𝑍1-hyperimmune.
It follows that 𝐶 ≰𝑇 𝑌 ⊕ 𝑍 ⊕ 𝑍1.

The reverse direction also holds, using the following theorem which says that
every non-decreasing hyperimmune function is a modulus of some set in a
relativized setting.

Theorem 3.6.7 (Downey et al. [18])
Fix a non-decreasing hyperimmune function 𝑓 : ℕ → ℕ. There is a set 𝑍
and a set 𝐶 ≰𝑇 𝑍 ⊕ 𝐺 such that 𝑓 is a 𝑍-modulus for 𝐶.

Here again, the proof of Theorem 3.6.7 is out of the scope of this book.

3.6 Preserving hyperimmunities 35

Corollary 3.6.8 (Downey et al. [18])
A problem P admits preservation of 1 hyperimmunity iff it admits cone
avoidance.

Proof. The forward direction is Theorem 3.6.6. Let us prove reciprocal. Sup-
pose P admits cone avoidance. Fix a set 𝑍, a 𝑍-hyperimmune function 𝑓 :
ℕ → ℕ, and let 𝑋 ≤𝑇 𝑍 be an instance of P. By Theorem 3.6.7 relativized
to 𝑍, there is a set 𝑍1 and a set 𝐶 ≰𝑇 𝑍 ⊕ 𝑍1 such that 𝑓 is a 𝑍-modulus
for 𝐶. By cone avoidance of P relativized to 𝑍 ⊕ 𝑍1, there is a solution 𝑌
to 𝑋 such that 𝐶 ≰𝑇 𝑌 ⊕ 𝑍 ⊕ 𝑍1. By choice of 𝑍1 and 𝐶, it follows that 𝑓 is
𝑌 ⊕ 𝑍 ⊕ 𝑍1-hyperimmune. In particular, 𝑓 is not 𝑌 ⊕ 𝑍-hyperimmune.

Lowness 4
4.1 Motivation 37
4.2 Indices 39
4.3 Coding ideals 40
4.4 Basic constructions 43
4.5 Weak preservation 45
4.6 Beyond ∅′ 46
4.7 Ramsey’s theorem for pairs 48

Prerequisites: Chapters 2 and 3

Recall that a set 𝑋 is low if 𝑋′ ≤𝑇 ∅′. Constructing sets of low degree given a
notion of forcing with a Σ0

1-preserving forcing question is not a huge conceptual
step from cone avoidance. It simply consists in effectivizing1

1: Effectiveness is a concept more general
than computability. Any construction requir-
ing some amount of computability, such as
being c.e., or arithmetic, or even involving
some higher computational models, is con-
sidered as effective. On the other hand, a
forcing construction is not considered as ef-
fective, even if its forcing conditions are com-
putable, as the construction of the generic
filter does not have any computability restric-
tion.

the construction
of a generic set with an appropriate representation of forcing conditions and a
refined analysis of the properties of the forcing question.

Effectivization of a forcing construction first requires to fix a coding of forcing
conditions. Whenever a condition is a finite object, any reasonable coding,
such as a Gödel numbering, is sufficient. For any such numbering, one can
switch from one representation to the other computably, and this does not
affect the complexity of the overall construction. In most cases however, forcing
conditions are naturally defined as infinitary mathematical objects, and one
must use an appropriate finitary representation of their effective version.

4.1 Motivation

One of the main motivation of the development of a framework of iterated jump
control is reverse mathematics. To prove the existence of an 𝜔-model of a
problem P which is not a model of Q, one needs to find an invariant property
preserved by P but not by Q. These invariant properties can be divided into
two big families: genericity properties, and effectiveness properties.

▶ A genericity property is a property which may locally involve some
computability-theoretic features, but does not require the overall con-
struction to be effective. Such properties can be satisfied by every suffi-
ciently generic set for the appropriate notion of forcing. Cone avoidance,
preservation of hyperimmunity, or preservation of 1 non-Σ0

1 definition
are examples of such properties.

▶ An effectiveness property is a property which requires the overall con-
struction to satisfy some amount of computability. Being c.e., arithmetic,
or of low degree, are examples of such effectiveness properties. Usually,
only countably many sets satisfy these properties.

Effectiveness properties are arguably more complex to satisfy than genericity
properties, as one usually needs to resort to coding to represent forcing condi-
tions, and the proofs of density require to satisfy some amount of uniformity.
This is why genericity properties are preferably used when one only cares about
proving a separation from a problem to another in reverse mathematics. On
the other hand, effectiveness properties are closer to the original motivation of
computability-theory in general, and of reverse mathematics in particular: iden-
tifying the right amount of computability needed to find a solution to a problem.
From this perspective, the existence of a low solution is very informative.

Definition 4.1.1. A problem P admits a low basis if for every set 𝑍 and
every 𝑍-computable instance 𝑋 of P, there is a solution 𝑌 to 𝑋 such that
(𝑌 ⊕ 𝑍)′ ≤𝑇 𝑍′. ♦

38 4 Lowness

2: A problem P admits a Δ0
2 basis if for

every set 𝑍 and every 𝑍-computable in-
stance 𝑋 of P, there is a Δ0

2(𝑍) solution 𝑌
to𝑋. The Turing jump problem, which to any
instance 𝑋 associates a unique solution 𝑋′,
admits a Δ0

2 basis, but one easily sees that
any 𝜔-model of it contains all the arithmetic
sets.

3: The Chain-AntiChain principle (CAC) is
the problem whose instances are infinite
partial orders, and whose solutions are ei-
ther infinite chains, or infinite antichains. By
Herrmann [21], there is a computable linear
order with noΔ0

2 infinite chains or antichains.
Thus, CAC does not admit a Δ0

2 basis.

The Ascending Descending Sequence prin-
ciple (ADS) is the problem whose instances
are infinite linear orders, and whose solu-
tions are either infinite ascending or de-
scending sequences. By Manaster (see
Downey [22]), ADS admits a Δ0

2 basis, but
by Hirschfeldt and Shore [23], there is a com-
putable infinite linear ordering with no low
infinite ascending or descending sequence.

It follows that if a Π1
2 problem admits a low

basis, then it implies neither CAC, nor ADS
over RCA0.

Besides the intrinsic interest of proving that a problem admits a low basis, such
a notion has two technical applications. First, lowness is a natural class of Δ0

2
sets which is closed under relativization:

Exercise 4.1.2. A set 𝑋 is low over 𝑌 if (𝑋 ⊕𝑌)′ ≤𝑇 𝑌. Show that if 𝑋 is low
over 𝑌 and 𝑌 is low, then 𝑋 is low. ★

It follows that if a problem admits a low basis, then it admits a model with only
sets of low degree, and therefore a model with only Δ0

2 sets.2

Proposition 4.1.3. Let P be a Π1
2 problem which admits a low basis. There

exists an 𝜔-model of RCA0 + P with only low sets. ★

Proof. Recall that an 𝜔-model is fully characterized by its second-order part,
and that it satisfies RCA0 iff its second-order part is a Turing ideal. Also recall
that ⟨·, ·⟩ : ℕ2 → ℕ is Cantor’s pairing function.

We are going to define a sequence of sets 𝑍0 ≤𝑇 𝑍1 ≤𝑇 . . . such that for
all 𝑛 ∈ ℕ,

(1) if 𝑛 = ⟨𝑒 , 𝑠⟩ and Φ
𝑍𝑠
𝑒 is a P-instance 𝑋, then 𝑍𝑛+1 computes a solution

to 𝑋;
(2) 𝑍𝑛 is of low degree.

𝑍0 = ∅. Suppose we have defined 𝑍𝑛 and say 𝑛 = ⟨𝑒 , 𝑠⟩. If Φ𝑍𝑠
𝑒 is not a

P-instance, then let 𝑍𝑛+1 = 𝑍𝑛 . Otherwise, since P admits a low basis, there
is a solution 𝑌 to Φ

𝑍𝑠
𝑒 such that (𝑌 ⊕ 𝑍𝑛)′ ≤𝑇 𝑍′

𝑛 ≤𝑇 ∅′. Let 𝑍𝑛+1 = 𝑍𝑛 ⊕ 𝑌.

Let I= {𝑋 ∈ 2ℕ : ∃𝑛 𝑋 ≤𝑇 𝑍𝑛}. By construction, the class I is a Turing
ideal. Moreover, by (1), every P-instance 𝑋 ∈ Iadmits a solution in I. Last,
by (2), every set in I is of low degree.

As an immediate consequence, if a Π1
2 problem admits a low basis, then it

does not imply ACA0 over RCA0. Indeed, every 𝜔-model of ACA0 contains
all arithmetic sets by the arithmetic comprehension axiom, thus the model
of Proposition 4.1.3 does not satisfy ACA0. However, as mentioned above,
effectiveness properties are harder to satisfy than genericity properties, so
since cone avoidance is enough to prove a separation from ACA0, one usually
prefers to prove the latter.

Some other problems, such as Ramsey’s theorem for pairs, admit cone avoid-
ance, but not a low basis.3

Exercise 4.1.4 (Jockusch [16]). Construct a computable coloring 𝑓 : [ℕ]2 →
2 with no Δ0

2 infinite homogeneous set. ★

Thus, proving that a Π1
2 problem admits a low basis is a way to separating it

from Ramsey’s theorem for pairs.

The second technical advantage of the low basis theorem concerns iterated
jump control. As we shall see in Chapter 9, iterated jump is much more difficult
to control than first jump. On the other hand, if a set 𝐺 is of low degree, then by
Post’s theorem, every Σ0

2(𝐺) property is Σ0
1(𝐺′), so by lowness is Σ0

1(∅′), and
again by Post’s theorem is Σ0

2. Thus, if a problem admits a low basis, it satisfies
every weakness property at the second jump and higher jump levels.

4.2 Indices 39

Exercise 4.1.5. Suppose that a problem P admits a low basis. Let 𝐶 be a non-
Δ0

2 set, and 𝑋 be a computable instance of P. Show that there is a solution 𝑌
to 𝑋 such that 𝐶 is not Δ0

2(𝑌). ★

One will therefore rather prove the existence of a low basis than control higher
jump if possible.

4.2 Indices

Consider a finite set 𝐹 ⊆ ℕ. There exists multiple unequivalent ways to
represent it by an integer, depending on whether it is considered as finite,
computable, c.e., among others. Depending on the representation, some
functions such as the cardinality, or the maximum, are not uniformly computable.
We explore some natural representations and their limitations.

Definition 4.2.1. The canonical index of a finite set 𝐹 ⊆ ℕ is the integer∑
𝑥∈𝐹 2𝑥 . ♦

The canonical index of a finite set keeps the full information about it. One can
list all its elements, compute the size of the set, and decide whether an element
belongs to it or not.

Definition 4.2.2. A Δ0
1-index4 4: One could as well have considered to

code computable sets𝑋 by pairs ⟨𝑒 , 𝑖⟩ such
that 𝑒 and 𝑖 are Σ0

1-indices of 𝑋 and 𝑋,
respectively. However, one can switch from
one representation to the other computably.

of a computable set 𝑋 ⊆ ℕ is an integer 𝑒 ∈
ℕ such that Φ𝑒 is the characteristic function of 𝑋. ♦

Given a Δ0
1-index 𝑒 of a computable set 𝑋 ⊆ ℕ, one can decide uniformly

whether an element belongs to it or not. However, one cannot uniformly find a
canonical index of a finite set from a Δ0

1-index:

Lemma 4.2.3 (Soare [3]). There is no partial computable function Φ𝑒 such
that for every 𝑛 ∈ ℕ, if Φ𝑛 is the characteristic function of a finite set 𝐹, then
Φ𝑒(𝑛)↓ and equals the canonical index of 𝐹. ★

Proof. Suppose Φ𝑒 exists. Using Kleene’s fixpoint theorem, define the follow-
ing total computable function Φ𝑛 , knowing 𝑛 in advance. Φ𝑛(𝑥)↓= 1 if 𝑥 is the
least stage such that Φ𝑒(𝑛)[𝑥]↓, and Φ𝑛(𝑥)↓= 0 otherwise. By construction,
Φ𝑛 is the characteristic function of either the empty set, or a singleton 𝑥, thus
Φ𝑒(𝑛)↓ and 𝑥 is defined. By convention, if Φ𝑒(𝑛)[𝑥]↓, then Φ𝑒(𝑛)[𝑥] < 𝑥, so
Φ𝑒(𝑛) is not the canonical index of {𝑥}.

Using aΔ0
1-index of a finite set 𝐹 and its cardinality, one can compute the canon-

ical index of 𝐹. Therefore, the cardinality function is not uniformly computable
from a Δ0

1-index.

Definition 4.2.4. A Σ0
1-index of a c.e. set 𝑋 ⊆ ℕ is an integer 𝑒 ∈ ℕ such

that 𝑊𝑒 = 𝑋. ♦

From a Σ0
1-index of a c.e. set 𝑋, one can list exhaustively all its elements over

time, but not in order. Furthermore, if 𝑋 is computable, one cannot uniformly
compute a Δ0

1-index of 𝑋.

40 4 Lowness

5: The class of all the computable sets,
and the class of all the arithmetic sets are
two basic examples of Turing ideals. More
generally, given a set 𝑋, the class of all
𝑋-computable sets is a Turing ideal. On
the other hand, the class of all low sets is
downward-closed under the Turing reduc-
tion, but not closed under the effective join:
There exist two low c.e. sets 𝐴 and 𝐵 such
that 𝐴 ∪ 𝐵 = ∅′.

Lemma 4.2.5 (Soare [3]). There is no partial computable function Φ𝑒 such
that for every 𝑛 ∈ ℕ, if𝑊𝑛 is computable, then Φ𝑒(𝑛)↓ and equals a Δ0

1-index
of 𝑊𝑛 . ★

Proof. Suppose Φ𝑒 exists. Using Kleene’s fixpoint theorem, define the fol-
lowing partial computable function Φ𝑛 , knowing 𝑛 in advance. Let Φ𝑛(0)↓ if
Φ𝑒(𝑛)↓= 𝑦 and Φ𝑦(0)↓= 0. For every 𝑥 > 0, Φ𝑛(𝑥)↑. Thus, 𝑊𝑛 is either
empty, or the singleton 0, so Φ𝑒(𝑛)↓= 𝑦 for some 𝑦 ∈ ℕ such that Φ𝑦 is total.
By construction of Φ𝑛 , Φ𝑦(0)↓= 0, iff 0 ∈𝑊𝑛 , so Φ𝑦 is not the characteristic
function of 𝑊𝑛 .

One can generalize the previous definitions to every level of the arithmetic
hierarchy, either using the representation of sets by formulas, or using Post’s
theorem, by iterations of the Turing jump. Both representations are equivalent,
as one can switch from one to another computably.

As we have seen, when using a representation of a mathematical object as part
of a larger family of objects, one might loose some information. It is therefore
important to choose the most precise representation as possible, given the
provided information. For instance, consider a low set 𝑋. It is in particular
Δ0

2, so one could use a Δ0
2-index, that is, an integer 𝑒 such that Φ∅′

𝑒 is the
characteristic function of 𝑋. However, this would loose the lowness information
of 𝑋. It is therefore preferable to represent it by a Δ0

2-index of 𝑋′, that is, an
integer 𝑒 such that Φ∅′

𝑒 is the characteristic function of 𝑋′.

Definition 4.2.6. A lowness index of a low set 𝑋 ⊆ ℕ is an integer 𝑒 ∈ ℕ

such that Φ∅′
𝑒 is the characteristic function of 𝑋′. ♦

Exercise 4.2.7. Show that is no partial computable function Φ𝑒 such that for
every 𝑛 ∈ ℕ, if Φ∅′

𝑛 is the characteristic function of a low set 𝑋, then Φ𝑒(𝑛)↓
and is a lowness index of 𝑋. ★

4.3 Coding ideals

Recall that a Turing ideal is a class of sets M⊆ 2ℕ closed under the effective
join, and downward-closed under the Turing reduction. Turing ideals are exactly
the second-order parts of 𝜔-models of RCA0.5

Coding Turing ideals plays an important role in effectivization of forcing con-
structions, as some combinatorial notions of forcing such as Mathias forcing
can be effectivized by restricting their conditions to 𝜔-models of some appro-
priate theory. For example, solutions to COH can be produced using Mathias
forcing over 𝜔-models of RCA0, in other words, over Turing ideals. Solutions
to arbitrary instances of RT1

2 or computable instances of RT2
2 can be obtained

using a variant of Mathias forcing over 𝜔-models of WKL0. The second-order
part of 𝜔-models of WKL0 are precisely Scott ideals, that is, Turing ideals
which are closed under the existence of PA degrees.

There exist multiple natural ways to code members of countable Turing ideals.
The infinite effective join of an infinite sequence 𝑍0 , 𝑍1 , . . . is the set

⊕
𝑖 𝑍𝑖 =

{⟨𝑖 , 𝑥⟩ : 𝑥 ∈ 𝑍𝑖}.

4.3 Coding ideals 41

6: Such an enumeration exists, as given a
primitive recursive tree functional 𝑆𝑒 , one
can define a primitive recursive tree func-
tional 𝑇𝑒 which, if at some level, sees all the
nodes of 𝑆𝑒 die, keeps in 𝑇𝑒 the last node
alive. Thus, given 𝑋 ∈ 2ℕ , if 𝑆𝑋𝑒 is infinite,
then 𝑇𝑋𝑒 = 𝑆𝑋𝑒 , and otherwise, 𝑇𝑋𝑒 is any
infinite binary tree.

9: By an immediate relativization, for every
set 𝑋, there exists an 𝑋-computable infinite
binary tree such that every path codes a
Scott ideal containing 𝑋.

Definition 4.3.1. A set 𝑀 codes a family M= {𝑍0 , 𝑍1 , . . . } if 𝑀 =
⊕

𝑖 𝑍𝑖 .
An 𝑀-index of a set 𝑋 ∈ M is an integer 𝑖 ∈ ℕ such that 𝑋 = 𝑍𝑖 . ♦

By an immediate diagonalization argument, no Turing ideal contains its own
code. Therefore, it requires more computational power to compute the code of
a Turing ideal than to compute its members. On the other hand, Scott ideals
are particularly interesting, as any PA degree computes the code of a Scott
ideal. In other words, it does not require more computational power to compute
the code of a Scott ideal than to compute its members. Fix an enumeration of
all the primitive recursive functionals 𝑇0 , 𝑇1 , . . . such that for every 𝑋 ∈ 2ℕ ,
𝑇𝑋𝑒 is an infinite binary tree.6

Theorem 4.3.2 (Scott [24])
The following class is Π0

1 and non-empty:

C=

{⊕
𝑖

𝑍𝑖 : ∀𝑎∀𝑏∀𝑐 𝑍⟨𝑎,𝑏,𝑐⟩ ∈ [𝑇𝑍𝑎⊕𝑍𝑏𝑐]
}

Moreover, every member of C codes a Scott ideal.7 7: Note that with an appropriate number-
ing of the listing 𝑇0 , 𝑇1 , . . . , the resulting
code 𝑀 admits some stronger properties:
one can computably obtain 𝑀-indices of
sets witnessing downward-closure, effective
join and PA closure. For example, there ex-
ists a total computable function which, given
an 𝑀-index 𝑎 and a Turing index 𝑒 such that
Φ
𝑍𝑎
𝑒 is total, outputs an𝑀-index 𝑏 such that

𝑍𝑏 = Φ
𝑍𝑎
𝑒 .

Proof. The class C is clearly Π0
1 and non-empty by choice of 𝑇0 , 𝑇1 , . . .

Let
⊕

𝑖 𝑍𝑖 ∈ C and say M= {𝑍0 , 𝑍1 , . . . }. We claim that M is a Scott ideal.

▶ Downward-closure: Suppose that 𝑍𝑎 ∈ M and 𝑌 ≤𝑇 𝑍𝑎 . Say Φ
𝑍𝑎
𝑒 = 𝑌

for some 𝑒 ∈ ℕ. Then, the primitive recursive tree functional 𝑇𝑏 defined
by8

8: By “compatible”, we mean that for ev-
ery 𝑥 < |𝜎|, if Φ𝐴𝑒 (𝑥)[|𝜎|]↓, then the value
equals 𝜎(𝑥).

𝑇𝐴⊕𝐵𝑐 = {𝜎 ∈ 2<ℕ : 𝜎 and Φ𝐴
𝑒 [|𝜎|] are compatible }

is such that [𝑇𝑍𝑎⊕𝑍𝑏𝑐] = {𝑌}, so 𝑍⟨𝑎,𝑏,𝑐⟩ = 𝑌 ∈ M.
▶ Effective join: Suppose that 𝑍𝑎 , 𝑍𝑏 ∈ M. Then the primitive recursive

tree functional 𝑇𝑐 defined by

𝑇𝐴𝑐 = {𝜎 ∈ 2<ℕ : 𝜎 ≺ 𝐴}

is such that [𝑇𝑍𝑎⊕𝑍𝑏𝑐] = {𝑍𝑎 ⊕ 𝑍𝑏}, so 𝑍⟨𝑎,𝑏,𝑐⟩ = 𝑍𝑎 ⊕ 𝑍𝑏 ∈ M.
▶ PA closure: Suppose that 𝑍𝑎 ∈ M. Then the primitive recursive tree

functional 𝑇𝑐 defined by

𝑇𝐴⊕𝐵𝑐 = {𝜎 ∈ 2<ℕ : ∀𝑒 < |𝜎| Φ𝐴
𝑒 (𝑒)[|𝜎|]↑ ∨↓≠ 𝜎(𝑒)}

is such that [𝑇𝑍𝑎⊕𝑍𝑏𝑐] is the class of all {0, 1}-valued DNC functions
relative to 𝑍𝑎 . Thus 𝑍⟨𝑎,𝑏,𝑐⟩ is PA over 𝑍𝑎 and in M.

In particular, there exists a computable infinite binary tree such that every path
codes a Scott ideal.9

Exercise 4.3.3. Let 𝑇 be a computable tree functional such that for every
𝑋 ∈ 2ℕ , [𝑇𝑋] is the class of all {0, 1}-valued DNC functions relative to 𝑋.

1. Show that the class {𝑋 ⊕𝑌 : 𝑋 ∈ 𝑇∅ ∧𝑌 ∈ 𝑇𝑋} is Π0
1 and non-empty.

2. Deduce that for every PA degree a, there is a PA degree b < a such
that a is PA over b. ★

Given a Turing ideal M, a set 𝐴M-computes 𝐵 if there is some 𝑋 ∈ M such
that 𝐵 ≤𝑇 𝐴⊕𝑋. A Turing ideal M is topped by𝑋 if M= {𝑍 ∈ 2ℕ : 𝑍 ≤𝑇 𝑋}.

42 4 Lowness

12: More formally, 𝐺𝑖 ∈ 2≤ℕ , and we let
|𝐺𝑖 | ∈ ℕ ∪ {ℕ} be the length of this se-
quence.

Computation over Turing ideals can be seen as a generalization of regular
computation. Indeed, computation over a topped Turing ideal is nothing but
relativized computation. Interesting behaviors happen when working with non-
topped Turing ideals, such as Scott ideals. By definition, when a Turing ideal
is not topped, it cannot be represented as the collection of sets computable by
a single set 𝑋. However, Spector [25] proved that every countable Turing ideal
can be represented by two sets 𝐴 and 𝐵.

Definition 4.3.4. A pair of sets 𝐴, 𝐵 forms an exact pair for a countable
Turing ideal M if M= {𝑍 ∈ 2ℕ : 𝑍 ≤𝑇 𝐴 ∧ 𝑍 ≤𝑇 𝐵}. ♦

Theorem 4.3.5 (Spector [25])
Every countable Turing ideal M admits an exact pair.

Proof. Say M = {𝑍0 , 𝑍1 , . . . }. The idea is to construct two sets 𝐺0 =⊕
𝑛 𝑋

0
𝑛 and 𝐺1 =

⊕
𝑛 𝑋

1
𝑛 such that each column 𝑋 𝑖

𝑛 for 𝑖 ∈ {0, 1} is equal
to the set 𝑍𝑛 , except for a finite number of bits. It is then clear that every set
in M is computable both by 𝐺0 and 𝐺1. However, one must build the sets 𝐺0
and 𝐺1 so that they satisfy the following requirements:10

10: There are three ways to satisfy this re-

quirement: either force partiality of Φ𝐺𝑖𝑒𝑖 for

some 𝑖 < 2, or force Φ
𝐺0
𝑒0 and Φ

𝐺1
𝑒1 to both

halt on a same value and disagree, or force
Φ
𝐺0
𝑒0 ∈ M. R𝑒0 ,𝑒1 : Φ𝐺0

𝑒0 = Φ
𝐺1
𝑒1 → Φ

𝐺0
𝑒0 ∈ M

Consider the notion of forcing whose conditions are 3-tuples (𝜎0 , 𝜎1 , 𝑛) where
𝜎0 , 𝜎1 ∈ 2<ℕ and 𝑛 ∈ ℕ. The parameter 𝑛 is used to “lock” the 𝑛 first columns
of 𝐺0 and 𝐺1, meaning that from now on, these columns will coincide with the
𝑛 first sets of M. 11

11: This notion of forcing has a similar fla-
vor as the one used in Theorem 3.2.4. In
particular, both have a lock playing the same
role.

The interpretation of a condition (𝜎0 , 𝜎1 , 𝑛) is the class of
all pairs of finite or infinite sequences12 (𝐺0 , 𝐺1) such that

▶ 𝜎𝑖 ⪯ 𝐺𝑖 ;
▶ for every 𝑘 < 𝑛 and every ⟨𝑘, 𝑎⟩ such that |𝜎𝑖| ≤ ⟨𝑘, 𝑎⟩ < |𝐺𝑖|,
𝐺𝑖(⟨𝑘, 𝑎⟩) = 𝑍𝑘(𝑎).

A condition (𝜏0 , 𝜏1 , 𝑚) extends (𝜎0 , 𝜎1 , 𝑛) if 𝑛 ≤ 𝑚 and (𝜏0 , 𝜏1) ∈ [𝜎0 , 𝜎1 , 𝑛].
Any filter F induces two sets 𝐺F,0 and 𝐺F,1, defined by 𝐺F,𝑖 =

⋃{𝜎𝑖 :
(𝜎0 , 𝜎1 , 𝑛) ∈ F}. Note that (𝐺F,0 , 𝐺F,1) ∈

⋂{[𝜎0 , 𝜎1 , 𝑛] : (𝜎0 , 𝜎1 , 𝑛) ∈ F}.
We now prove the core lemma:

Lemma 4.3.6. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑛) be a condition and 𝑒0 , 𝑒1 ∈ ℕ. There is an
extension (𝜏0 , 𝜏1 , 𝑛) of 𝑝 forcing R𝑒0 ,𝑒1 . ★

Proof. There are three cases:

▶ Case 1: there is some 𝑥 ∈ ℕ and some finite pair (𝜏0 , 𝜏1) ∈ [𝜎0 , 𝜎1 , 𝑛]
such that Φ𝜏0

𝑒0 (𝑥) ↓≠ Φ
𝜏1
𝑒1 (𝑥) ↓. Then (𝜏0 , 𝜏1 , 𝑛) is an extension of 𝑝

forcing R𝑒0 ,𝑒1 .
▶ Case 2: there is some 𝑥 ∈ ℕ and some 𝑖 < 2 such that for every

finite pair (𝜏0 , 𝜏1) ∈ [𝜎0 , 𝜎1 , 𝑛], Φ𝜏𝑖
𝑒𝑖 (𝑥)↑. Then the condition 𝑝 already

forces R𝑒0 ,𝑒1 .
▶ Case 3: none of Case 1 and Case 2 holds. We claim that 𝑝 forces Φ

𝐺0
𝑒0

to be either partial, or 𝑍0 ⊕ · · · ⊕ 𝑍𝑛−1-computable, hence to be in M.
Indeed, define the partial 𝑍0 ⊕ · · · ⊕ 𝑍𝑛−1-computable function ℎ by
searching on every input 𝑥 ∈ ℕ for some finite pair (𝜏0 , 𝜏1) ∈ [𝜎0 , 𝜎1 , 𝑛]
such that Φ𝜏1

𝑒1 (𝑥)↓, and return the output. By negation of Case 2, the
function ℎ is total. Moreover, by negation of Case 1, 𝑝 forces Φ

𝐺0
𝑒0 to be

either partial, or equal to ℎ.

4.4 Basic constructions 43

14: Cohen conditions are finite objects, and
therefore don’t need any specific coding.

We are now ready to prove Theorem 4.3.5. Let Fbe a sufficiently generic filter
for this notion for forcing. For each 𝑖 < 2, let 𝐺𝑖 = 𝐺F,𝑖 . For every 𝑘 ∈ ℕ, the
set of conditions (𝜎0 , 𝜎1 , 𝑛) such that min(|𝜎0|, |𝜎1|, 𝑛) ≥ 𝑘 is dense, so if F
is sufficiently generic, then (𝐺F,0 , 𝐺F,1) is a pair of infinite sequences and
the set {𝑛 ∈ ℕ : (𝜎0 , 𝜎1 , 𝑛) ∈ F} is infinite. It follows that eventually, the 𝑘th
column of 𝐺F,0 will be equal to 𝑍𝑘 , except for a finite number of bits. Thus,
every set in M is both 𝐺0 and 𝐺1-computable. Moreover, by Lemma 4.3.6, if
𝐺0 ≥𝑇 𝑋 and 𝐺1 ≥𝑇 𝑋, then 𝑋 ∈ M. Thus, 𝐺0 , 𝐺1 is an exact pair for M.
This completes the proof of Theorem 4.3.5.

This notion was introduced by Spector to give an alternative proof that the
Turing degrees do not form a lattice.

Exercise 4.3.7 (Kleene and Post [26]). Show that for every ascending se-
quence of sets 𝑋0 <𝑇 𝑋1 <𝑇 . . . , the family M= {𝑍 ∈ 2ℕ : ∃𝑛 𝑍 ≤𝑇 𝑋𝑛}
is a countable Turing ideal. Deduce from Theorem 4.3.5 that there exists two
Turing degrees with no greatest lower bound. ★

4.4 Basic constructions

As mentioned, low sets are typically obtained by effectivizing the construction
of a generic set for a notion of forcing with a Σ0

1-preserving forcing question.
For any reasonable notion of forcing, and any fixed set 𝐴, the set of conditions
forcing 𝐺 ≠ 𝐴 is dense. Hence, for any sufficiently generic filter F, the set 𝐺F

will not belong to the arithmetic hierarchy or more generally to any fixed count-
able collection of sets. Thus, effectivizing the construction of a filter restricts its
amount of genericity. In particular, for the construction of low sets, 1-genericity
is the appropriate amount of genericity.

Definition 4.4.1. A condition 𝑝 decides a formula 𝜑(𝐺) if 𝑝 forces 𝜑(𝐺) or
its negation. A filter Fdecides a formula if it contains a condition deciding it.
A filter F is 𝑛-generic13 13: The definition is slightly different for Co-

hen forcing, but they coincide if one consid-
ers an appropriate forcing relation.

if it decides every Σ0
𝑛 formula. ♦

When effectivizing forcing constructions, we shall work with infinite decreasing
sequences of conditions rather than with actual filters. Recall that any decreas-
ing sequence of conditions 𝑝0 ≥ 𝑝1 ≥ . . . induces a filter F = {𝑞 ∈ ℙ :
∃𝑛 𝑝𝑛 ≤ 𝑞}. By extension, we call such a decreasing sequence 𝑛-generic if
its induced filter is 𝑛-generic. In many situations, the partial order will not be
computable, and therefore the induced filter will be less computable than the
decreasing sequence.

The most basic example of effectivization of a forcing construction is the proof
of the existence of a non-computable set of low degree using Cohen forcing.

Theorem 4.4.2
There exists a non-computable set of low degree.

Proof. We shall construct a 1-generic decreasing sequence of Cohen con-
ditions14 computably in ∅′. As a byproduct of our decision procedure for
1-genericity, the resulting set 𝐺 will not be computable. However, for the
sake of simplicity, we shall explicitly satisfy the non-computability require-
ments. We therefore prove two lemmas which will ensure 1-genericity and
non-computability, respectively.

44 4 Lowness

15: Recall that for a Σ0
1 formula 𝜑(𝐺),

𝜎 ?⊢𝜑(𝐺) is defined as ∃𝜏 ⪰ 𝜎 𝜑(𝜏).
Since this is a Σ0

1-preserving forcing ques-
tion, ∅′ can decide whether it holds or not.
Furthermore, in either case, the extension
witnessing it can be found ∅′-computably.

17: Here again, recall that for a Σ0
1 for-

mula 𝜑(𝐺), 𝑇 ?⊢𝜑(𝐺) is defined as ∀𝑃 ∈
[𝑇] 𝜑(𝑃), or equivalently by compactness
(∃ℓ)(∀𝜎 ∈ 𝑇 ∩ 2ℓ)𝜑(𝜎). Since this is a Σ0

1-
preserving forcing question, ∅′ can decide
whether it holds or not. This lemma shows
that in either case, the witnessing extension
can be found ∅′-computably.

Lemma 4.4.3. For every condition 𝜎 ∈ 2<ℕ and every Turing index 𝑒 ∈ ℕ,
there is an extension 𝜏 ⪰ 𝜎 deciding Φ𝐺

𝑒 (𝑒)↓. Furthermore, the extension 𝜏
and the decision can be obtained ∅′-computably uniformly in 𝜎 and 𝑒. ★

Proof. The oracle ∅′ can decide whether there is some 𝜏 ⪰ 𝜎 such that
Φ𝜏
𝑒 (𝑒)↓.15 In the former case, such a 𝜏 can be found computably in 𝜎 and 𝑒

while in the latter case, 𝜎 already forces Φ𝐺
𝑒 (𝑒)↑.

Lemma 4.4.4. For every condition 𝜎 ∈ 2<ℕ and every Turing index 𝑒 ∈ ℕ,
there is an extension 𝜏 ⪰ 𝜎 forcing 𝐺 ≠ Φ𝑒 .16

16: Here, 𝐺 ≠ Φ𝑒 is a notation for

∃𝑥Φ𝑒 (𝑥)↑ ∨∃𝑥Φ𝑒 (𝑥)↓≠ 𝐺(𝑥)

Furthermore, the extension 𝜏
can be obtained ∅′-computably uniformly in 𝜎 and 𝑒. ★

Proof. Letting 𝑥 = |𝜎|, the oracle ∅′ can decide whether Φ𝑒(𝑥)↓ or not. In
the former case, let 𝜏 = 𝜎 · (1 −Φ𝑒(𝑥)), so that 𝜏 forces 𝐺 ≠ Φ𝑒 . In the latter
case, 𝜎 already forces 𝐺 ≠ Φ𝑒 , so let 𝜏 = 𝜎. In either case, 𝜏 can be found
∅′-computably uniformly in 𝜎 and 𝑒.

We are now ready to prove Theorem 4.4.2. Thanks to Lemma 4.4.3 and
Lemma 4.4.4, define a ∅′-computable infinite decreasing sequence of Cohen
conditions 𝜎0 ≺ 𝜎1 ≺ . . . such that for every 𝑒 ∈ ℕ, 𝜎2𝑒+1 decides Φ𝐺

𝑒 (𝑒)↓
and 𝜎2𝑒+2 forces 𝐺 ≠ Φ𝑒 . Moreover, for every 𝑒, we can ensure that |𝜎𝑒 | ≥ 𝑒,
so that

⋂
𝑒[𝜎𝑒] is a singleton 𝐺. Note that 𝐺 = 𝐺F where F is the induced

filter for this sequence. By construction, 𝐺′ ≤𝑇 ∅′ and 𝐺 is not computable.
This completes the proof of Theorem 4.4.2.

Exercise 4.4.5. Every non-computable set of low degree is of hyperimmune
degree, so Theorem 4.4.2 implies the existence of a hyperimmune set of low
degree. Adapt the proof of Theorem 4.4.2 to directly construct such a set. ★

The next example is known as the low basis theorem, and is arguably one of
the most useful theorems of computability theory.

Theorem 4.4.6 (Jockusch and Soare [9])
Fix a non-empty Π0

1 class P⊆ 2ℕ . There exists a member 𝐺 ∈ P of low
degree.

Proof. Consider the Jockusch-Soare forcing defined in Theorem 3.2.6, that
is, the notion of forcing whose conditions are computable infinite binary trees,
partially ordered by the inclusion relation. A condition 𝑇 ⊆ 2<ℕ can be coded
by a Δ0

1-index, that is, some Turing index 𝑏 such that Φ𝑏 = 𝑇. We shall
construct an infinite ∅′-computable sequence of Δ0

1-indices 𝑏0 , 𝑏1 , . . . of a
1-generic decreasing sequence of conditions 𝑇0 ⊇ 𝑇1 ⊇ . . . The following
lemma ensures that 1-genericity can be obtained ∅′-uniformly.

Lemma 4.4.7. For every condition 𝑇 ⊆ 2<ℕ and every Turing index 𝑒 ∈ ℕ,
there is an extension 𝑆 ⊆ 𝑇 deciding Φ𝐺

𝑒 (𝑒)↓. Furthermore, a Δ0
1-index of 𝑆

and the decision can be obtained ∅′-computably uniformly in 𝑒 and a Δ0
1-index

of 𝑇. ★

Proof. The oracle ∅′ can decide whether there exists a level ℓ ∈ ℕ in the
tree such that for every 𝜎 ∈ 𝑇 of length ℓ , Φ𝜎

𝑒 (𝑒)↓.17 In the former case, 𝑇
already forces Φ𝐺

𝑒 (𝑒)↓. In the latter case, the tree 𝑆 = {𝜎 ∈ 𝑇 : Φ𝜎
𝑒 (𝑒)↑} is

an extension of 𝑇 forcing Φ𝐺
𝑒 (𝑒)↑. In both cases, the witness can be found

∅′-computably.

4.5 Weak preservation 45

18: As mentioned in Section 3.5, Σ0
𝑛 sets

are arguably more natural than Δ0
𝑛 sets, as

the former class is syntactic, while the lat-
ter is semantic. As a consequence, when
proving a theorem with a purely combina-
torial hypothesis through forcing, the forc-
ing question for Σ0

1 formulas will naturally
be either Σ0

1-preserving, or not even Δ0
2. In

other words, all constructions in this section
will exploit some computational distorsion of
the combinatorics. In Theorem 4.5.2, the co-
hyperimmunity hypothesis is computability-
theoretic and is responsible of this distor-
sion.

19: One could have defined [𝜎] as

{𝑍 ∈ 2ℕ : 𝜎 ≺ 𝑍 ∧ 𝑍 ⊆ 𝐴}

We are now ready to prove Theorem 4.4.6. Thanks to Lemma 4.4.7, define
a ∅′-computable infinite sequence of Δ0

1-indices 𝑏0 , 𝑏1 , . . . of a decreasing
sequence of conditions 𝑇0 ⊇ 𝑇1 ⊇ . . . starting with [𝑇0] = P and such that
for every 𝑒 ∈ ℕ, 𝑇𝑒+1 decides Φ𝐺

𝑒 (𝑒)↓. Note that
⋂
𝑒[𝑇𝑒] is a singleton 𝐺, as

for every 𝑛 ∈ ℕ, there is a Turing functional Φ𝑒 such that Φ𝐺
𝑒 (𝑒)↓ iff 𝐺(𝑛) = 1.

Note again that 𝐺 = 𝐺F where F is the induced filter for this sequence. By
definition of a condition, 𝐺 ∈ [𝑇0] = P, and by construction 𝐺′ ≤𝑇 ∅′. This
completes the proof of Theorem 4.4.6.

In summary, both constructions were obtained by constructing an infinite ∅′-
computable sequence of codes of a 1-generic decreasing sequence of condi-
tions. For Cohen forcing, the situation was slightly simpler as conditions were
identified with their own code. In any case, such a sequence was obtained by
proving the existence of a Σ0

1-preserving forcing question such that the codes
of their witnessing extensions were obtained ∅′-computably uniformly in codes
of the conditions.

4.5 Weak preservation

Contrary to cone avoidance, it is not necessary to have a Σ0
1-preserving forcing

question to produce a set of low degree. It is sufficient to have a Δ0
2 forcing

question for Σ0
1 formulas18, uniformly in its parameters (including the condition,

under the appropriate coding). This is in particular the case of the following
theorem, stating the existence of an infinite subset of low degree.

What is a sufficient largeness condition for a Σ0
2 set to have an infinite subset of

low degree? Being infinite is not sufficient, as there exists infinite Δ0
2 sets such

that every infinite subset computes ∅′: consider the set of all initial segments
of the halting set 𝐴 = {𝜎 ∈ 2<ℕ : 𝜎 ≺ ∅′}. Recall that an array is a sequence
of pairwise disjoint finite sets {𝐹𝑛}𝑛∈ℕ . An array {𝐹𝑛}𝑛∈ℕ is c.e. if there is a
total computable function 𝑓 : ℕ → ℕ such that 𝑓 (𝑛) is the canonical code
of 𝐹𝑛 . Last, an infinite set 𝐴 is hyperimmune if for every c.e. array {𝐹𝑛}𝑛∈ℕ ,
there is some 𝑛 ∈ ℕ such that 𝐴 ∩ 𝐹𝑛 = ∅.

Exercise 4.5.1. Recall that a function 𝑓 : ℕ → ℕ is hyperimmune if it is not
dominated by any computable function. The principal function of an infinite
set 𝐴 = {𝑥0 < 𝑥1 < . . . } is the function 𝑝𝐴 : ℕ → ℕ defined by 𝑝𝐴(𝑛) =
𝑥𝑛 . Show that an infinite set 𝐴 is hyperimmune iff its principal function is
hyperimmune. ★

Informally, if 𝐴 is hyperimmune, then 𝐴 contains a lot of elements. Therefore,
co-hyperimmunity is a notion of largeness.

Theorem 4.5.2
For every Σ0

2 co-hyperimmune set 𝐴, there is an infinite set 𝐻 ⊆ 𝐴 of low
degree.

Proof. Consider a variant of Cohen forcing where conditions 𝜎 ∈ 2<ℕ are
subsets of 𝐴, that is, ∀𝑥 < |𝜎| 𝜎(𝑥) = 1 → 𝑥 ∈ 𝐴. To avoid confusion, we
shall write 𝜏 ≤ 𝜎 for condition extension and keep ⪯ for the usual strings
extension. Therefore, 𝜏 ≤ 𝜎 iff 𝜎 ⪯ 𝜏 and 𝜏 ⊆ 𝐴. The interpretation19 of
a condition 𝜎 is [𝜎] = {𝑍 ∈ 2ℕ : 𝜎 ≺ 𝑍}. We shall construct a 1-generic

46 4 Lowness

decreasing sequence of conditions computably in ∅′. The core of the argument
lies in the following lemma.

Lemma 4.5.3. For every condition 𝜎 ∈ 2<ℕ and every Turing index 𝑒 ∈ ℕ,
there is an extension 𝜏 ≻ 𝜎 deciding Φ𝐺

𝑒 (𝑒)↓. Furthermore, the extension 𝜏
and the decision can be obtained ∅′-computably uniformly in 𝜎 and 𝑒. ★

Proof. Let 0𝑛 denote the string of length 𝑛 with only 0’s. Given a condition 𝜎,
we claim that at least one of the following two Σ0

2 statements is true:

(1) There is some 𝜏 ⪰ 𝜎 with 𝜏 ⊆ 𝐴 such that Φ𝜏
𝑒 (𝑒)↓.

(2) There is some 𝑛 ∈ ℕ such that, letting 𝜏 = 𝜎 · 0𝑛 , for every 𝜇 ⪰ 𝜏,
Φ

𝜇
𝑒 (𝑒)↑.

Suppose not. Then, by negation of (2) for every 𝑛 ∈ ℕ, there is some 𝜇𝑛 ⪰
𝜎 · 0𝑛 such that Φ𝜇𝑛

𝑒 (𝑒)↓. For every 𝑛 ∈ ℕ, let 𝐹𝑛 = {𝑥 > |𝜎| + 𝑛 : 𝜇𝑛(𝑥) =
1}. By negation of (1), 𝐹𝑛 ∩ 𝐴 ≠ ∅ for every 𝑛. By considering a pairwise
disjoint computable sub-collection of sets to obtain a c.e. array, we contradict
hypermmunity of 𝐴.

Thus, since both statements are Σ0
2, search ∅′-computably for some 𝜏 witness-

ing either case.20

20: Because of the combinatorial distorsion
induced by the co-hyperimmunity assump-
tion, the statement of the forcing question
is not natural: Given a Σ0

1 formula 𝜑(𝐺), let
𝜎 ?⊢𝜑(𝐺) hold if the first witness found in
the ∅′-computable search belongs to the
first case.

We are now ready to prove Theorem 4.5.2. Thanks to Lemma 4.5.3, define
a ∅′-computable infinite decreasing sequence of conditions 𝜎0 ≥ 𝜎1 ≥ . . .

such that for every 𝑒 ∈ ℕ, 𝜎𝑒+1 decides Φ𝐺
𝑒 (𝑒)↓. Moreover, since 𝐴 is co-

hyperimmune, it is infinite, so for every 𝑒, we can ensure that card 𝜎𝑒 = {𝑛 :
𝜎𝑒(𝑛) = 1} ≥ 𝑒 by waiting ∅′-computably for some new elements of 𝐴 to be
enumerated. As a consequence,

⋂
𝑒[𝜎𝑒] is a singleton 𝐺. Note that 𝐺 = 𝐺F

where F is the induced filter for this sequence. By construction, 𝐺′ ≤𝑇 ∅′ and
𝐺 is an infinite subset of 𝐴. This completes the proof of Theorem 4.5.2.

Theorem 4.5.2 has some interesting consequences for the computable analysis
of partial and linear orders. Let 𝜔 be the order type of (ℕ, <). Given two
order types 𝛼, 𝛽, let 𝛼∗ be the reverse order, and 𝛼 + 𝛽 be the order type
such that every element of 𝛼 is smaller than every element of 𝛽. A linear
order L = (ℕ, <L) is stable if it is of order type 𝜔 + 𝜔∗, that is, for every
element 𝑥 ∈ ℕ, either ∀∞𝑦(𝑥 <L 𝑦) or ∀∞𝑦(𝑥 >L 𝑦). Here, the notation ∀∞
means “for all but finitely many”.

Exercise 4.5.4 (Hirschfeldt and Shore [23]). Let L = (ℕ, <L) be a com-
putable stable linear order. Let 𝐴 = {𝑥 : ∀∞𝑦 (𝑥 <L 𝑦} and 𝐴∗ = {𝑥 :
∀∞𝑦 (𝑦 <L 𝑥}.

1. Show that 𝐴 ⊔ 𝐴∗ = ℕ and 𝐴 is Δ0
2.

2. Show that 𝐴 and 𝐴∗ are immune iff they are hyperimmune.21
21: An infinite set 𝐴 is immune if it has no
infinite computable subset, or equivalently
no infinite c.e. subset.

3. Use Theorem 4.5.2 to prove that L admits an infinite ascending or
descending sequence of low degree. ★

4.6 Beyond ∅′

Some problems do not admit a low basis, but always have a solution which is
close to being low, in the sense that every PA degree over ∅′ computes the jump

4.6 Beyond ∅′ 47

22: In the sense that a non-decreasing hy-
perimmune function is growing so fast that
no computable function dominates it.

of a solution. The various basis theorems for Π0
1 classes show that PA degrees

share many features of the 0 degree: the computably dominated and the cone
avoidance basis theorems say that the existence of a PA degree does not help
computing fast-growing functions22, or computing fixed non-computable sets.
By relativization over ∅′, having the jump of a solution computed by any PA
degree over 0’ is close to having a the jump of a solution computed by ∅′, in
other words to having a solution of low degree.

Definition 4.6.1. A problem P admits a weakly low basis if for every set 𝑍
and every PA degree 𝑃 over 𝑍′, every 𝑍-computable instance 𝑋 of P admits
a solution 𝑌 such that (𝑌 ⊕ 𝑍)′ ≤𝑇 𝑃. ♦

At first sight, Definition 4.6.1 does not yield an invariant property, as one would
require 𝑃 to be PA over (𝑌⊕𝑍)′ instead of only computing (𝑌⊕𝑍)′. However,
based on the density properties of PA degrees, Definition 4.6.1 is actually
equivalent to the stronger statement.

Exercise 4.6.2. Use Exercise 4.3.3 to prove that if a problem P admits a
weakly low basis, then for every set 𝑍 and every PA degree 𝑃 over 𝑍′, every
𝑍-computable instance 𝑋 of P admits a solution 𝑌 such that 𝑃 is of PA degree
over (𝑌 ⊕ 𝑍)′. ★

A set 𝑋 is of low2 degree if 𝑋′′ ≤𝑇 ∅′′. If a problem admits a weakly low basis,
then it always admits solutions of low2 degree, by choosing an appropriate PA
degree.

Exercise 4.6.3. A problem P admits a low2 basis if for every set 𝑍 and every
𝑍-computable instance𝑋 of P, there is a solution𝑌 to𝑋 such that (𝑌⊕𝑍)′′ ≤𝑇
𝑍′′. Use the low basis theorem for Π0

1 classes (Theorem 4.4.6) to show that if
P admits a weakly low basis, then it admits a low2 basis. ★

As for sets of low degree, if a set 𝐺 is of low2 degree, then by Post’s theorem,
every Σ0

3(𝐺) property is Σ0
3. Thus, if a problem admits a low2 basis, then it

satisfies every weakness property at the third and higher jump levels. Some
weakness properties at the second jump level are also preserved, depending
on the existence of the appropriate basis theorem for Π0

1 classes.

Exercise 4.6.4. Suppose that a problem P admits a weakly low basis. Let 𝐶
be a non-Δ0

2 set, and𝑋 be a computable instance of P. Use the cone avoidance
basis theorem for Π0

1 classes (Theorem 3.2.6) to show that there is a solution𝑌
to 𝑋 such that 𝐶 is not Δ0

2(𝑌). ★

There is a well-known correspondence between computability and definability.
By Post’s theorem,Δ0

𝑛 sets are exactly the ∅(𝑛−1)-computable ones. Historically,
the Turing jump of a set 𝑋 is defined as 𝑋′ = {𝑒 : Φ𝑋

𝑒 (𝑒)↓}, but it could be
equivalently defined as the set of codes of true Σ0

1(𝑋) formulas. PA degrees
also admit a characterization in terms of decidability of formulas:

Exercise 4.6.5. Let 𝜑0 , 𝜑1 , . . . be an effective enumeration of all Π0
1(𝑋)

sentences. Show that any PA degree over 𝑋 computes a total function 𝑓 :
ℕ2 → 2 such that for every (𝑎, 𝑏) ∈ ℕ2 for which at least one of 𝜑𝑎 , 𝜑𝑏 is
true, if 𝑓 (𝑎, 𝑏) = 0 then 𝜑𝑎 is true, and if 𝐴(𝑛) = 1 then 𝜑𝑏 is true.23

23: If 𝜑𝑎 and 𝜑𝑏 have the same truth value,
then 𝑓 (𝑎, 𝑏) can be either 0 or 1 but must
output a value anyway. The careful reader
will have recognized the behavior of {0, 1}-
valued DNC functions.

★

48 4 Lowness

24: The notion of jump of a problem comes
from Weihrauch complexity.

25: The problem RT1
2
′ is also known as D2

2
in the literature. More generally, D𝑛

𝑘
is the

statement “For every Δ0
𝑛 𝑘-partition 𝐴0 ⊔

· · · ⊔ 𝐴𝑘−1 = ℕ, there is some 𝑖 < 𝑘 and
an infinite set 𝐻 ⊆ 𝐴𝑖 ”. The practice shows
that it is more convenient to think of it as the
jump of the pigeonhole principle.

26: This proof, due to Cholak, Jockusch and
Slaman [27], is actually very close to the
original proof of Jockusch and Stephan [13],
except we decide the jump of an ®𝑅-cohesive
set 𝐶 in a set 𝑃 of PA degree over ∅′, while
the original proof used a Δ0

2 approximation
of 𝑃 to construct 𝐶. In both proofs, there is
a “delay” in the satisfaction of cohesiveness:
in our case, this is due to the genericity re-
quirements, while in the original proof, the
Δ0

2 approximation of 𝑃 may take some time
to converge to a right answer.

By Post’s theorem, any PA degree over ∅′ is able to choose, given a sequence
of pairs of Π0

2 formulas such that for every pair at least one is true, a sequence
of true formulas. Among the natural Π0

2 formulas, we shall be particularly
interested in infinity of a computable set.

Exercise 4.6.6. Let 𝑋0 , 𝑋1 , . . . a uniformly computable sequence of sets.
Use Exercise 4.6.5 to show that any PA degree over ∅′ computes a sequence
𝐴 ∈ 2ℕ such that for every 𝑛, if 𝐴(𝑛) = 0 then 𝑋𝑛 is infinite, and if 𝐴(𝑛) = 1,
then 𝑋𝑛 is infinite. ★

4.7 Ramsey’s theorem for pairs

The main application of the previous section will be the proof by Cholak,
Jockusch and Slaman [27] that Ramsey’s theorem for pairs admits a weakly
low basis. The jump24 of a problem P is the problem P′ whose instances are
Δ0

2 approximations of an instance 𝑋 of P, in other words, stable functions
𝑓 : ℕ2 → 2 whose limit is 𝑋, and whose solutions are P-solutions to 𝑋.
Following Theorem 3.4.1, RT2

2 can be obtained by applying the cohesiveness
principle (COH), and then the pigeonhole principle for Δ0

2 instances (RT1
2
′).25

Thanks to Exercise 4.6.2, it suffices to independently prove that COH and RT1
2
′

admit a weakly low basis to obtain the same conclusion for RT2
2.

Recall that by Exercise 3.4.3, for every uniformly computable sequence of
sets ®𝑅 = 𝑅0 , 𝑅1 , . . . , there is a non-empty Π0

1(∅′) class P⊆ 2ℕ such that the
degrees computing an ®𝑅-cohesive set are exactly those whose jump compute
a member of P.

Exercise 4.7.1. Use Exercise 3.4.3 to prove that COH admits a weakly low
basis, but does not admit a low basis. ★

We will now give an alternative direct proof that COH admits a weakly low
basis using an effectivization of computable Mathias genericity. This will serve
as a warm-up to the proof that RT1

2
′ admit a weakly low basis.26

Theorem 4.7.2 (Jockusch and Stephan [13])
Let ®𝑅 = 𝑅0 , 𝑅1 , . . . be an infinite uniformly computable sequence of sets
and let 𝑃 be of PA degree over ∅′. There exists an infinite ®𝑅-cohesive set 𝐶
such that 𝐶′ ≤𝑇 𝑃.

Proof. Recall that a computable Mathias condition is a Mathias condition
(𝜎, 𝑋) whose reservoir 𝑋 is computable. Any computable Mathias condi-
tion (𝜎, 𝑋) can therefore be coded by a pair ⟨𝜎, 𝑏⟩ such that 𝑏 is a Δ0

1-
index of 𝑋. We shall construct an infinite 𝑃-computable sequence of codes
⟨𝜎0 , 𝑏0⟩, ⟨𝜎1 , 𝑏1⟩, . . . representing a 1-generic decreasing sequence of com-
putable Mathias conditions (𝜎0 , 𝑋0) ≥ (𝜎1 , 𝑋1) ≥ The following lemma
shows that such a sequence can be obtained ∅′-computably:

Lemma 4.7.3. For every condition (𝜎, 𝑋) and every Turing index 𝑒 ∈ ℕ, there
is an extension (𝜏, 𝑌) deciding Φ𝐺

𝑒 (𝑒)↓. Furthermore, a code for (𝜏, 𝑌) and
the decision can be obtained ∅′-computably uniformly in a code for (𝜎, 𝑋)
and 𝑒. ★

4.7 Ramsey’s theorem for pairs 49

Proof. The oracle ∅′ can decide whether there exists a finite string 𝜌 ⊆ 𝑋

such that Φ𝜎∪𝜌
𝑒 (𝑒)↓. If so, then (𝜎∪𝜌, 𝑋 \{0, . . . , |𝜌|}) is an extension forcing

Φ𝐺
𝑒 (𝑒)↓. Otherwise, (𝜎, 𝑋) already forces Φ𝐺

𝑒 (𝑒)↑. Note that a Δ0
1-index of

𝑋 \{0, . . . , |𝜌|} can be computably found in a Δ0
1-index of 𝑋 and 𝜌. Therefore,

a code for the extension can be obtained ∅′-computably uniformly in a code
for (𝜎, 𝑋) and 𝑒.

Lemma 4.7.3 only requires ∅′ instead of a PA degree over ∅′. Therefore, one
can obtain a ∅′-computable 1-generic decreasing sequence of computable
Mathias conditions. However, the resulting set will not be ®𝑅-cohesive. We need
to interleave steps to satisfy cohesiveness for more and more sets. This is the
purpose of the following lemma:

Lemma 4.7.4. For every condition (𝜎, 𝑋) and every computable set 𝑅, there
is an extension (𝜎, 𝑌) such that 𝑌 ⊆ 𝑅 or 𝑌 ⊆ 𝑅. Furthermore, a code
for (𝜎, 𝑌) and the decision can be obtained 𝑃-computably uniformly in a code
for (𝜎, 𝑋) and a Δ0

1-index of 𝑅. ★

Proof. Fix an effective enumeration of all Π0
2 sentences 𝜑0 , 𝜑1 , . . . Let 𝑓 :

ℕ2 → 2 be the 𝑃-computable function satisfying Exercise 4.6.5. From Δ0
1-

indices of 𝑋 and 𝑅, one can compute codes 𝑎, 𝑏 ∈ ℕ such that 𝜑𝑎 ≡
∀𝑥∃𝑦(𝑦 > 𝑥 ∧ 𝑦 ∈ 𝑋 ∩ 𝑅) and 𝜑𝑏 ≡ ∀𝑥∃𝑦(𝑦 > 𝑥 ∧ 𝑦 ∈ 𝑋 ∩ 𝑅). Note that
at least one of 𝜑𝑎 and 𝜑𝑏 is true. Thus, if 𝑓 (𝑎, 𝑏) = 0, (𝜎, 𝑋 ∩ 𝑅) is a valid
extension, and if 𝑓 (𝑎, 𝑏) = 1, (𝜎, 𝑋 ∩ 𝑅) is a valid extension. In both cases,
Δ0

1-indices of 𝑋 ∩ 𝑅 and 𝑋 ∩ 𝑅 can be obtained computably from Δ0
1-indices

of 𝑋 and 𝑅, so a code for the extension can be obtained 𝑃-computably in a
code for (𝜎, 𝑋) and a Δ0

1-index of 𝑅.

We are now ready to prove Theorem 4.7.2. Thanks to Lemma 4.7.3 and
Lemma 4.7.4, define a 𝑃-computable infinite sequence of codes

⟨𝜎0 , 𝑏0⟩, ⟨𝜎1 , 𝑏1⟩, . . .

representing a decreasing sequence of computable Mathias conditions

(𝜎0 , 𝑋0) ≥ (𝜎1 , 𝑋1) ≥ . . .

such that for every 𝑒 ∈ ℕ, (𝜎2𝑒+1 , 𝑋2𝑒+1) decides Φ𝐺
𝑒 (𝑒)↓ and either 𝑋2𝑒+2 ⊆

𝑅𝑒 , or 𝑋2𝑒+2 ⊆ 𝑅𝑒 . Moreover, for every 𝑒, we can ensure that card 𝜎𝑒 ≥ 𝑒,
so that 𝐺 =

⋃
𝑒 𝜎𝑒 is an infinite set. By construction, 𝐺′ ≤𝑇 𝑃 and 𝐺 is

®𝑅-cohesive. This completes the proof of Theorem 4.7.2.

The previous example involved a Σ0
1-preserving forcing question with the

appropriate uniformity properties to build a set of low degree, but the additional
requirements to produce a cohesive set used a PA degree over ∅′. In the
following example, the Σ0

1-preserving forcing question itself will require a PA
degree over ∅′ to produce a code of an extension.

Theorem 4.7.5 (Cholak, Jockusch and Slaman [27])
Let 𝐴 be a Δ0

2 set and let 𝑃 be of PA degree over ∅′. There exists an infinite
set 𝐺 ⊆ 𝐴 or 𝐺 ⊆ 𝐴 such that 𝐺′ ≤𝑇 𝑃.

50 4 Lowness

27: This interpretation of a condition is dif-
ferent from the one in the proof of Theo-
rem 3.4.6, where we considered a class of
pairs of sets.

28: The careful reader will have recognized
the disjunctive forcing question of Exer-
cise 3.4.10.

Proof. By the low basis theorem for Π0
1 classes (Theorem 4.4.6) and The-

orem 4.3.2, there exists a set 𝑀 =
⊕

𝑛 𝑍𝑛 of low degree coding for a Scott
ideal M= {𝑍0 , 𝑍1 , . . . }. For simplicity, let 𝐴0 = 𝐴 and 𝐴1 = 𝐴.

As in the proof of Theorem 3.4.6, consider a variant of Mathias forcing, whose
conditions are triples (𝜎0 , 𝜎1 , 𝑋) where

1. (𝜎𝑖 , 𝑋) is a Mathias condition for each 𝑖 < 2 ;
2. 𝜎𝑖 ⊆ 𝐴𝑖 ;
3. 𝑋 ∈ M.

A condition (𝜏0 , 𝜏1 , 𝑌) extends (𝜎0 , 𝜎1 , 𝑋) if (𝜏𝑖 , 𝑌) Mathias extends (𝜎𝑖 , 𝑋).
Recall that an 𝑀-code of a set 𝑋 ∈ M is an integer 𝑎 ∈ ℕ such that 𝑋 = 𝑍𝑎 .
A code for a condition (𝜎0 , 𝜎1 , 𝑋) is therefore a 3-tuple ⟨𝜎0 , 𝜎1 , 𝑎⟩ where 𝑎 is
an 𝑀-code for 𝑋.

Following the proof of Theorem 3.4.6, we shall make the following assumption
to ensure that both sets 𝐺0 and 𝐺1 will be infinite:

There is no infinite set 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴 such that 𝐻 ∈ M. (H1)

Since M contains only sets of low degree, if the assumption is false, then the
statement of the theorem holds, so suppose it is true.

Lemma 4.7.6. Suppose (H1). Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition and 𝑖 < 2.
There is an extension (𝜏0 , 𝜏1 , 𝑌) of 𝑝 and some 𝑛 > |𝜎𝑖| such that 𝑛 ∈ 𝜏𝑖 .
Furthermore, a code for (𝜏0 , 𝜏1 , 𝑌) can be found ∅′-computably uniformly in a
code for 𝑝 and 𝑖. ★

Proof. If 𝑋 ∩ 𝐴𝑖 is empty, then 𝑋 ⊆ 𝐴1−𝑖 , but 𝑋 ∈ M, which contradicts
(H1). Thus, there is some 𝑛 ∈ 𝑋 ∩ 𝐴𝑖 . Let 𝜏𝑖 = 𝜎𝑖 ∪ {𝑛}, and 𝜏1−𝑖 = 𝜎1−𝑖 .
Then, (𝜏0 , 𝜏1 , 𝑋 \ {0, . . . , 𝑛}) is an extension of 𝑝 such that 𝑛 ∈ 𝜏𝑖 . Moreover,
since 𝐴 is Δ0

2, and 𝑀′ ≤𝑇 ∅′, the oracle ∅′ can find such an 𝑛 from an 𝑀-code
of 𝑋 and 𝑖 < 2. An 𝑀-code of 𝑋 \ {0, . . . , 𝑛} can be found computably from
an 𝑀-code of 𝑋 and 𝑛, so a code for (𝜏0 , 𝜏1 , 𝑌) can be found ∅′-computably
uniformly in a code for 𝑝 and 𝑖.

Due to the disjunctive nature of the notion of forcing, we need to redefine what
it means for a filter to be 1-generic. Recall that the interpretation of a Mathias
condition (𝜎, 𝑋) is the class [𝜎, 𝑋] of all sets𝐺 such that 𝜎 ⊆ 𝐺 ⊆ 𝜎∪𝑋. Each
condition (𝜎0 , 𝜎1 , 𝑋) has two interpretations, namely, [𝜎0 , 𝑋] and [𝜎1 , 𝑋],
depending on the side.27 A condition (𝜎0 , 𝜎1 , 𝑋) decides (𝜑0(𝐺0), 𝜑1(𝐺1))
if there is some 𝑖 < 2 such that (𝜎𝑖 , 𝑋) decides 𝜑𝑖(𝐺). A filter F decides
(𝜑0(𝐺0), 𝜑1(𝐺1)) if there is a condition 𝑝 ∈ Fdeciding (𝜑0(𝐺0), 𝜑1(𝐺1)). A
filter F is 1-generic if it decides every pair of Σ0

1 formulas.

Lemma 4.7.7. For every condition 𝑝 = (𝜎0 , 𝜎1 , 𝑋) and every pair of Turing
indices 𝑒0 , 𝑒1 ∈ ℕ, there is an extension 𝑞 = (𝜏0 , 𝜏1 , 𝑌) deciding (Φ𝐺0

𝑒0 (𝑒0)↓
,Φ𝐺1

𝑒1 (𝑒1) ↓). Furthermore, a code for 𝑞 and the decision can be obtained
𝑃-computably uniformly in a code for 𝑝 and 𝑒0 , 𝑒1. ★

Proof. Let P be the Π0
1(𝑋) class of all 𝐵 ∈ 2ℕ such that, letting 𝐵0 = 𝐵 and

𝐵1 = 𝐵, for every 𝑖 < 2 and every 𝜌 ⊆ 𝑋 ∩ 𝐵𝑖 , Φ𝜎𝑖∪𝜌
𝑒𝑖 (𝑒𝑖)↑. The oracle ∅′ can

decide whether P is empty or not from an 𝑀-code of 𝑋, since 𝑀 is of low
degree.28

4.7 Ramsey’s theorem for pairs 51

▶ Suppose P = ∅. Then, by compactness, there is a level ℓ ∈ ℕ such
that for every set 𝛽 ∈ 2ℓ , letting 𝛽0 = 𝛽 and 𝛽1 be the bitwise negation
of 𝛽, there is some 𝑖 < 2 and some 𝜌 ⊆ 𝑋 ∩ 𝛽𝑖 such that Φ𝜎𝑖∪𝜌

𝑒𝑖 (𝑒𝑖)↓.
Such an ℓ ∈ ℕ can be found 𝑀-computably from an 𝑀-code of 𝑋 and
𝑒0 , 𝑒1. Since 𝐴 is Δ0

2, the oracle ∅′ can find 𝛽 = 𝐴↾ℓ , and the associated
𝑖 < 2 and 𝜌. Let 𝜏𝑖 = 𝜎𝑖 ∪ 𝜌 and 𝜏1−𝑖 = 𝜎1−𝑖 . Then 𝑞 = (𝜏0 , 𝜏1 , 𝑋 \
{0, . . . , |𝜌|}) is an extension of 𝑝 such that (𝜏𝑖 , 𝑋 \{0, . . . , |𝜌|}) forces
Φ𝐺
𝑒𝑖
(𝑒𝑖)↓, hence 𝑞 decides (Φ𝐺0

𝑒0 (𝑒0)↓,Φ
𝐺1
𝑒1 (𝑒1)↓). Moreover, an 𝑀-code

for 𝑋 \ {0, . . . , |𝜌|} can be computed from an 𝑀-code for 𝑋 and 𝜌, so
a code for 𝑞 can be obtained ∅′-computably from a code for 𝑝.

▶ Suppose P ≠ ∅. Then one can obtain an 𝑀-code for some 𝐵 ∈ P∩M

computably from an 𝑀-code for 𝑋. Using Exercise 4.6.5, since 𝑃 is
of PA degre over 𝑀′, 𝑃 can find some 𝑖 < 2 such that 𝑋 ∩ 𝐵𝑖 is
infinite, and an 𝑀-code of 𝑋 ∩ 𝐵𝑖 . The condition 𝑞 = (𝜎0 , 𝜎1 , 𝑋 ∩ 𝐵𝑖)
is an extension of 𝑝 such that (𝜎𝑖 , 𝑋 ∩ 𝐵𝑖) forces Φ𝐺

𝑒𝑖
(𝑒𝑖)↑, hence 𝑞

decides (Φ𝐺0
𝑒0 (𝑒0)↓,Φ

𝐺1
𝑒1 (𝑒1)↓). Moreover, a code for 𝑞 can be obtained

𝑃-computably from a code for 𝑝.29

29: Note that in this lemma, a PA degree
over ∅′ is only used in the second case, to
find a side of 𝐵 whose intersection with 𝑋
is infinite.

We are now ready to prove Theorem 4.7.5. As usual, thanks to Lemma 4.7.6
and Lemma 4.7.7 and we shall construct an infinite 𝑃-computable sequence
of codes

⟨𝜎0,0 , 𝜎1,0 , 𝑏0⟩, ⟨𝜎0,1 , 𝜎1,1 , 𝑏1⟩, . . . , ⟨𝜎0,𝑠 , 𝜎1,𝑠 , 𝑏𝑠⟩, . . .

for a 1-generic decreasing sequence of conditions

(𝜎0,0 , 𝜎1,0 , 𝑋0) ≥ (𝜎0,1 , 𝜎1,1 , 𝑋1) ≥ · · · ≥ (𝜎0,𝑠 , 𝜎1,𝑠 , 𝑋𝑠) ≥ . . .

such that for every 𝑠 ∈ ℕ, letting 𝑠 = ⟨𝑒0 , 𝑒1⟩, (𝜎0,𝑠 , 𝜎1,𝑠 , 𝑋𝑠) decides
(Φ𝐺0

𝑒0 (𝑒0) ↓,Φ
𝐺1
𝑒1 (𝑒1) ↓), and there is some 𝑛0 , 𝑛1 > 𝑠 such that 𝑛𝑖 ∈ 𝜎𝑖 ,𝑠 .

Moreover, 𝑃 computes the side deciding each formula, and the decision. More
precisely, 𝑃 computes two functions 𝑓 , 𝑔 : ℕ2 → 2 such that for every
𝑒0 , 𝑒1 ∈ ℕ, letting 𝑠 = ⟨𝑒0 , 𝑒1⟩ and 𝑖 = 𝑓 (𝑒0 , 𝑒1), if 𝑔(𝑒0 , 𝑒1) = 0 then
(𝜎𝑖 ,𝑠 , 𝑋𝑠) forces Φ𝐺

𝑒𝑖
(𝑒𝑖)↑, and if 𝑔(𝑒0 , 𝑒1) = 1, then (𝜎𝑖 ,𝑠 , 𝑋𝑠) forces Φ𝐺

𝑒𝑖
(𝑒𝑖)↓.

By the pigeonhole principle, there is a side 𝑖 < 2 such that for every 𝑒𝑖 ∈ ℕ,
there is some 𝑒1−𝑖 ∈ ℕ such that 𝑓 (𝑒0 , 𝑒1) = 𝑖. Let 𝐺𝑖 =

⋃
𝑠 𝜎𝑖 ,𝑠 . By definition

of a condition, 𝐺𝑖 ⊆ 𝐴𝑖 , and by construction, 𝐺𝑖 is infinite. Last, given 𝑒𝑖 ∈
ℕ, to decide 𝑒𝑖 ∈ 𝐺′

𝑖
, search 𝑃-computably for some 𝑒1−𝑖 ∈ ℕ such that

𝑓 (𝑒0 , 𝑒1) = 𝑖, and output 𝑔(𝑒0 , 𝑒1). Thus, 𝐺′
𝑖
≤𝑇 𝑃. This completes the proof

of Theorem 4.7.5.

By Exercise 4.7.1, COH admits a weakly low basis, but not low basis. Actually,
every computable instance of COH with no computable solution admits no low
solution. What about RT1

2
′? Downey, Hirschfeldt, Lempp and Solomon [28]

proved that RT1
2
′ admits no low basis.

Theorem 4.7.8 (Downey et al [28])
There exists a Δ0

2 set 𝐴 with no low infinite subset 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴.

First, notice that by Theorem 4.5.2, such an 𝐴 can be neither hyperimmune or
co-hyperimmune, as every Σ0

2 co-hyperimmune set admits an infinite subset

52 4 Lowness

of low degree. The proof of Theorem 4.7.8 involves an infinite injury priority
construction and is outside the scope of this book.30

30: Note that the proof of Theorem 4.7.8 is
intrinsically complicated, as Chong, Slaman
and Yang [29] constructed a non-standard
model of WKL0 + RT1

2
′ with only low sets.

They exploited a failure of Σ0
2-induction. One can put together Theorem 4.7.2 and Theorem 4.7.5 to prove that Ramsey’s

theorem for pairs admits a weakly low basis.

Theorem 4.7.9 (Cholak, Jockusch and Slaman [27])
Let 𝑓 : [ℕ]2 → 2 be a computable coloring and let 𝑃 be of PA degree
over ∅′. There exists an infinite 𝑓 -homogeneous set 𝐺 such that 𝐺′ ≤𝑇 𝑃.

Proof. The proof follows the one of Theorem 3.4.1. Fix 𝑓 and 𝑃. Let ®𝑅 =

𝑅0 , 𝑅1 , . . . be the computable sequence of sets defined for every 𝑥 ∈ ℕ by
𝑅𝑥 = {𝑦 ∈ ℕ : 𝑓 (𝑥, 𝑦) = 1}. By Theorem 4.7.2 and Exercise 4.6.2, there
is an infinite ®𝑅-cohesive set 𝑋 ⊆ ℕ such that 𝑃 is PA over 𝑋′. In particular,
for every 𝑥 ∈ 𝑋, lim𝑦∈𝑋 𝑓 (𝑥, 𝑦) exists. Let 𝑓 : 𝑋 → 2 be the limit coloring
of 𝑓 , that is, 𝑓 (𝑥) = lim𝑦∈𝑋 𝑓 (𝑥, 𝑦). By Theorem 4.7.5, there is an infinite
𝑓 -homogeneous set 𝑌 ⊆ 𝑋 for some color 𝑖 < 2 such that (𝑌 ⊕ 𝑋)′ ≤𝑇 𝑃.
Since for every 𝑥 ∈ 𝑌, lim𝑦∈𝑌 𝑓 (𝑥, 𝑦) = 𝑖, one can 𝑌-computably thin out
the set 𝑌 to obtain an infinite 𝑓 -homogeneous subset 𝐻 ⊆ 𝑌. Since 𝐻 ≤𝑇 𝑌,
𝐻′ ≤𝑇 𝑃.

Recall that Seetapun’s theorem states that Ramsey’s theorem for pairs admits
cone avoidance. The modern proof goes through the decomposition into cohe-
siveness and the pigeonhole principle, but the original proof was direct and
left as an exercise (Exercise 3.4.12).

Exercise 4.7.10. Adapt Exercise 3.4.12 to give a direct proof that Ramsey’s
theorem for pairs admits a weakly low basis. ★

1: Muchnik degrees are a generalization of
Turing degrees. Many natural computational
phenomena are better expressed as fami-
lies of Turing degrees rather than individual
degrees.

Compactness avoidance 5
5.1 PA avoidance 53
5.2 Weak merging 55
5.3 Ramsey-type WKL 58
5.4 Liu’s theorem 60
5.5 Randomness 62
5.6 Avoiding closed classes . . 65
5.7 DNC and compactness . . . 69
5.8 DNC avoidance 71
5.9 Comparing avoidances . . . 72

Prerequisites: Chapters 2 and 3

Compactness arguments form a central tool in mathematics in general and
in topology in particular. From a reverse mathematical viewpoint, many or-
dinary theorems are equivalent to the Heine-Borel compactness theorem.
Some other theorems contain weaker compactness arguments, and some are
compactness-free. In this chapter, we study various levels of compactness,
namely, weak König’s lemma (PA degrees), weak weak König’s lemma (ran-
dom degrees), DNC degrees, and a Ramsey-type weak König’s lemma. For
the three former notions, we develop the tools to prove that some theorems
lack compactness.

This chapter pushes further the correspondence between computability-theoretic
features of a generic set and the existence of a forcing question with appropriate
definability and combinatorial features. In particular, PA and DNC avoidance
both result from the existence of a forcing question with the ability to find
simultaneous answers to independent questions.

5.1 PA avoidance

PA degrees are one of the most important notions in computability-theory,
both from a conceptual and a technical perspective. In particular, they form a
natural Muchnik degree1 of intermediate strength between 0 and 0′. In reverse
mathematics, the existence of PA degrees is equivalent to the system WKL0,
which informally corresponds to compactness arguments. Many theorems,
such as the Heine-Borel compactness theorem, or Gödel’s completeness
theorem, are equivalent to WKL0. Thus, the notion of PA avoidance is not only
a technical tool to separate a theorem from WKL0 in reverse mathematics, but
it also reflects the lack of compactness in the proof of the theorem, which is an
interesting result in its own right.

Definition 5.1.1. A problem P admits PA avoidance2 2: Here again, the unrelativized formulation
with 𝑍 = 𝐷 = ∅ is far more natural, but
does not behave well with artificial prob-
lems.

if for every pair of
sets 𝑍 and 𝐷 ≤𝑇 𝑍 such that 𝑍 is not of PA degree over 𝐷, every 𝑍-
computable instance 𝑋 of P admits a solution 𝑌 such that 𝑌 ⊕ 𝑍 is not of
PA degree over 𝐷. ♦

Recall that a Scott ideal is a Turing ideal Msuch that for every 𝑋 ∈ M, there is
a set 𝑌 ∈ M of PA degree over 𝑋. Equivalently, a Scott ideal is a Turing ideal
such that for every infinite binary tree 𝑇 ∈ M, there is an infinite path 𝑃 ∈ [𝑇]
in M. In reverse mathematics, Turing ideals and Scott ideals are exactly the
second-order parts of 𝜔-models of RCA0 and WKL0, respectively.

Exercise 5.1.2. Let P be a Π1
2 problem which admits PA avoidance. Show

the existence of an 𝜔-model of RCA0 + P which does not contain any set of
PA degree. ★

Let us start with a concrete example of a proof of PA avoidance. As usual,
Cohen forcing is the best behaving notion of forcing, as its partial order is
computable. In all our proofs of PA avoidance, we shall use {0, 1}-valued DNC

54 5 Compactness avoidance

3: Notice that this set is the same as in
Lemma 3.2.2.

4: Note that we exploit the assumption that
the functionals are {0, 1}-valued to force di-
vergence. Indeed, the contradiction comes
from the fact that 𝑣 ∈ {0, 1}.

functions. Recall that a function 𝑓 : ℕ → ℕ is diagonally non-computable
(DNC) if for every 𝑒 ∈ ℕ, 𝑓 (𝑒) ≠ Φ𝑒(𝑒). A degree is PA iff it computes a
{0, 1}-valued DNC function.

Theorem 5.1.3
For every sufficiently Cohen generic set 𝐺, 𝐺 is not of PA degree.

Proof. It suffices to prove the following lemma, where “Φ𝐺
𝑒 is not a DNC2

function” is a shorthand for ∃𝑥Φ𝐺
𝑒 (𝑥)↑ ∨∃𝑥Φ𝐺

𝑒 (𝑥)↓= Φ𝑥(𝑥). We shall assume
as usual that every Turing functional is {0, 1}-valued.

Lemma 5.1.4. For every condition 𝜎 ∈ 2<ℕ and every Turing index 𝑒 ∈ ℕ,
there is an extension 𝜏 ⪰ 𝜎 forcing Φ𝐺

𝑒 not to be a DNC2 function. ★

Proof. Fix a condition 𝜎. Consider the following set3

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : ∃𝜏 ⪰ 𝜎 Φ𝜏
𝑒 (𝑥)↓= 𝑣}

Note that the set 𝑈 is Σ0
1. There are three cases:

▶ Case 1: (𝑥,Φ𝑥(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ such that Φ𝑥(𝑥)↓. Let 𝜏 ⪰ 𝜎
witness (𝑥,Φ𝑥(𝑥)) ∈ 𝑈 , that is, let 𝜏 ⪰ 𝜎 be such that Φ𝜏

𝑒 (𝑥)↓= Φ𝑥(𝑥).
Then 𝜏 forces Φ𝐺

𝑒 not to be a DNC2 function.
▶ Case 2: (𝑥, 0), (𝑥, 1) ∉ 𝑈 for some 𝑥 ∈ ℕ. We claim that 𝜎 already

forces Φ𝐺
𝑒 (𝑥)↑.4 Indeed, if for some 𝑍 ∈ [𝜎], Φ𝑍

𝑒 (𝑥)↓, then by the use
property, there is some 𝜏 ⪯ 𝑍 such that Φ𝜏

𝑒 (𝑥)↓, and by choosing 𝜏
long enough, it would witness (𝑥, 𝑣) ∈ 𝑈 for 𝑣 = Φ𝜏

𝑒 (𝑥), contradiction.
▶ Case 3: None of Case 1 and Case 2 holds. Then 𝑈 is a Σ0

1 graph of a
{0, 1}-valued DNC function. This contradicts the fact that the degree 0
is not PA.

We are now ready to prove Theorem 5.1.3. Given 𝑒 ∈ ℕ, let D𝑒 be the set of all
conditions 𝜏 forcing Φ𝐺

𝑒 not to be a DNC2 function. It follows from Lemma 5.1.4
that every D𝑒 is dense, hence for every {D𝑒 : 𝑒 ∈ ℕ}-generic set 𝐺, 𝐺 is not
of PA degree.

Exercise 5.1.5. Adapt the proof of Theorem 3.2.4 to show that for any set 𝐴,
there exists a set 𝐺 such that 𝐺′ ≥𝑇 𝐴 and 𝐺 is not of PA degree. ★

On the other hand, one cannot adapt the proof of Theorem 3.2.6 to show that
WKL admits PA avoidance. Indeed, the class of {0, 1}-valued DNC functions
is Π0

1.

Exercise 5.1.6. Try to adapt the proof of Theorem 3.2.6 to show that any
non-empty Π0

1 class admits a member of non-PA degree. Identify the point of
failure. ★

The main structural difference between the cone avoidance proof of Theo-
rem 3.2.1 and the PA avoidance proof of Theorem 5.1.3 is in Case 2: Assuming
the forcing question gives a negative answer independently to 𝑝 ?⊢Φ𝐺

𝑒 (𝑥)↓= 0
and 𝑝 ?⊢Φ𝐺

𝑒 (𝑥)↓= 1, we use the existence of a single extension (which in
the proof of Theorem 5.1.3 is 𝑝 itself) forcing simultaneously ¬(Φ𝐺

𝑒 (𝑥)↓= 0)
and ¬(Φ𝐺

𝑒 (𝑥)↓= 1). Assuming the functional is {0, 1}-valued, then the ex-
tension forces divergence. This ability to give a single extension witnessing
simultaneously two independent negative answers is the core feature of PA
avoidance.

5.2 Weak merging 55

Definition 5.1.7. Given a notion of forcing (ℙ,≤) and a family of formulas Γ,
a forcing question is Γ-merging if for every 𝑝 ∈ ℙ and every pair of Γ-
formulas 𝜑0(𝐺), 𝜑1(𝐺), if 𝑝 ?⊢𝜑0(𝐺) and 𝑝 ?⊢𝜑1(𝐺) both hold, then there
is an extension 𝑞 ≤ 𝑝 forcing 𝜑0(𝐺) ∧ 𝜑1(𝐺). ♦

Note that a forcing question for Σ0
𝑛 formulas induces a forcing question for Π0

𝑛

formulas by considering the complement. Thus, by extension, we say that a
forcing question for Σ0

𝑛 formulas is Π0
𝑛-merging if, whenever 𝑝 ?⊬𝜑0(𝐺) and

𝑝 ?⊬𝜑1(𝐺), there is an extension forcing ¬𝜑0(𝐺) ∧ ¬𝜑1(𝐺).

Remark 5.1.8. In Figure 3.1, the forcing questions at the left-most position
are Σ0

1-merging, and the ones at the right-most position are Π0
1-merging. We

shall see examples of Π0
1 forcing questions at intermediary positions. ★

We have the necessary ingredients to prove our abstract theorem on PA
avoidance.

Theorem 5.1.9
Let (ℙ,≤) be a notion of forcing with a Σ0

1-preserving Π0
1-merging forcing

question. For every sufficiently generic filter F, 𝐺F is not of PA degree.

Proof. It suffices to prove the following lemma:

Lemma 5.1.10. For every condition 𝑝 ∈ ℙ and every Turing index 𝑒 ∈ ℕ,
there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 not to be a DNC2 function. ★

Proof. Consider the following set

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : 𝑝 ?⊢Φ𝐺
𝑒 (𝑥)↓= 𝑣}

Since the forcing question is Σ0
1-preserving, the set 𝑈 is Σ0

1. There are three
cases:

▶ Case 1: (𝑥,Φ𝑥(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ such that Φ𝑥(𝑥)↓. By Property
(1) of the forcing question, there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 (𝑥)↓=
Φ𝑥(𝑥).

▶ Case 2: (𝑥, 0), (𝑥, 1) ∉ 𝑈 for some 𝑥 ∈ ℕ. Since the forcing question
is Π0

1-merging, there is an extension 𝑞 ≤ 𝑝 forcing ¬(Φ𝐺
𝑒 (𝑥)↓= 0) ∧

¬(Φ𝐺
𝑒 (𝑥)↓= 1), hence forcing Φ𝐺

𝑒 not to be a DNC2 function.
▶ Case 3: None of Case 1 and Case 2 holds. Then 𝑈 is a Σ0

1 graph of a
{0, 1}-valued DNC function. This contradicts the fact that 0 is not PA.

We are now ready to prove Theorem 5.1.9. Given 𝑒 ∈ ℕ, let D𝑒 be the set
of all conditions 𝑞 ∈ ℙ forcing Φ𝐺

𝑒 not to be a DNC2 function. It follows from
Lemma 5.1.10 that every D𝑒 is dense, hence every sufficiently generic filter F
is {D𝑒 : 𝑒 ∈ ℕ}-generic, so 𝐺F is not of PA degree. This completes the proof
of Theorem 5.1.9.

5.2 Weak merging

In some cases, such as with disjunctive notions of forcing with Σ0
1-preserving

disjunctive forcing questions, the forcing question is not Π0
1-merging simply

56 5 Compactness avoidance

6: The idea is the following: We considered
so far only valuations with a singleton do-
main, thus there were at most 2 incompati-
ble such valuations. Considering valuations
with finite domain is a way to obtain more
pairwise incompatible valuations.

because given a pair of Π0
1 formulas 𝜑0(𝐺) and 𝜑1(𝐺) the extension might

force 𝜑0(𝐺0) on the left side, and 𝜑1(𝐺1) on the right side. If however one
considers three Π0

1 formulas, by the pigeonhole principle, two of them must
be forced on the same side. We will later consider tree-like notions of forcing
whose number of disjunctive clauses might increase over extension, thus
requiring a larger number of formulas to find an extension forcing two of them
simultaneously. This motivates the following definition.

Definition 5.2.1. Given a notion of forcing (ℙ,≤) and a family of formu-
las Γ, a forcing question is weakly Γ-merging55: Note that in the definition of a weakly Γ-

merging forcing question, the parameter 𝑘
might depend on the condition 𝑝.

if for every 𝑝 ∈ ℙ, there is
some 𝑘 ∈ ℕ such that for every 𝑘-tuple of Γ-formulas 𝜑0(𝐺), . . . , 𝜑𝑘−1(𝐺),
if 𝑝 ?⊢𝜑𝑖(𝐺) for each 𝑖 < 𝑘, then there is an extension 𝑞 ≤ 𝑝 and two
indices 𝑖 < 𝑗 < 𝑘 such that 𝑞 forces 𝜑𝑖(𝐺) ∧ 𝜑 𝑗(𝐺). ♦

The following exercise shows that the forcing question of the Dzhafarov-
Jockusch theorem is weakly Π0

1-merging, with the appropriate adaptation
to disjunctive forcing notions.

Exercise 5.2.2. Consider the question of forcing of Exercise 3.4.10. Let {𝜑 𝑗

0(𝐺),
𝜑
𝑗

1(𝐺) : 𝑗 < 3} be a family of Σ0
1 formulas. Show that if for each 𝑗 < 3,

𝑝 ?⊬𝜑 𝑗

0(𝐺0) ∨𝜑
𝑗

1(𝐺1), then there is an extension 𝑞 ≤ 𝑝, a side 𝑖 < 2 and two
indices 𝑎 < 𝑏 < 3 such that 𝑞 forces ¬𝜑𝑎

𝑖
(𝐺𝑖) ∧ ¬𝜑𝑏

𝑖
(𝐺𝑖). ★

As for every avoidance or preservation notion, the key diagonalization lemma
is based on a 3-case analysis. The first case says that the Turing functional
outputs some erroneous description of an object, while the second case en-
sures that the Turing functional is partial. The two first cases are not mutually
exclusive. The third case, which consists of the negation of Case 1 and Case 2,
cannot happen, because otherwise, there will be an effective description of
some uncomputable object. For cone avoidance, preservation of 1 hyperimmu-
nity, or preservation of 1 non-Σ0

1 definition, the third case was trivial. Working
with weakly merging forcing questions yields the first non-trivial case analysis.
Let us first introduce some terminology.

A valuation6 is a partial {0, 1}-valued function ℎ ⊆ ℕ → 2. A valuation is
finite if it has finite support, that is, dom ℎ is finite. A valuation ℎ is correct if
for every 𝑛 ∈ dom ℎ, Φ𝑛(𝑛)↓≠ ℎ(𝑛). Two valuations 𝑓 and ℎ are compatible
if for every 𝑛 ∈ dom 𝑓 ∩ dom ℎ, 𝑓 (𝑛) = ℎ(𝑛).

Lemma 5.2.3 (Liu [12]). Let𝑈 be a c.e. set of finite valuations. Either𝑈 con-
tains a correct valuation, or for every 𝑘 ∈ ℕ, there are 𝑘 pairwise incompatible
finite valuations outside of 𝑈 . ★

Proof. Suppose 𝑈 contains no correct valuation, otherwise we are done.
Let 𝑆 be the set of finite sets 𝐹 ⊆ ℕ such that for each 𝑛 ∉ 𝐹, either Φ𝑛(𝑛)↓,
or there is a valuation ℎ ∈ 𝑈 such that 𝐹 ∪ {𝑛} ⊆ dom ℎ and for every 𝑚 ∈
dom ℎ \ (𝐹 ∪ {𝑛}), Φ𝑚(𝑚)↓≠ ℎ(𝑚). Note that if 𝐹 ∉ 𝑆, this is witnessed by
some 𝑛 ∉ 𝐹.

Claim 1: ∅ ∉ 𝑆. Indeed, otherwise, for each 𝑛 ∈ ℕ, one of the two Σ0
1 cases

holds:

1. Φ𝑛(𝑛)↓ ;
2. there is a finite valuation ℎ ∈ 𝑈 such that 𝑛 ∈ dom ℎ and for every
𝑚 ≠ 𝑛, Φ𝑚(𝑚)↓≠ ℎ(𝑚).

5.2 Weak merging 57

Then one can compute a {0, 1}-valued DNC function by waiting on input 𝑛 for
either case to occur. Then output 1 −Φ𝑛(𝑛) in the former case, and 1 − ℎ(𝑛)
in the latter case. Since 𝑈 contains no correct valuation, ℎ(𝑛) = Φ𝑛(𝑛).
Claim 2: For any set 𝐹 ∉ 𝑆 and 𝑤 witnessing this fact, 𝐹 ∪ {𝑤} ∉ 𝑆. Indeed,
otherwise, for each 𝑛 ∉ 𝐹 ∪ {𝑤}, one of the two Σ0

1 cases holds:

1. Φ𝑛(𝑛)↓ ;
2. there is a finite valuation ℎ ∈ 𝑈 such that 𝐹 ∪ {𝑤, 𝑛} ⊆ dom ℎ and for

every 𝑚 ∉ 𝐹 ∪ {𝑤, 𝑛}, Φ𝑚(𝑚)↓≠ ℎ(𝑚).
Here again, one can compute a {0, 1}-valued DNC function by hardcoding the
appropriate values on 𝐹 ∪ {𝑤}, and for any 𝑛 ∉ 𝐹 ∪ {𝑤}, waiting for either
case to occur. In the first case, output 1 − Φ𝑚(𝑚), and in the second case,
output 1 − ℎ(𝑛). We cannot have Φ𝑛(𝑛)↓≠ ℎ(𝑛), otherwise ℎ would be a
counter-example to the fact that 𝑤 is a witness of 𝐹 ∉ 𝑆.

Using Claim 1 and Claim 2, one can define for any 𝑘 an infinite sequence
𝑛0 , 𝑛1 , . . . such that for any 𝑖 ∈ ℕ, 𝑛𝑖 witnesses that {𝑛 𝑗 : 𝑗 < 𝑖} ∉ 𝑆. There
are 2𝑖+1 many pairwise incompatible valuations with domain {𝑛 𝑗 : 𝑗 ≤ 𝑖}, and
none of them can be in𝑈 , as it would contradict the fact that 𝑛𝑖 is a witness of
{𝑛 𝑗 : 𝑗 < 𝑖} ∉ 𝑆.

We can prove the following abstract PA avoidance theorem using Liu’s lemma. [12]

Theorem 5.2.4
Let (ℙ,≤) be a notion of forcing with a Σ0

1-preserving weakly Π0
1-merging

forcing question. For every sufficiently generic filter F, 𝐺F is not of PA
degree.

Proof. It suffices to prove the following diagonalization lemma.

Lemma 5.2.5. For every condition 𝑝 ∈ ℙ and every Turing index 𝑒 ∈ ℕ, there
is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 not to be a DNC2 function. ★

Proof. Let 𝑘 ∈ ℕ witness that the forcing question is weakly Π0
1-merging

for 𝑝. Consider the following set

𝑈 = {ℎ finite valuation : 𝑝 ?⊢Φ𝐺
𝑒 is incompatible with ℎ}

Note that being incompatible is a Σ0
1 statement, so since the forcing question

is Σ0
1-preserving, the set 𝑈 is Σ0

1. There are three cases:

▶ Case 1: 𝑈 contains a correct valuation ℎ. By Property (1) of the forcing
question, there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 to be incompatible
with ℎ. In particular, 𝑞 forces Φ𝐺

𝑒 not to be a DNC2 function.
▶ Case 2: there are 𝑘 pairwise incompatible finite valuations ℎ0 , . . . , ℎ𝑘−1

outside of 𝑈 . Since the forcing question is Π0
1-merging, there is an

extension 𝑞 ≤ 𝑝 and two indices 𝑎 < 𝑏 < 𝑘 such that 𝑞 forces Φ𝐺
𝑒

to be compatible simultaneously with ℎ𝑎 and ℎ𝑏 . Since ℎ𝑎 and ℎ𝑏 are
incompatible, then 𝑞 forces Φ𝐺

𝑒 to be partial.
▶ Case 3: None of Case 1 and Case 2 holds. This case cannot happen by

Lemma 5.2.3.

We are now ready to prove Theorem 5.2.4. Given 𝑒 ∈ ℕ, let D𝑒 be the set
of all conditions 𝑞 ∈ ℙ forcing Φ𝐺

𝑒 not to be a DNC2 function. It follows from

58 5 Compactness avoidance

7: The statement was originally introduced
by Flood [30] under the name Ramsey-type
König’s lemma (RKL). It was later renamed
for consistency.

8: There exists an alternative simpler
proof [31] of this theorem which exploits
the fact that the class of {0, 1}-valued DNC
functions is Π0

1 and not simply closed in
Cantor space. The proof given in this book,
although more complex, is morally the “true”
proof, in that its combinatorics extend to
stronger theorems, such as Liu [32].

9: A Mathias precondition is a pair (𝜎, 𝑋)
such that ∀𝑥 ∈ 𝑋 𝑥 > |𝜎|, but 𝑋 might be
finite or empty.

Lemma 5.2.5 that every D𝑒 is dense, hence every sufficiently generic filter F
is {D𝑒 : 𝑒 ∈ ℕ}-generic, so 𝐺F is not of PA degree. This completes the proof
of Theorem 5.2.4.

5.3 Ramsey-type WKL

Both the original proof and the modern proof of Seetapun’s theorem involve Π0
1

classes of instances of RT1
2, and thus make use of compactness. It is natural to

ask whether this use is necessary. Liu’s theorem states that Ramsey’s theorem
for pairs admits PA avoidance. However, PA avoidance only means that full
compactness is not needed, but does not rule out the presence of some weak
form of compactness. As it turns out, Ramsey’s theorem for pairs implies
a weak form of compactness called the Ramsey-type weak König’s lemma
(RWKL). Informally, RWKL states that for every non-empty Π0

1 class P⊆ 2ℕ ,
there exists some infinite set 𝐻 which is homogeneous for one of the members
𝑋 ∈ P seen as an instance of RT1

2. However, the exact formulation requires
more technicality not to imply the existence of 𝑋.

Definition 5.3.1. Let𝑇 ⊆ 2<ℕ be an infinite binary tree. A finite set 𝐹 ⊆ ℕ is
homogeneous for 𝑇 if {𝜎 ∈ 𝑇 : (∀𝑥 ∈ 𝐹)𝜎(𝑥) = 𝑖} is infinite for some 𝑖 < 2.
An infinite set 𝐻 ⊆ ℕ is homogeneous for 𝑇 if every finite subset of it is
homogeneous for 𝑇. ♦

By extension, we say that an infinite set 𝐻 is homogeneous for a Π0
1 class P

if it is homogeneous for a tree 𝑇 such that P = [𝑇]. The Ramsey-type weak
König’s lemma (RWKL)7 is the statement “Every infinite binary tree admits an
infinite homogeneous set.”

Proposition 5.3.2 (Flood [30]). RT2
2 implies RWKL over RCA0. ★

Proof. Let 𝑇 ⊆ 2<ℕ be an infinite binary tree. Define 𝑓 : [ℕ]2 → 2 by
𝑓 (𝑥, 𝑦) = 𝜎𝑦(𝑥), where 𝜎𝑦 is the left-most element of 𝑇 of length 𝑦. Any
infinite homogeneous set for 𝑓 is homogeneous for 𝑇.

The remainder of this section is devoted to the proof that RWKL admits PA
avoidance, hence is strictly weaker than WKL0.8

Theorem 5.3.3 (Liu [12])
Let P ⊆ 2ℕ be a non-empty Π0

1 class. There is an infinite homogeneous
set 𝐻 for P of non-PA degree.

Proof. Let ℙ be the notion of forcing whose conditions are tuples (𝑘, ®𝜎,A)
where

1. 𝑘 ∈ ℕ is the number of parts ;
2. ®𝜎 = ⟨𝜎0 , . . . , 𝜎𝑘−1⟩ is a 𝑘-tuple of binary strings ;
3. A⊆ 𝑘𝜔 is a non-empty Π0

1 class of 𝑘-partitions.

One can see a condition 𝑝 = (𝑘, ®𝜎,A) as a 𝑘-tuple of families of Mathias
preconditions9 (𝜎𝑖 , 𝑋−1(𝑖) \ {0, . . . , |𝜎|}) for any 𝑋 ∈ A. We say that part 𝑖
of 𝑝 is acceptable if there exists some 𝑋 ∈ A such that 𝑋−1(𝑖) is infinite.

5.3 Ramsey-type WKL 59

10: Over extension, some parts of a condi-
tion might be splitting. The map keeps track
of which part refines which one. This map
may not be unique, but it does not matter.

11: The set 𝑈 plays the same role as in
Lemma 5.2.5.

The intended initial condition is (2, ⟨∅, ∅⟩,P). The interpretation of a condition
(𝑘, ®𝜎,A) is

[𝑘, ®𝜎,A] = {(𝐺0 , . . . , 𝐺𝑘−1) : ∃𝑋 ∈ A∀𝑖 < 𝑘 𝜎𝑖 ⊆ 𝐺𝑖 ⊆ 𝜎𝑖 ∪ 𝑋−1(𝑖)}

A condition 𝑞 = (ℓ , ®𝜏,B) extends 𝑝 = (𝑘, ®𝜎,A) if ℓ ≥ 𝑘 and there is a map10

𝑓 : ℓ → 𝑘 such that for every 𝑌 ∈ B, there is some 𝑋 ∈ Asuch that for every
𝑖 < ℓ , (𝜏𝑖 , 𝑌−1(𝑖)) Mathias extends (𝜎𝑖 , 𝑋−1(𝑖)), that is, 𝑌−1(𝑖) ⊆ 𝑋−1(𝑖) and
𝜎𝑖 ⊆ 𝜏𝑖 ⊆ 𝜎𝑖 ∪ 𝑋−1(𝑖). We say that part 𝑖 of 𝑞 refines part 𝑓 (𝑖) of 𝑝.

Given a condition 𝑝 = (𝑘, ®𝜎,A), we shall construct actually only two kinds of
extensions:

▶ A condition 𝑞 = (ℓ , ®𝜏,B) is a part 𝑖 extension of 𝑝 if ℓ = 𝑘, the extension
map 𝑓 is the identity function, and 𝜏𝑗 = 𝜎𝑗 for all 𝑗 ≠ 𝑖.

▶ A condition 𝑞 = (ℓ , ®𝜏,B) is a splitting extension of 𝑝 if, letting 𝑓 be the
map witnessing the extension, for every 𝑖 < ℓ , 𝜏𝑖 = 𝜎 𝑓 (𝑖).

Given a condition 𝑝 = (𝑘, ®𝜎,A), and some Turing index 𝑒, let 𝐼𝑒(𝑝) ⊆ 𝑘 be
the set of acceptable parts 𝑖 of 𝑝 which do not already force Φ𝐺

𝑒 not to be a
DNC2 function.

Lemma 5.3.4. For every condition 𝑝 = (𝑘, ®𝜎,A) and every Turing index 𝑒
such that 𝐼𝑒(𝑝) ≠ ∅, there is an extension 𝑞 ≤ 𝑝 such that 𝐼𝑒(𝑞) ⊊ 𝐼𝑒(𝑝). ★

Proof. We will either find a part 𝑖 extension 𝑞 ≤ 𝑝 for some 𝑖 ∈ 𝐼𝑒(𝑝) such
that 𝑞 which will force Φ𝐺

𝑒 not to be a DNC2 function on part 𝑖, in which case
𝐼𝑒(𝑞) = 𝐼𝑒(𝑝) \ {𝑖}, or a splitting extension forcing Φ𝐺

𝑒 not to be a DNC2
function on every part, in which case 𝐼𝑒(𝑞) = ∅.

Recall the notion of valuation from Theorem 5.2.4. Consider the following set:11

𝑈 =

{
ℎ finite valuation :

∀𝑋 ∈ A∃𝑖 ∈ 𝐼𝑒(𝑝) ∃𝜌 ⊆ 𝑋−1(𝑖)
Φ

𝜎𝑖∪𝜌
𝑒 is incompatible with ℎ

}
Note that by effective compactness, letting 𝑇 ⊆ 𝑘<ℕ be a computable tree
such that [𝑇] = A, the set 𝑈 can equivalently be defined as

𝑈 =

{
ℎ finite valuation :

∃𝑛∀𝜏 ∈ 𝑇 ∩ 𝑘𝑛 ∃𝑖 ∈ 𝐼𝑒(𝑝) ∃𝜌 ⊆ 𝜏−1(𝑖)
Φ

𝜎𝑖∪𝜌
𝑒 is incompatible with ℎ

}
Thus, the set 𝑈 is Σ0

1. There are three cases.

▶ Case 1: 𝑈 contains a correct valuation ℎ. Fix some 𝑋 ∈ A, and let
𝑖 ∈ 𝐼𝑒(𝑝) and 𝜌 ⊆ 𝑋−1(𝑖) be such that Φ𝜎𝑖∪𝜌

𝑒 is incompatible with ℎ.
Letting B = {𝑌 ∈ A : 𝜌 ⊆ 𝑌−1(𝑖)}, 𝜏𝑖 = 𝜎𝑖 ∪ 𝜌 and 𝜏𝑗 = 𝜎𝑗
otherwise, the condition (𝑘, ®𝜏,B) is a part 𝑖 extension of 𝑝 forcing Φ𝐺

𝑒

to be incompatible with ℎ on part 𝑖, hence forcing Φ𝐺
𝑒 not to be a DNC2

function on part 𝑖.
▶ Case 2: there are 𝑘+1 pairwise incompatible finite valuations ℎ0 , . . . , ℎ𝑘

outside of𝑈 . For each 𝑠 ≤ 𝑘, let B𝑠 ⊆ 𝑘ℕ be the Π0
1 class of all 𝑋 ∈ A

such that for every 𝑖 ∈ 𝐼𝑒(𝑝) and every 𝜌 ⊆ 𝑋−1(𝑖), Φ𝜎𝑖∪𝜌
𝑒 is compatible

with ℎ𝑠 . By assumption, B𝑠 ≠ ∅ for every 𝑠 ≤ 𝑘. We say that 𝑌 ∈
(𝑘𝑘+1)𝜔 is the refined partition of (𝑋0 , . . . , 𝑋𝑘) ∈ B0 × · · · × B𝑘 if for
every 𝜈 < 𝑘𝑘+1 interpreted as a 𝑘-ary string of length 𝑘 + 1, 𝑌−1(𝜈) =⋂
𝑠≤𝑘 𝑋−1

𝑠 (𝜈(𝑠)). Let B⊆ (𝑘𝑘+1)𝜔 be the class of all refined partitions

60 5 Compactness avoidance

12: The original proof of Liu’s theorem was
also using the decomposition into COH and
RT1

2. However, it directly proved that RT1
2 ad-

mits strong PA avoidance without using PA
avoidance of RWKL. Proving first PA avoid-
ance of RWKL enables to reduce the com-
plexity of each forcing, by separating the
compactness from the disjunction issues.

of members of B0 ×· · ·×B𝑘 . By the pigeonhole principle, for every 𝜈 ∈
𝑘𝑘+1, there is some 𝑖𝜈 ∈ 𝑘 and some 𝑠 < 𝑡 ≤ 𝑘 such that 𝜈(𝑠) = 𝜈(𝑡) =
𝑖𝜈. Let 𝑓 : 𝑘𝑘+1 → 𝑘 be the defined by 𝑓 (𝜈) = 𝑖𝜈. For each 𝜈 ∈ 𝑘𝑘+1,
let 𝜏𝜈 = 𝜎 𝑓 (𝜈). The condition 𝑞 = (𝑘𝑘+1 , ®𝜏,B) is a splitting extension
of 𝑝. Moreover, every part 𝜈 of 𝑞 refining some part 𝑖 ∈ 𝐼𝑒(𝑝) of 𝑝
forces Φ𝐺

𝑒 to be compatible with ℎ𝑠 and ℎ𝑡 , for 𝑠 < 𝑡 ≤ 𝑘 such that
𝜈(𝑠) = 𝜈(𝑡) = 𝑓 (𝜈). Since ℎ𝑠 and ℎ𝑡 are incompatible, such part 𝜈 of 𝑞
forces Φ𝐺

𝑒 to be partial, hence 𝜈 ∉ 𝐼𝑒(𝑞). Last, if part 𝜈 of 𝑞 refines some
part 𝑖 ∉ 𝐼𝑒(𝑝) of 𝑝, then 𝜈 ∉ 𝐼𝑒(𝑞), so 𝐼𝑒(𝑞) = ∅.

▶ Case 3: None of Case 1 and Case 2 holds. This case cannot happen by
Lemma 5.2.3.

Consider an infinite, sufficiently generic decreasing sequence of conditions
𝑝0 ≥ 𝑝1 ≥ . . . with 𝑝𝑠 = (𝑘𝑠 , ®𝜎𝑠 ,A𝑠), together with the refinement maps
𝑓𝑠 : 𝑘𝑠+1 → 𝑘𝑠 witnessing the extensions. Note that each condition has an
acceptable part, and if part 𝑖 of 𝑝𝑠+1 is acceptable, then so is part 𝑓𝑠(𝑖) of 𝑝𝑠 .
Thus, by König’s lemma, there exists a sequence 𝑃 ∈ 𝜔𝜔 such that for every 𝑠,
part 𝑃(𝑠) of 𝑝𝑠 is acceptable, and part 𝑃(𝑠 + 1) of 𝑝𝑠+1 refines part 𝑃(𝑠) of 𝑝𝑠 ,
that is, 𝑓𝑠(𝑃(𝑠 + 1)) = 𝑃(𝑠). This induces a set 𝐺𝑃 defined by 𝐺 =

⋃
𝑠 𝜎𝑠,𝑃(𝑠).

By genericity of the sequence, 𝐺𝑃 is infinite. Moreover, by Lemma 5.3.4, 𝐺𝑃
is not of PA degree. This completes the proof of Theorem 5.3.3.

5.4 Liu’s theorem

Liu’s theorem states that Ramsey’s theorem for pairs admits PA avoidance.
Recall that the modern proof of Seetapun’s theorem (Theorem 3.4.11) was
divided into a proof of cone avoidance of COH and a proof of strong cone
avoidance of RT1

2. The proof of Liu’s theorem follows the same structure.

Recall that an infinite set 𝐶 is cohesive for a sequence of sets ®𝑅 = 𝑅0 , 𝑅1 , . . .

if for every 𝑛 ∈ ℕ, 𝐶 ⊆∗ 𝑅𝑛 or 𝐶 ⊆∗ 𝑅𝑛 . The cohesiveness principle (COH)
is the problem whose instances are infinite sequences of sets, and whose
solutions are infinite cohesive sets.

Exercise 5.4.1. Combine Exercise 3.4.3 and Exercise 5.1.5 to prove that COH
admits PA avoidance. ★

Exercise 5.4.2. Recall the notion of computable Mathias forcing from Exer-
cise 3.2.8. Given a condition (𝜎, 𝑋) and aΣ0

1 formula 𝜑(𝐺), let (𝜎, 𝑋) ?⊢𝜑(𝐺)
hold if there is some 𝜌 ⊆ 𝑋 such that 𝜑(𝜎 ∪ 𝜌) holds.

1. Show that this is a Σ0
1-preserving, Π0

1-merging forcing question.
2. Deduce that COH admits PA avoidance. ★

Our last step consists in proving that RT1
2 admits strong PA avoidance.12

Theorem 5.4.3 (Liu [12])
For every set 𝐴, there is an infinite subset 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴 of non-PA
degree.13

13: From many viewpoints, the proof of this
theorem will be similar to the proof of The-
orem 3.4.6. It is strongly advised to have a
good understanding of the latter proof.

5.4 Liu’s theorem 61

14: This is the only difference with the no-
tion of forcing of Theorem 3.4.6.

15: The set 𝑈 is a combination of the forc-
ing question of Theorem 3.4.6, but working
with valuations due to the disjunctive nature
of the forcing question.

Proof. Fix 𝐴. As in Theorem 3.4.6, we shall build two sets 𝐺0 , 𝐺1 simultane-
ously, with 𝐺0 ⊆ 𝐴 and 𝐺1 ⊆ 𝐴. For simplicity, let 𝐴0 = 𝐴 and 𝐴1 = 𝐴.

The two sets will be constructed through a variant of Mathias forcing, whose
conditions are triples (𝜎0 , 𝜎1 , 𝑋) where

1. (𝜎𝑖 , 𝑋) is a Mathias condition for each 𝑖 < 2 ;
2. 𝜎𝑖 ⊆ 𝐴𝑖 ;
3. 𝑋 is not of PA degree14.

The interpretation [𝜎0 , 𝜎1 , 𝑋] of a condition (𝜎0 , 𝜎1 , 𝑋) is the class

[𝜎0 , 𝜎1 , 𝑋] = {(𝐺0 , 𝐺1) : ∀𝑖 < 2 𝜎𝑖 ⪯ 𝐺𝑖 ⊆ 𝜎𝑖 ∪ 𝑋}

A condition (𝜏0 , 𝜏1 , 𝑌) extends (𝜎0 , 𝜎1 , 𝑋) if (𝜏𝑖 , 𝑌) Mathias extends (𝜎𝑖 , 𝑋)
for each 𝑖 < 2. Any filter F induces two sets 𝐺F,0 and 𝐺F,1 defined by
𝐺F,𝑖 =

⋃{𝜎𝑖 : (𝜎0 , 𝜎1 , 𝑋) ∈ F}. Note that (𝐺F,0 , 𝐺F,1) ∈
⋂{[𝜎0 , 𝜎1 , 𝑋] :

(𝜎0 , 𝜎1 , 𝑋) ∈ F}.

The goal is therefore to build two infinite sets 𝐺0 , 𝐺1, satisfying the following
requirements for every 𝑒0 , 𝑒1 ∈ ℕ:

R𝑒0 ,𝑒1 : Φ𝐺0
𝑒0 is not DNC2 ∨Φ

𝐺1
𝑒1 is not DNC2

If every requirement is satisfied, then a pairing argument shows that either 𝐺0,
or 𝐺1 is not of PA degree. We make the following assumption:

There is no infinite set 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴 of non-PA degree. (H1)

Under this assumption, one can prove that if F is sufficiently generic, then
both 𝐺F,0 and 𝐺F,1 are infinite.

Lemma 5.4.4. Suppose (H1). Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition and 𝑖 < 2.
There is an extension (𝜏0 , 𝜏1 , 𝑌) of 𝑝 and some 𝑛 > |𝜎𝑖| such that 𝑛 ∈ 𝜏𝑖 .★

Proof. If 𝑋 ∩ 𝐴𝑖 is empty, then 𝑋 ⊆ 𝐴1−𝑖 , but 𝑋 is of non-PA degree, which
contradicts (H1). Thus, there is 𝑛 ∈ 𝑋∩𝐴𝑖 . Let 𝜏𝑖 = 𝜎𝑖∪{𝑛}, and 𝜏1−𝑖 = 𝜎1−𝑖 .
Then, (𝜏0 , 𝜏1 , 𝑋 \ {0, . . . , 𝑛 − 1}) is an extension of 𝑝 such that 𝑛 ∈ 𝜏𝑖 .

We will now prove the core lemma.

Lemma 5.4.5. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition, and 𝑒0 , 𝑒1 ∈ ℕ. There is
an extension (𝜏0 , 𝜏1 , 𝑌) of 𝑝 forcing R𝑒0 ,𝑒1 . ★

Proof. Consider the following set15

𝑈 =

{
ℎ finite valuation :

∀𝑍0 ⊔ 𝑍1 = 𝑋 ∃𝑖 < 2 ∃𝜌 ⊆ 𝑍𝑖

Φ
𝜎𝑖∪𝜌
𝑒𝑖 is incompatible with ℎ

}
Here again, the previous set is Σ0

1(𝑋), as it can be equivalently defined as{
ℎ finite valuation :

∃ℓ ∈ ℕ∀𝑍0 ⊔ 𝑍1 = 𝑋↾ℓ ∃𝑖 < 2 ∃𝜌 ⊆ 𝑍𝑖

Φ
𝜎𝑖∪𝜌
𝑒𝑖 is incompatible with ℎ

}
There are three cases:

62 5 Compactness avoidance

As in the proof of strong cone avoidance, we
are getting a Π0

1 class of instances of RT1
2.

In the proof of strong cone avoidance, we
simply picked a member of this class using
the cone avoidance basis theorem. Here,
since we need to avoid PA degrees, we can-
not pick a member, so we use RWKL instead
of WKL. The true complexity of this construc-
tion is hidden in the proof that RWKL admits
PA avoidance.

▶ Case 1: 𝑈 contains a correct valuation ℎ. Letting 𝑍0 = 𝐴0 ∩ 𝑋 and
𝑍1 = 𝐴1 ∩𝑋, there is some 𝑖 < 2 and some 𝜌 ⊆ 𝑍𝑖 such that Φ𝜎𝑖∪𝜌

𝑒𝑖 is
incompatible with ℎ. Letting 𝜏𝑖 = 𝜎𝑖 ∪ 𝜌 and 𝜏1−𝑖 = 𝜎1−𝑖 , the condition
(𝜏0 , 𝜏1 , 𝑋 \ {0, . . . ,max 𝜌}) is an extension of 𝑝 forcing Φ

𝐺𝑖
𝑒𝑖 to be

incompatible with ℎ, hence not being a DNC2 function.
▶ Case 2: there are 3 pairwise incompatible finite valuations ℎ0 , ℎ1 , ℎ2

outside of𝑈 . For each 𝑠 < 3, let P𝑠 ⊆ 2ℕ be the Π0
1 class of all𝑌𝑠 such

that, letting 𝑌𝑠,0 = 𝑌𝑠 and 𝑌𝑠,1 = 𝑌𝑠 , for every 𝑖 < 2 and every 𝜌 ⊆
𝑌𝑠,𝑖 ∩ 𝑋, Φ𝜎𝑖∪𝜌

𝑒𝑖 is compatible with ℎ𝑠 . By assumption, P𝑠 ≠ ∅ for
every 𝑠 < 3. Since RWKL admits PA avoidance (Theorem 5.3.3), there
is a decreasing sequence of sets 𝑋 ⊇ 𝑌0 ⊇ 𝑌1 ⊇ 𝑌2 such that 𝑌𝑠 is
homogeneous for P𝑠 for some color 𝑖𝑠 < 2, and 𝑌2 ⊕𝑌1 ⊕𝑌0 ⊕𝑋 is not
of PA degree. By the pigeonhole principle, there exist some 𝑠 < 𝑡 < 3
and some color 𝑖 < 2 such that 𝑖 = 𝑖𝑠 = 𝑖𝑡 . The condition (𝜎0 , 𝜎1 , 𝑌2)
is an extension of 𝑝 forcing Φ

𝐺𝑖
𝑒𝑖 to be compatible with ℎ𝑠 and ℎ𝑡 , hence

forcing Φ
𝐺𝑖
𝑒𝑖 to be partial.

▶ Case 3: None of Case 1 and Case 2 holds. This case cannot happen by
Lemma 5.2.3.

We are now ready to prove Theorem 5.4.3. Let Fbe a sufficiently generic filter
for this notion of forcing, and for each 𝑖 < 2, let 𝐺𝑖 = 𝐺F,𝑖 . By Lemma 5.4.4,
both sets are infinite. Moreover, by Lemma 5.4.5, either 𝐺0 or 𝐺1 is not of PA
degree. Letting 𝐻 be this set, it satisfies the statement of Theorem 5.4.3.

We can now prove Liu’s theorem by combining PA avoidance of COH and
strong PA avoidance of RT1

2.

Theorem 5.4.6 (Liu [12])
Every computable coloring 𝑓 : [ℕ]2 → 2 has an infinite 𝑓 -homogeneous
set of non-PA degree.

Proof. The proof follows the one of Theorem 3.4.1. Fix 𝑓 . Let ®𝑅 = 𝑅0 , 𝑅1 , . . .

be the computable sequence of sets defined for every 𝑥 ∈ ℕ by 𝑅𝑥 = {𝑦 ∈
ℕ : 𝑓 (𝑥, 𝑦) = 1}. By Exercise 5.4.1, there is an infinite ®𝑅-cohesive set 𝑋 ⊆ ℕ

of non-PA degree. In particular, for every 𝑥 ∈ 𝑋, lim𝑦∈𝑋 𝑓 (𝑥, 𝑦) exists. Let 𝑓 :
𝑋 → 2 be the limit coloring of 𝑓 , that is, 𝑓 (𝑥) = lim𝑦∈𝑋 𝑓 (𝑥, 𝑦). By Theo-
rem 5.4.3, there is an infinite 𝑓 -homogeneous set 𝑌 ⊆ 𝑋 for some color 𝑖 < 2
such that𝑌⊕𝑋 is of non-PA degree. Since for every 𝑥 ∈ 𝑌, lim𝑦∈𝑌 𝑓 (𝑥, 𝑦) = 𝑖,
one can thin out the set𝑌 to obtain an infinite 𝑓 -homogeneous subset𝐻 ⊆ 𝑌.

5.5 Randomness

Algorithmic randomness is a sub-field of computability theory studying the
amount of randomness contained in binary sequences taken individually. Con-
trary to the notion of effective computability which admits a robust mathematical
definition, randomness does not translate mathematically to a single notion,
but to a hierarchy of concepts. Nonetheless, randomness admits its own form
of robustness, by having many different characterizations based on multiple

5.5 Randomness 63

16: This is known as the Martin-Löf-Chaitin
thesis, and plays the same role as the
Church-Turing thesis for computability.

17: The proof of the existence of a universal
prefix-free machine goes as follows: Prove
the existence of a total computable function
𝑓 : ℕ → ℕ such that for every 𝑒 ∈ ℕ,
Φ 𝑓 (𝑒) is prefix-free and if Φ𝑒 is prefix-free,
then Φ 𝑓 (𝑒) = Φ𝑒 . Then, let

𝑀(1𝑒0𝜎) = Φ 𝑓 (𝑒)(𝜎)

paradigms. See Downey and Hirschfeldt [33] or Nies [34] for an introduction
on algorithmic randomness.

Among the notions of randomness, Martin-Löf randomness is widely considered
as capturing the intuitive idea of a random sequence.16 It can be equivalently
defined using multiple paradigms:

▶ Incompressibility: There should be no recognizable pattern in the se-
quence, which would yield a possibility to compress the sequence. This
approach due to Chaitin is based on Kolmogorov complexity.

▶ Unpredicability: One should not be able to predict the the bits of the
sequence. This approach is formalized using martingales.

▶ Measure: Random sequences should not satisfy any “rare” properties
which can be effectively described.

Kolmogorov complexity is probably the shortest way to define Martin-Löf ran-
domness. A prefix-free machine is a partial computable function 𝑀 : 2<ℕ →
2<ℕ whose domain is prefix-free, that is, if 𝜎, 𝜏 ∈ dom𝑀 with 𝜎 ≠ 𝜏, then they
are incomparable. A prefix-free machine 𝑀 is universal17 if for every prefix-free
machine 𝑁 , there is some 𝜌 ∈ 2<ℕ such that (∀𝜎 ∈ 2<ℕ)𝑀(𝜌𝜎) = 𝑁(𝜎).

Definition 5.5.1. Fix a universal prefix-free machine 𝑀. The Kolmogorov
complexity 𝐾𝑀(𝜎) of a string 𝜎 ∈ 2<ℕ is the length of the shortest string 𝜏 ∈
2<ℕ such that 𝑀(𝜏) = 𝜎. ♦

The Kolmogorov complexity of a string depends on the choice of a universal
prefix-free machine. Given another universal prefix-free machine 𝑁 , (∀𝜎 ∈
2<ℕ)𝐾𝑁 (𝜎) = 𝐾𝑀(𝜎) + O(1). Kolmogorov complexity is therefore an asymp-
totic notion of complexity. From now on, we omit the subscript 𝑀 and work
with inequalities to additive constant, noted ≤+.

Exercise 5.5.2. Show that for every 𝜎 ∈ 2<ℕ , 𝐾(𝜎) ≤+ |𝜎| + 2 log2(|𝜎|). ★

Definition 5.5.3 (Chaitin [35] and Levin [36]). A set 𝑋 ∈ 2ℕ is Martin-Löf
random18 18: This definition is independently due to

Chaitin and Levin, but coincides with the
notion of Martin-Löf randomness based of
measure.

if for every 𝑛 ∈ ℕ, 𝐾(𝑋↾𝑛) ≥+ 𝑛. ♦

The Lebesgue measure on Cantor space 2ℕ is the measure 𝜇 induced by
letting 𝜇([𝜎]) = 2−|𝜎| for every 𝜎 ∈ 2<ℕ . In particular, every open class U⊆
2ℕ being of the form

⋃
𝜎∈𝑊 [𝜎] for some prefix-free set 𝑊 ⊆ 2<ℕ , 𝜇(U) =∑

𝜎∈𝑊 [𝜎]. It follows that the Lebesgue measure of a closed class P ⊆ 2ℕ
is 1 − 𝜇(2ℕ \ P). In the case of closed classes, one can give a more direct
definition in terms of trees:

Exercise 5.5.4. The measure of a tree 𝑇 ⊆ 2<ℕ is defined as

𝜇(𝑇) = lim
𝑛

card{𝜎 ∈ 𝑇 : |𝜎| = 𝑛}
2𝑛

Show that 𝜇(𝑇) = 𝜇([𝑇]). ★

The following exercise shows the existence of a Π0
1 class of positive measure

containing only (but not all) Martin-Löf random sets.

Exercise 5.5.5. Fix a universal prefix-free machine 𝑀. For every 𝑐 ≥ 1,
let U𝑐 be the Σ0

1 class {𝑋 : ∃𝑛𝐾𝑀(𝑋↾𝑛) < 𝑛 − 𝑐} and let 𝑉𝑐 ⊆ 2<ℕ be a
prefix-free set of strings such that ⟦𝑉𝑐⟧ = U𝑐 and such that for every 𝜎 ∈ 𝑉𝑐 ,
𝐾𝑀(𝜎) < |𝜎| − 𝑐.

64 5 Compactness avoidance

21: Note that we prove a much stronger
statement since the closed class is not as-
sumed to be effectively closed. This actu-
ally corresponds to a proof that weak weak
König’s lemma admits strong PA avoidance.

22: A class is clopen if it is both closed and
open. Here, we use the fact that if

⋃
𝜎∈𝑊 [𝜎]

is an open class, for every 𝜖 > 0, there is a
finite subset 𝐹 ⊆ 𝑊 such that

𝜇(
⋃
𝜎∈𝐹

[𝜎]) > 𝜇(
⋃
𝜎∈𝑊

[𝜎]) − 𝜖

1. Show that
∑

𝜎∈𝑉𝑐 2−|𝜎|+𝑐 ≤ ∑
𝜎∈𝑉𝑐 2−𝐾𝑀 (𝜎) ≤ 1. 1919: For every prefix-free machine 𝑀 and

every set of strings 𝑆 ⊆ 2<ℕ ,∑
𝜎∈𝑆

2−𝐾𝑀 (𝜎) ≤ 1
2. Deduce that 𝜇(U𝑐) ≤ 2−𝑐 , hence that the Π0

1 class 2ℕ \ U𝑐 has positive
measure.20

20: If 𝑉 ⊆ 2<ℕ is prefix-free, then

𝜇(⟦𝑉⟧) =
∑
𝜎∈𝑉

2−|𝜎|

★

Given a measurable class Cand a cylinder [𝜎], we write 𝜇(C|[𝜎]) = 𝜇(C∩[𝜎])
𝜇([𝜎])

for the measure of C relative to [𝜎]. The Lebesgue measure satisfies the fol-
lowing theorem which happens to be a very powerful tool for the computability-
theoretic study of measure:

Theorem 5.5.6 (Lebesgue density)
Let C ⊆ 2ℕ be a measurable class of positive measure. For almost ev-
ery 𝑋 ∈ C, lim𝑛 𝜇(C|[𝑋↾𝑛]) = 1.

It follows from Lebesgue density theorem that for every 𝜖 > 0, there is a
cylinder [𝜎] such that 𝜇(C|[𝜎]) > 1 − 𝜖.

Weak weak König’s lemma is the restriction of weak König’s lemma to trees of
positive measure, that is, the statement “Every infinite binary tree of positive
measure admits an infinite path.” WWKL0 is RCA0 augmented with weak weak
König’s lemma. By Exercise 5.5.5, there exists a Π0

1 class of positive mea-
sure containing only Martin-Löf random sequences. Conversely, for every Π0

1
class P⊆ 2ℕ of positive measure and every Martin-Löf random sequence 𝑍,
there exists a string 𝜎 ∈ 2<ℕ such that 𝜎 ·𝑍 ∈ P. Thus, WWKL0 is equivalent
to the statement “For every set 𝑋, there exists a Martin-Löf random sequence
relative to 𝑋”. For these reasons, WWKL0 is considered as capturing proba-
bilistic arguments.

Seeing WWKL0 as a restriction of WKL0 which itself captures compactness
arguments, WWKL0 can be seen as a weaker notion of compactness. We now
prove that weak weak König’s lemma admits PA avoidance using a forcing
with closed classes of positive measure.21

Theorem 5.5.7
Every closed class P⊆ 2ℕ of positive measure admits a member of non-PA
degree.

Proof. Consider the notion of forcingℙwhose conditions are closed classes Q ⊆
2ℕ of positive measure, partially ordered by inclusion. A condition is its self
interpretation.

Lemma 5.5.8. For every condition Q ∈ ℙ and every Turing index 𝑒 ∈ ℕ, there
is an extension R ≤ Q forcing Φ𝐺

𝑒 not to be a DNC2 function. ★

Proof. By Lebesgue density theorem (Theorem 5.5.6), there is some 𝜎 ∈ 2<ℕ
such that 𝜇(Q|[𝜎]) > 0.9. For every 𝑥 ∈ ℕ and 𝑣 < 2, let U𝑥,𝑣 = {𝑋 :
Φ𝜎·𝑋
𝑒 (𝑥)↓= 𝑣}. Consider the following set

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : 𝜇(U𝑥,𝑣) > 0.2}

Note that the classes U𝑥,𝑣 are uniformly Σ0
1, so the set 𝑈 is Σ0

1. There are
three cases:

▶ Case 1: (𝑥,Φ𝑥(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ such that Φ𝑥(𝑥)↓. By assump-
tion, 𝜇(U𝑥,Φ𝑥 (𝑥)) > 0.2. Let C⊆ U𝑥,Φ𝑥 (𝑥) be a clopen22 subclass such
that 𝜇(C) > 0.2. Let Q𝜎 = {𝑋 ∈ 2ℕ : 𝜎 · 𝑋 ∈ Q}. By choice of 𝜎,

5.6 Avoiding closed classes 65

23: A tree is pruned it it has no leaves, in
other words if every node is extendible.

24: One usually writes ⟦𝐹𝑛⟧ for the clopen
class generated by 𝐹𝑛 . Indeed, using [𝐹𝑛]
would be confusing with the collection of
paths through a tree.

𝜇(Q𝜎) > 0.9, so𝜇(Q𝜎∩C) > 0.1. Finally, let R = {𝜎·𝑋 : 𝑋 ∈ Q𝜎∩C}.
The class R is a closed subclass of Q such that 𝜇(R|[𝜎]) > 0.1, thus
R is a valid extension. Furthermore, R forces Φ𝐺

𝑒 (𝑥)↓= Φ𝑥(𝑥).
▶ Case 2: (𝑥, 0), (𝑥, 1) ∉ 𝑈 for some 𝑥 ∈ ℕ. By assumption, 𝜇(Q𝑥,0) ≤

0.2 and 𝜇(Q𝑥,1) ≤ 0.2, so 𝜇(Q𝑥,0 ∪ Q𝑥,1) ≤ 0.4. Let R = {𝜎 · 𝑋 ∈ Q :
𝑋 ∉ Q𝑥,0 ∪ Q𝑥,1}. Since 𝜇(Q|[𝜎]) > 0.9, then 𝜇(R|[𝜎]) > 0.5). So R

is a valid extension of Q forcing ¬(Φ𝐺
𝑒 (𝑥)↓= 0) ∧¬(Φ𝐺

𝑒 (𝑥)↓= 1), hence
forcing Φ𝐺

𝑒 not to be a DNC2 function.
▶ Case 3: None of Case 1 and Case 2 holds. Then 𝑈 is a Σ0

1 graph of a
{0, 1}-valued DNC function. This contradicts the fact that 0 is not PA.

We are now ready to prove Theorem 5.5.7. Given 𝑒 ∈ ℕ, let D𝑒 be the set
of all conditions 𝑞 ∈ ℙ forcing Φ𝐺

𝑒 not to be a DNC2 function. It follows from
Lemma 5.5.8 that every D𝑒 is dense, hence every sufficiently generic filter F
is {D𝑒 : 𝑒 ∈ ℕ}-generic, so 𝐺F is not of PA degree. This completes the proof
of Theorem 5.5.7.

Exercise 5.5.9. Consider the notion of forcing of Theorem 5.5.7. Given a
condition P ⊆ 2ℕ , a string 𝜎 ∈ 2<ℕ such that 𝜇(Q|[𝜎]) > 0.9, and a Σ0

1
formula 𝜑(𝐺), let P?⊢𝜑(𝐺) iff 𝜇{𝑋 : 𝜑(𝜎 · 𝑋)} > 0.2.

1. Show that C?⊢𝜑(𝐺) is a Σ0
1-preserving, Π0

1-merging forcing question.
2. Deduce that if 𝐶 is a non-computable set and P⊆ 2ℕ is a closed class

of positive measure, there is a member 𝐺 ∈ P such that 𝐶 ≰𝑇 𝐺. ★

5.6 Avoiding closed classes

The notion of PA avoidance is an avoidance of a particular closed class:
the Π0

1 class P ⊆ 2ℕ of DNC2 functions. This class has two particularities:
First, it is effectively closed, hence can be represented by a computable tree.
Second, it is homogeneous, that is, if one considers the pruned23 tree𝑇 ⊆ 2<ℕ
corresponding to P, for every 𝜎, 𝜏 ∈ 𝑇 at the same level, the sub-trees below
𝜎 and 𝜏 coincide.

In this section, we generalize PA avoidance to avoid a larger collection of
closed classes, with no effectiveness or homogeneity constraint. Many natural
closed classes in 2ℕ with no computable member cannot even be computably
approximated by giving arbitrarily large initial segments of members.

Given a closed class C ⊆ 2ℕ , a trace is a collection of finite coded sets of
strings 𝐹0 , 𝐹1 , . . . such that for each 𝑛 ∈ ℕ, 𝐹𝑛 contains only strings of length
exactly 𝑛, and C∩⋃

𝜎∈𝐹𝑛 [𝜎] ≠ ∅.24 In other words, for every 𝑛 ∈ ℕ, there is
a string 𝜎 ∈ 𝐹𝑛 and some 𝑃 ∈ C such that 𝜎 ≺ 𝑃. A 𝑘-trace is a trace such
that card 𝐹𝑛 = 𝑘 for every 𝑛 ∈ ℕ. A constant-bound trace (c.b-trace) of C is
a 𝑘-trace for some 𝑘 ∈ ℕ.

Definition 5.6.1. A problem P admits constant-bound trace avoidance25 25: We defined the notion of closed classes
in Cantor space 2ℕ , but all the theorems
work equally for effectively compact classes
in Baire space ℕℕ . More precisely, it works
for every closed class C ⊆ ℎℕ for some
total computable function ℎ : ℕ → ℕ.

if for every set 𝑍 and every closed class C ⊆ 2ℕ with no 𝑍-computable
c.b-trace, every 𝑍-computable instance 𝑋 of P admits a solution 𝑌 such that
C has no 𝑍 ⊕ 𝑌-computable c.b-trace. ♦

66 5 Compactness avoidance

27: The proof actually shows that if U is a
c.e. set of blocks with no C-correct block
and if there is no 𝑘-disperse sequence of
blocks outside of 𝑈 , then there is a com-
putable 𝑘-trace of C.

Before proving that some problems admit constant-bound trace avoidance,
we shall start with a few exercises to get familiar with this seemingly artificial
notion. The two following exercises show that for a homogeneous Π0

1 class,
every constant-bound trace computes a member. Hence, c.b-trace avoidance
generalizes PA avoidance.

Exercise 5.6.2. Let C ⊆ 2ℕ be a Π0
1 class. Show that every 𝑘-trace of C

computes a 1-trace of C. ★

Exercise 5.6.3. Let C ⊆ 2ℕ be a homogeneous closed class. Show that
every 1-trace of C computes a member of C. ★

The following exercise shows that c.b-trace avoidance generalizes cone avoid-
ance.

Exercise 5.6.4. Let 𝐶 be a non-computable set. Show that {𝐶} does not
admit any computable c.b-trace. ★

As usual, the core lemma involved in proofs of constant-bound trace avoidance
is based on a 3-case analysis. As in PA avoidance for weakly merging forcing
questions, the case analysis for preservation of c.b-traces is non-trivial and
based on a combinatorial lemma. Let us introduce some piece of terminology
which will be helpful in working with constant-bound traces.

A block is a finite set of strings all of which have the same length. We write B𝑛

for the set of all blocks 𝐹 ⊆ 2𝑛 and B=
⋃
𝑛 B𝑛 . Given a closed class C⊆ 2ℕ ,

a block 𝐹 ∈ B𝑛 is C-correct if 𝐹 = {𝜇 ∈ 2𝑛 : C∩ [𝜇] ≠ ∅}. In other words,
𝐹 is C-correct if it is some level in the pruned tree representing C. Given
𝑛, 𝑘 ∈ ℕ, a finite collection of blocks 𝑉 ⊆ B𝑛 is 𝑘-disperse if for every 𝑘-
partition (𝑃𝑠 : 𝑠 < 𝑘) of 𝑉 , there is some 𝑠 < 𝑘 such that

⋂
𝐹∈𝑃𝑠 𝐹 = ∅. The

following exercise emphasises a core property of 𝑘-disperse sequences:

Exercise 5.6.5. Fix 𝑛, 𝑘 ∈ ℕ, and let 𝑉 ⊆ B𝑛 be a 𝑘-disperse sequence. If
𝐸 ∈ B𝑛 is a block which intersects2626: By intersects, we mean that 𝐹 ∩ 𝐸 ≠ ∅

for every 𝐹 ∈ 𝑉 .
every element of 𝑉 , then card𝐸 > 𝑘.★

We now prove the core combinatorial lemma which frames the 3-case analy-
sis.

Lemma 5.6.6 (Liu [32]). Let C⊆ 2ℕ be a closed class with no computable
c.b-trace. Let 𝑈 ⊆ B be a c.e. set of blocks. Either 𝑈 contains a C-correct
block, or for every 𝑘 ∈ ℕ, there is some 𝑛 ∈ ℕ such that the set B𝑛 \𝑈 is
𝑘-disperse. ★

Proof. Suppose that 𝑈 does not contain any C-correct block.27 For every
𝑛 ∈ ℕ, let 𝑉𝑛 = B𝑛 \𝑈 . Fix some 𝑘 ∈ ℕ. Suppose that for every 𝑛 ∈ ℕ, 𝑉𝑛
is not 𝑘-disperse, otherwise we are done. Since 𝑉𝑛 is co-c.e. uniformly in 𝑛,
there exists a co-c.e. enumeration (𝑉𝑛,𝑡)𝑡∈ℕ of𝑉𝑛 . Since𝑉𝑛 is not 𝑘-disperse,
there exists some 𝑡 ∈ ℕ and a 𝑘-partition (𝑃𝑛,𝑠 : 𝑠 < 𝑘) of 𝑉𝑛,𝑡 such that
for each 𝑠 < 𝑘,

⋂
𝐹∈𝑃𝑛,𝑠 𝐹 ≠ ∅. Such 𝑘-partition can be computed uniformly

in 𝑛. Moreover, since 𝑉𝑛 contains a C-correct block, then there is some 𝑠 < 𝑘

such that 𝑃𝑛,𝑠 contains a C-correct block, hence for every 𝜎 ∈ ⋂
𝐹∈𝑃𝑛,𝑠 𝐹,

C∩ [𝜎] ≠ ∅. For each 𝑛, let 𝐸𝑛 be obtain by picking a string in each set⋂
𝐹∈𝑃𝑛,𝑠 𝐹 for each 𝑠 < 𝑘. The sequence (𝐸𝑛)𝑛∈ℕ is a computable 𝑘-trace

of C, contradicting the hypothesis.

5.6 Avoiding closed classes 67

Let us illustrate preservation of constant-bound traces using the simplest notion
of forcing, namely, Cohen forcing.

Theorem 5.6.7
Let C ⊆ 2ℕ be a closed class with no computable c.b-trace. For every
sufficiently Cohen generic set 𝐺, C admits no 𝐺-computable c.b-trace.

Proof. It suffices to prove the following lemma.

Lemma 5.6.8. For every condition 𝜎 ∈ 2<ℕ , every Turing index 𝑒 ∈ ℕ and
every 𝑘 ∈ ℕ, there is an extension 𝜏 ⪰ 𝜎 forcing Φ𝐺

𝑒 not to be a 𝑘-trace of C.★

Proof. We can assume without loss of generality that Φ𝑒 is a 𝑘-trace func-
tional, that is, whenever Φ𝑋

𝑒 (𝑛)↓, then the output is a block of size 𝑘, whose
strings have length 𝑛. Fix a condition 𝜎. Consider the following set:

𝑈 = {𝐹 ∈ B𝑛 : 𝑛 ∈ ℕ, ∃𝜏 ⪰ 𝜎 Φ𝜏
𝑒 (𝑛)↓ ∩𝐹 = ∅}

Note that the set 𝑈 is Σ0
1. There are three cases:

▶ Case 1: there is some 𝑛 ∈ ℕ such that 𝑈 ∩ B𝑛 contains some C-
correct block 𝐹. Let 𝜏 ⪰ 𝜎 witness 𝐹 ∈ 𝑈 , that is, let 𝜏 ⪰ 𝜎 be such
that Φ𝜏

𝑒 (𝑛)↓ ∩𝐹 = ∅. Then 𝜏 forces Φ𝐺
𝑒 not to be a 𝑘-trace of C.

▶ Case 2: there is some 𝑛 ∈ ℕ such that B𝑛 \𝑈 is 𝑘-disperse. We claim
that for every 𝐹 ∈ B𝑛 \𝑈 , 𝜎 forces Φ𝐺

𝑒 (𝑛)↑ ∨Φ𝐺
𝑒 (𝑛)↓ ∩𝐹 ≠ ∅. Indeed,

if for some 𝑍 ∈ [𝜎], Φ𝑍
𝑒 (𝑛)↓ ∩𝐹 = ∅, then by the use property, there

is some 𝜏 ⪯ 𝑍 such that Φ𝜏
𝑒 (𝑥)↓ ∩𝐹 = ∅, contradicting the fact that

𝐹 ∈ B𝑛 \𝑈 . Thus 𝜎 forces

Φ𝐺
𝑒 (𝑛)↑ ∨ (∀𝐹 ∈ B𝑛 \𝑈) Φ𝐺

𝑒 (𝑛)↓ ∩𝐹 ≠ ∅

Since Φ𝑒 is a 𝑘-trace functional, and B𝑛 \ 𝑈 is 𝑘-disperse, then by
Exercise 5.6.5, 𝜎 forces Φ𝐺

𝑒 (𝑛)↑.
▶ Case 3: None of Case 1 and Case 2 holds. This cannot happen by

Lemma 5.6.6.

We are now ready to prove Theorem 5.6.7. Given 𝑒 , 𝑘 ∈ ℕ, let D𝑒 ,𝑘 be the
set of all conditions 𝜏 forcing Φ𝐺

𝑒 not to be a 𝑘-trace of C. It follows from
Lemma 5.6.8 that every D𝑒 ,𝑘 is dense, hence for every {D𝑒 ,𝑘 : 𝑒 , 𝑘 ∈ ℕ}-
generic set 𝐺, C admits no 𝐺-computable c.b-trace.

Looking more closely at the previous proof, the key feature of the forcing we
exploited was the existence of a Σ0

1-preserving forcing question such that, if it
does not hold for a finite number of Σ0

1 formulas, then there exists an extension
forcing all negations simultaneously. This motivates the following definition,
which is a strong form of Γ-merging.

Definition 5.6.9. Given a notion of forcing (ℙ,≤) and a family of formu-
las Γ, a forcing question is finitely Γ-merging if for every 𝑝 ∈ ℙ and every
finite sequence of Γ-formulas 𝜑0(𝐺), . . . , 𝜑ℓ−1(𝐺), if 𝑝 ?⊢𝜑𝑠(𝐺) holds for
every 𝑠 < ℓ , then there is an extension 𝑞 ≤ 𝑝 forcing

∧
𝑠<ℓ 𝜑𝑠(𝐺). ♦

As for Γ-merging forcing questions, we say that a forcing question for Σ0
𝑛

formulas is finitely Π0
𝑛-merging if negation of the forcing question is finitely

Π0
𝑛-merging. At this point, it should be clear how to prove the abstract theorem

for constant-bound trace avoidance. We leave it as an exercise:

68 5 Compactness avoidance

Exercise 5.6.10. Let C⊆ 2ℕ be a closed class with no computable constant-
bound trace. Let (ℙ,≤) be a notion of forcing with a Σ0

1-preserving, finitely
Π0

1-merging forcing question. Prove that for every sufficiently generic filter F,
C admits no 𝐺F-computable constant-bound trace. ★

Exercise 5.6.11. Let C⊆ 2ℕ be a closed class with no computable constant-
bound trace. Adapt the proof of Theorem 3.2.4 to show that for any set 𝐴,
there exists a set 𝐺 such that 𝐺′ ≥𝑇 𝐴 and C admits no 𝐺-computable
constant-bound trace. ★

Exercise 5.6.12. Let C⊆ 2ℕ be a closed class with no computable constant-
bound trace. Use computable Mathias forcing to prove that for every uniformly
computable sequence of sets ®𝑅 = 𝑅0 , 𝑅1 , . . . , there is an infinite ®𝑅-cohesive
set 𝐺 such that C admits no 𝐺-computable constant-bound trace. ★

Recall that some disjunctive or tree-like forcing questions are not even Π0
1-

merging. One can generalize Exercise 5.6.10 to such notions as we did in
Section 5.2.

Definition 5.6.13. Given a notion of forcing (ℙ,≤) and a family of formulas Γ,
a forcing question is weakly finitely Γ-merging if for every 𝑝 ∈ ℙ, there is a
𝑑 ∈ ℕ such that for every finite sequence of Γ-formulas 𝜑0(𝐺), . . . , 𝜑ℓ−1(𝐺),
if 𝑝 ?⊢𝜑𝑠(𝐺) holds for every 𝑠 < ℓ , there is a 𝑑-partition (𝑃𝑡 : 𝑡 < 𝑑) of
{0, . . . , ℓ − 1} such that for every 𝑡 < 𝑑, there is an extension 𝑞 ≤ 𝑝 forcing∧
𝑠∈𝑃𝑡 𝜑𝑠(𝐺). ♦

The previous definition is quite technical, but contains exactly the hypothesis
necessary to prove the following abstract theorem.

Theorem 5.6.14
Let C⊆ 2ℕ be a closed class with no computable c.b-trace. Let (ℙ,≤) be
a notion of forcing with a Σ0

1-preserving weakly finitely Π0
1-merging forcing

question. For every sufficiently generic filter F, Cadmits no 𝐺F-computable
c.b-trace.

Proof. It suffices to prove the following diagonalization lemma.

Lemma 5.6.15. For every condition 𝑝 ∈ ℙ, every Turing index 𝑒 ∈ ℕ and
every 𝑘 ∈ ℕ, there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 not to be a 𝑘-trace of C.★

Proof. Let 𝑑 ∈ ℕ witness that the forcing question is weakly finitely Π0
1-

merging for 𝑝. Consider the following set

𝑈 = {𝐹 ∈ B𝑛 : 𝑛 ∈ ℕ, 𝑝 ?⊢Φ𝐺
𝑒 (𝑛)↓ ∩𝐹 = ∅}

Since the forcing question is Σ0
1-preserving, the set 𝑈 is Σ0

1. There are three
cases:

▶ Case 1: there is some 𝑛 ∈ ℕ such that U∩ B𝑛 contains some C-
correct block 𝐹. By Property (1) of the forcing question, there is an
extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 (𝑛) ∩ 𝐹 = ∅. In particular, 𝑞 forces Φ𝐺
𝑒 not

to be a 𝑘-trace of C.
▶ Case 2: there is some 𝑛 ∈ ℕ such that B𝑛 \ U is 𝑘 · 𝑑-disperse. Since

the forcing question is weakly finitely Π0
1-merging with witness 𝑑, there

5.7 DNC and compactness 69

28: For any 𝑑-partition of a 𝑘 · 𝑑-disperse
family, one of the parts is 𝑘-disperse. In-
deed, otherwise, for each part 𝑡 < 𝑑, there
is a 𝑘-partition witnessing the failure. Putting
all these 𝑘-partitions together, we obtain a
failure of 𝑘 · 𝑑-dispersity of the family.

is a 𝑑-partition (𝑃𝑡 : 𝑡 < 𝑑) of B𝑛 \ U such that for every 𝑡 < 𝑑, there
is an extension 𝑞𝑡 ≤ 𝑝 forcing∧

𝐹∈𝑃𝑡

(
Φ𝐺
𝑒 (𝑛)↑ ∨Φ𝐺

𝑒 (𝑛) ∩ 𝐹 ≠ ∅
)

Let 𝑡 < 𝑑 be such that 𝑃𝑡 is 𝑘-disperse.28 Since Φ𝑒 is a 𝑘-trace func-
tional, by Exercise 5.6.5, the extension 𝑞𝑡 ≤ 𝑝 forces Φ𝐺

𝑒 (𝑛)↑.
▶ Case 3: None of Case 1 and Case 2 holds. This case cannot happen by

Lemma 5.6.6.

We are now ready to prove Theorem 5.6.14. Given 𝑒 , 𝑘 ∈ ℕ, let D𝑒 ,𝑘 be the
set of all conditions 𝑞 ∈ ℙ forcing Φ𝐺

𝑒 not to be a 𝑘-trace of C. It follows from
Lemma 5.2.5 that every D𝑒 ,𝑘 is dense, hence every sufficiently generic filter F
is {D𝑒 ,𝑘 : 𝑒 , 𝑘 ∈ ℕ}-generic, so Cadmits no 𝐺F-computable c.b-trace. This
completes the proof of Theorem 5.6.14.

Liu [32] proved that Ramsey’s theorem for pairs admits constant-bound trace
avoidance, following the same structure as his proof of PA avoidance, mutatis
mutandis. We leave the steps as exercises.

Exercise 5.6.16 (Liu [32]). Let C⊆ 2ℕ be a closed class with no computable
constant-bound trace. Adapt the proof of Theorem 5.3.3 to show that for any
non-empty Π0

1 class P ⊆ 2ℕ , there exists an infinite set 𝐻 homogeneous
for P such that C admits no 𝐻-computable constant-bound trace. ★

Exercise 5.6.17 (Liu [32]). Let C⊆ 2ℕ be a closed class with no computable
constant-bound trace. Adapt the proof of Theorem 5.4.3 using Exercise 5.6.16
to show that for any set 𝐴, there exists an infinite subset 𝐻 of 𝐴 or 𝐴 such
that C admits no 𝐻-computable constant-bound trace. ★

Exercise 5.6.18 (Liu [32]). Let C⊆ 2ℕ be a closed class with no computable
constant-bound trace. Combine Exercise 5.6.12 and Exercise 5.6.17 to show
that for any computable coloring 𝑓 : [ℕ]2 → 2, there exists an infinite 𝑓 -
homogeneous set 𝐻 ⊆ ℕ such that C admits no 𝐻-computable constant-
bound trace. ★

The notion of constant-bound trace avoidance is the right invariant property
strongly preserved by the pigeonhole principle to prevent it from computing
a 1-trace of a closed class C ⊆ 2ℕ . Indeed, if C admits a computable 𝑘-
trace 𝐹0 , 𝐹1 , . . . for some 𝑘 ∈ ℕ, one application of the pigeonhole principle
for 𝑘 colors yields an infinite 1-trace of C. This however leaves open the case
of closed classes with no computable member, but admitting a computable
1-trace.

Question 5.6.19. Is there a natural characterization of the closed classes
strongly avoided by the pigeonhole principle? ★

5.7 DNC and compactness

Recall that a function 𝑓 : ℕ → ℕ is diagonally non-computable (DNC) if
∀𝑒 𝑓 (𝑒) ≠ Φ𝑒(𝑒). PA degrees are those computing a {0, 1}-valued DNC

70 5 Compactness avoidance

29: The idea is the following: Given a list
𝑦0 , . . . , 𝑦𝑏−1 of 𝑏 integers, interpret each
integer as a 𝑏-tuple of integers, based on a
computable bijection.

𝑦0 𝑦0
0 𝑦1

0 . . . 𝑦𝑏−1
0

𝑦1 𝑦0
1 𝑦1

1 . . . 𝑦𝑏−1
1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

𝑦𝑏−1 𝑦0
𝑏−1 𝑦1

𝑏−1 . . . 𝑦𝑏−1
𝑏−1

Then, given 𝑏-many 𝑏-tuples of elements,
by a diagonal argument, one can create a
𝑏-tuple of integers which is different from
each element of this list, and re-interpret it
as an integer.
The difficulty comes from the fact that the
list 𝑦0 , . . . , 𝑦𝑏−1 is c.e., so one uses a DNC
function to create this diagonal 𝑏-tuple.

30: If C ⊆ 2ℕ is a closed class with
𝜇(C) ≥ 2−𝑐 for some 𝑐 ≥ 3, then

card{𝑛 ∈ ℕ : 𝜇(C∩ Q𝑛) < 2−2𝑐} < 2𝑐.

Indeed, let 𝐹 be a subset of it of size 2𝑐 and
let R𝐹 = {𝑋 ∈ 2ℕ : 𝐹 ∩𝑋 = ∅}. Note that

2ℕ = R𝐹 ∪
⋃
𝑛∈𝐹

Q𝑛

We have 𝜇(C∩ R𝐹) ≤ 2−2𝑐 , and 𝜇(C∩⋃
𝑛∈𝐹 Q𝑛) < 2𝑐 · 2−2𝑐 , so

2−𝑐 ≤ 𝜇(C) ≤ 2−2𝑐 + 2𝑐 · 2−2𝑐

which yields a contradiction when 𝑐 ≥ 3.

function. In this section, we consider the computational power of ℕ-valued
DNC functions. We shall see that the existence of DNC functions is equivalent
to a Ramsey-type form of compactness, called the Ramsey-type weak weak
König’s lemma. A Turing degree is DNC if it computes a DNC function. It is
often useful to think of DNC degrees as those computing a function which can
escape finite c.e. sets when a bound to their size is known.

Proposition 5.7.1 (Bienvenu, Patey and Shafer [37]). Let 𝑋 be a set. The
following are equivalent:

1. 𝑋 computes a DNC function ;
2. 𝑋 computes a function 𝑔 : ℕ2 → ℕ such that for every 𝑒 , 𝑏 ∈ ℕ, if

card𝑊𝑒 ≤ 𝑏, then 𝑔(𝑒 , 𝑏) ∉𝑊𝑒 . ★

Proof. (1) → (2)29: Let 𝑓 : ℕ → ℕ be a DNC function. For every 𝑒 , 𝑏 ∈ ℕ

and 𝑖 < 𝑏, let ℎ(𝑒 , 𝑏, 𝑖) be the index of the partial computable function
Φℎ(𝑒 ,𝑏,𝑖) which on any input 𝑥, waits for the 𝑖th element 𝑦𝑖 of 𝑊𝑒 to appear,
in order of apparition. It card𝑊𝑒 ≤ 𝑖, then the program will never termi-
nate, and Φℎ(𝑒 ,𝑏,𝑖) will be the nowhere-defined function. If card𝑊𝑒 > 𝑖, then
𝑦𝑖 is eventually found. Then, interpret 𝑦𝑖 as a 𝑏-tuple ⟨𝑦0

𝑖
, . . . , 𝑦𝑏−1

𝑖
⟩ and

output 𝑦 𝑖
𝑖
. In this case, Φℎ(𝑒 ,𝑏,𝑖)(ℎ(𝑒 , 𝑏, 𝑖)) ↓= 𝑦 𝑖

𝑖
, and 𝑓 (ℎ(𝑒 , 𝑏, 𝑖)) ≠ 𝑦 𝑖

𝑖
.

Let 𝑔(𝑒 , 𝑏) = ⟨ 𝑓 (ℎ(𝑒 , 𝑏, 0)), . . . 𝑓 (ℎ(𝑒 , 𝑏, 𝑏 − 1))⟩. Suppose for the contra-
diction that card𝑊𝑒 ≤ 𝑏 and 𝑔(𝑒 , 𝑏) ∈ 𝑊𝑒 . Say 𝑔(𝑒 , 𝑏) = 𝑦𝑖 ∈ 𝑊𝑒 . Then
𝑓 (ℎ(𝑒 , 𝑏, 𝑖)) = 𝑦 𝑖

𝑖
= Φℎ(𝑒 ,𝑏,𝑖)(ℎ(𝑒 , 𝑏, 𝑖)), contradicting the fact that 𝑓 is a DNC

function.

(2) → (1): Let 𝑔 : ℕ2 → ℕ be such that for every 𝑒 , 𝑏 ∈ ℕ, if card𝑊𝑒 < 𝑏,
then 𝑔(𝑒 , 𝑏) ∉ 𝑊𝑒 . For every 𝑒 ∈ ℕ, let ℎ(𝑒) be an index of the partial
computable function Φℎ(𝑒) which, on input 𝑥, waits until Φ𝑒(𝑒)↓. If 𝑥 = Φ𝑒(𝑒)↓,
then the program halts, otherwise it loops forever. In other words, 𝑊ℎ(𝑒) =
{Φ𝑒(𝑒)} if Φ𝑒(𝑒)↓, and𝑊ℎ(𝑒) = ∅ otherwise. The function 𝑓 : ℕ → ℕ defined
by 𝑓 (𝑒) = 𝑔(ℎ(𝑒), 1) is diagonally non-computable.

DNC degrees can be expressed as a form of compactness as follows: The
Ramsey-type weak weak König lemma (RWWKL) is the problem whose in-
stances are binary trees of positive measure, and whose solutions are infinite
homogeneous sets for the tree. It is a problem at the intersection between weak
weak König’s lemma – corresponding to the existence of random sequences –
and the Ramsey-type König’s lemma, – the compactness part of Ramsey’s
theorem for pairs.

Proposition 5.7.2. Let 𝑋 be a set. The following are equivalent:

1. 𝑋 computes a DNC function;
2. Every Π0

1 class P ⊆ 2ℕ of positive measure admits an infinite 𝑋-
computable homogeneous set. ★

Proof. (1) → (2): Fix a Π0
1 class P⊆ 2ℕ with 𝜇(P) ≥ 2−𝑐 for some 𝑐 ≥ 3.

Given a set 𝐻 ⊆ ℕ, let Q𝐻 = {𝑋 ∈ 2ℕ : 𝐻 ⊆ 𝑋}, and let Q𝑛 = Q{𝑛}. A finite
set 𝐹 ⊆ ℕ is valid if 𝜇(P∩ Q𝐹) ≥ 2−𝑐·2card 𝐹 . Note that ∅ is valid, and that if 𝐹
is valid, then it is homogeneous for P. For every finite set 𝐹 ⊆ ℕ, let𝑊ℎ(𝐹) be
the c.e. set of all 𝑛 ∈ ℕ such that 𝐹 ∪ {𝑛} is not valid. Let 𝑔 : ℕ2 → ℕ be the
function given by Proposition 5.7.1. By a measure-theoretic argument30, for
any valid set 𝐹, card𝑊ℎ(𝐹) < 2 · 𝑐 · 2card 𝐹 , so 𝑔(ℎ(𝐹), 2 · 𝑐 · 2card 𝐹) ∉𝑊ℎ(𝐹).
We can define an infinite set 𝐻 ⊆ ℕ such that every initial segment is valid. In
particular, 𝐻 is homogeneous for P.

5.8 DNC avoidance 71

(2) → (1): For every 𝑒 ∈ ℕ, let P𝑒 be the Π0
1 class of all elements 𝑋 such

that if Φ𝑒(𝑒)↓, then interpreting the output as a (𝑒 + 3)-tuple ⟨𝑥0
𝑒 , . . . , 𝑥

𝑒+2
𝑒 ⟩,

there is some 𝑠 < 𝑡 < 𝑒 + 3 such that 𝑋(𝑥𝑠𝑒) ≠ 𝑋(𝑥𝑡𝑒). Let P =
⋂
𝑒 P𝑒 . First,

notice that for every infinite homogeneous set 𝐻 = {𝑦0 < 𝑦1 < . . . } for P,
the 𝐻-computable function defined by 𝑓 (𝑒) = ⟨𝑦0 , . . . , 𝑦𝑒+1⟩ is diagonally
non-computable. Second, for every 𝑒, 𝜇(2ℕ \ P𝑒) ≤ 2 · 2−𝑒−3 = 2−𝑒−2, so
𝜇(P) ≥ 1 −∑

𝑒 2−𝑒−2 = 1/2. Thus, P has positive measure.

The Ramsey-type weak weak König lemma is a particular case of RWKL,
hence follows from Ramsey’s theorem for pairs. Thus, the existence of DNC
functions does not imply the existence of random sequences, and a fortiori of
PA degrees.

5.8 DNC avoidance

We now develop the techniques to prove that a problem does not imply the
existence of this weak notion of compactness. The framework of closed classes
avoidance of Section 5.6 admits a straightforward generalization to effectively
compacts in the Baire space ℕℕ . The class of ℕ-valued DNC functions is Π0

1
in the Baire space, but not compact, thus it does not fall within the scope of
this framework.

Definition 5.8.1. A problem P admits DNC avoidance31 31: Note the similarity between PA and
DNC avoidance.

if for every pair of
sets 𝑍 and 𝐷 ≤𝑇 𝑍 such that 𝑍 is not of DNC degree over 𝐷, every 𝑍-
computable instance 𝑋 of P admits a solution 𝑌 such that 𝑌 ⊕ 𝑍 is not of
DNC degree over 𝐷. ♦

Due to the similar nature of {0, 1}-valued and ℕ-valued DNC functions, proofs
of DNC avoidance are very similar to those of PA avoidance.

Exercise 5.8.2. Adapt the proof of Theorem 5.1.3 to show that for every suffi-
ciently Cohen generic set 𝐺, 𝐺 is not of DNC degree. ★

In the proof of PA avoidance, the Π0
1-merging property of the forcing question

is used in the second case, for forcing partiality. Since the functionals are
{0, 1}-valued, it suffices to merge two Π0

1 properties simultaneously to force
partiality. In the case of ℕ-valued functionals, infinitely many Π0

1 properties
need to be forced simultaneously.

Definition 5.8.3. Given a notion of forcing (ℙ,≤) and a family of formulas Γ,
a forcing question is countably Γ-merging if for every 𝑝 ∈ ℙ and every
countable sequence of Γ-formulas (𝜑𝑠(𝐺))𝑠∈ℕ , if 𝑝 ?⊢𝜑𝑠(𝐺) for each 𝑠 ∈ ℕ,
then there is an extension 𝑞 ≤ 𝑝 forcing ∀𝑠𝜑𝑠(𝐺). ♦

Being countably Π0
1-merging is a very strong properties, satisfied by very few

notions of forcing in practice. Indeed, DNC degrees being computationally very
weak, many natural problems imply their existence.

Theorem 5.8.4
Let (ℙ,≤) be a notion of forcing with aΣ0

1-preserving, countablyΠ0
1-merging

forcing question. For every sufficiently generic filter F, 𝐺F is not of DNC

72 5 Compactness avoidance

32: Note that contrary to PA avoidance, this
set ranges over ℕ×ℕ instead of ℕ×2. This
difference is important in Case 2, where one
needs to force countably many Π0

1 formulas
simultaneously.

33: One can modify the construction to en-
code any set 𝑍 instead of ∅′. The con-
struction is then 𝐴 ⊕ 𝑍 ⊕ ∅′-computable.
This generalization is due to Jockusch and
Shore [39].

degree.

Proof. It suffices to prove the following lemma:

Lemma 5.8.5. For every condition 𝑝 ∈ ℙ and every Turing index 𝑒 ∈ ℕ, there
is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 not to be a DNC function. ★

Proof. Consider the following set32

𝑈 = {(𝑥, 𝑣) ∈ ℕ2 : 𝑝 ?⊢Φ𝐺
𝑒 (𝑥)↓= 𝑣}

Since the forcing question is Σ0
1-preserving, the set 𝑈 is Σ0

1. There are three
cases:

▶ Case 1: (𝑥,Φ𝑥(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ such that Φ𝑥(𝑥)↓. By Property
(1) of the forcing question, there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 (𝑥)↓=
Φ𝑥(𝑥).

▶ Case 2: there is some 𝑥 ∈ ℕ such that for every 𝑦 ∈ ℕ, (𝑥, 𝑦) ∉

𝑈 . Since the forcing question is countably Π0
1-merging, there is an

extension 𝑞 ≤ 𝑝 forcing ∀𝑦¬(Φ𝐺
𝑒 (𝑥)↓= 𝑦), hence forcing Φ𝐺

𝑒 not to be
a DNC function.

▶ Case 3: None of Case 1 and Case 2 holds. Then 𝑈 is a Σ0
1 graph of a

DNC function. This contradicts the fact that 0 is not DNC.

We are now ready to prove Theorem 5.8.4. Given 𝑒 ∈ ℕ, let D𝑒 be the set
of all conditions 𝑞 ∈ ℙ forcing Φ𝐺

𝑒 not to be a DNC function. It follows from
Lemma 5.8.5 that every D𝑒 is dense, hence every sufficiently generic filter F
is {D𝑒 : 𝑒 ∈ ℕ}-generic, so 𝐺F is not of DNC degree. This completes the
proof of Theorem 5.8.4.

Exercise 5.8.6. Adapt the proof of Theorem 3.2.4 to show that for any set 𝐴,
there exists a set 𝐺 such that 𝐺′ ≥𝑇 𝐴 and 𝐺 is not of DNC degree. ★

5.9 Comparing avoidances

We have seen in Sections 3.5 and 3.6 that cone avoidance coincides with
other preservation notions, such as preservation of 1 non-Σ0

1 definition and
of 1 hyperimmunity. Cone avoidance does not imply PA avoidance, as WKL
satisfies the former, but not the latter. On the other hand, one can prove that
PA avoidance implies cone avoidance. For this, we need the following theorem,
which informally says that the computational distance between a set and its
Turing jump can be any non-zero Turing degree.

Theorem 5.9.1 (Posner and Robinson [38])
Let𝐴 be a non-computable set. There exists a set𝐺 such that𝐴⊕𝐺 ≥𝑇 𝐺′.

Proof. The idea is to build a 1-generic set 𝐺, which will encode ∅′33, so
that 𝐺 and 𝐴 allow to find the construction sequence. The construction itself
will be computable in 𝐴⊕ ∅′. We can assume without loss of generality that 𝐴
is not a c.e. set (otherwise, one replaces 𝐴 by its complement). Let (𝑊𝑒)𝑒∈ℕ
be an enumeration of the Σ0

1 subsets of 2<ℕ .

5.9 Comparing avoidances 73

Let 𝜎0 = 𝜖, the empty word. Suppose 𝜎𝑒 defined. Consider the set

𝐷𝑒 = {𝑚 : ∃𝜏 such that 𝜎𝑒∅′(𝑒)0𝑚1𝜏 ∈𝑊𝑒}.

Note that 𝐷𝑒 is a c.e. set. In particular as 𝐴 is not c.e. there is some 𝑚 ∈ 𝐷𝑒

with 𝑚 ∉ 𝐴 or some 𝑚 ∉ 𝐷𝑒 with 𝑚 ∈ 𝐴. Consider the smallest 𝑚 such that
we are in one case or the other. Note that ∅′ ⊕ 𝐴 allows to find uniformly this
integer 𝑚.

In the first case, let 𝜎𝑒+1 = 𝜎𝑒∅′(𝑒)0𝑚1𝜏 for the first string 𝜏 such that
𝜎𝑒∅′(𝑒)0𝑚1𝜏 is listed in 𝑊𝑒 . In the second case, let 𝜎𝑒+1 = 𝜎𝑒∅′(𝑒)0𝑚1.
Note that in this case no string of 𝑊𝑒 can extend 𝜎𝑒+1. We define 𝐺 as be-
ing 𝜎0 ⪯ 𝜎1 ⪯ 𝜎2 ⪯ This completes the construction.

It is clear that 𝐺 is 1-generic and computable in 𝐴 ⊕ ∅′. How do you now
compute ∅′ from 𝐺⊕𝐴? Suppose we know the string 𝜎𝑒 . We then necessarily
know the 𝑒-th bit of ∅′: it is the bit 𝑖 such that 𝜎𝑒 𝑖 ≺ 𝐺. We can then find 𝜎𝑒+1
as follows: we look at the number 𝑚 of 0 which follows 𝜎𝑒 𝑖 in 𝐺. If 𝑚 ∈ 𝐴,
this means that 𝜎𝑒+1 = 𝜎𝑒 𝑖0𝑚1. If 𝑚 ∉ 𝐴, this means that 𝜎𝑒+1 = 𝜎𝑒 𝑖0𝑚1𝜏
for the first string 𝜏 found in 𝑊𝑒 . Finding this string 𝜏 is then a computable
process. We can therefore in all cases find 𝜎𝑒+1, and by repeating the process,
compute ∅′ from 𝐴 ⊕ 𝐺. Thus, 𝐺 ⊕ ∅′ ≤𝑇 𝐺 ⊕ 𝐴. Since every 1-generic set
is generalized low, then 𝐺′ ≤𝑇 𝐺 ⊕ 𝐴.

Corollary 5.9.2
If a problem P admits PA avoidance, then it admits cone avoidance.

Proof. Fix a set 𝑍, a non-𝑍-computable set 𝐶 and a P-instance 𝑋 ≤ 𝑍. By
Theorem 5.9.1 relativized to 𝑍, there is a set 𝐺 such that 𝐶 ⊕ 𝑍 ⊕ 𝐺 ≥𝑇
(𝑍 ⊕ 𝐺)′. Since P admits PA avoidance, there is a solution 𝑌 to 𝑋 such that
𝑌 ⊕ 𝑍 ⊕ 𝐺 is not of PA degree over 𝑍 ⊕ 𝐺. In particular, 𝑌 ⊕ 𝑍 ≱𝑇 𝐶,
otherwise 𝑌 ⊕ 𝑍 ⊕ 𝐺 ≥𝑇 𝐶 ⊕ 𝑍 ⊕ 𝐺 ≥𝑇 (𝑍 ⊕ 𝐺)′, but (𝑍 ⊕ 𝐺)′ is of PA
degree over 𝑍 ⊕ 𝐺.

Constant-bound trace avoidance generalizes PA avoidance, since the Π0
1 class

of {0, 1}-valued DNC functions does not admit any computable constant-bound
trace. On the other hand, some problems such as WWKL admit PA avoidance,
but not constant-bound trace avoidance. Indeed, there is a Π0

1 class of positive
measure with no computable constant-bound trance.

An infinite set 𝑋 ⊆ ℕ is immune iff it has no computable infinite subset, or
equivalently no c.e. infinite subset. We have already seen a strong form of
immunity, namely, hyperimmunity, for which one cannot even approximate an
infinite subset by pairwise disjoint blocks of finite sets.

Definition 5.9.3. A problem P admits preservation of 1 immunity if for every
set 𝑍 and every 𝑍-immune set 𝐼, every 𝑍-computable instance𝑋 of P admits
a solution 𝑌 such that 𝐼 is 𝑍 ⊕ 𝑌-immune. ♦

As for DNC avoidance, the existence of aΣ0
1-preserving, countably Π0

1-merging
forcing question is sufficient to prove preservation of 1 immunity.

Theorem 5.9.4
Fix an infinite immune set 𝐼. Let (ℙ,≤) be a notion of forcing with a Σ0

1-

74 5 Compactness avoidance

preserving, countably Π0
1-merging forcing question. For every sufficiently

generic filter F, 𝐼 is 𝐺F-immune.

Proof. It suffices to prove the following lemma:

Lemma 5.9.5. For every condition 𝑝 ∈ ℙ and every Turing index 𝑒 ∈ ℕ, there
is an extension 𝑞 ≤ 𝑝 forcing 𝑊𝐺

𝑒 not to be an infinite subset of 𝐼. ★

Proof. Consider the following set

𝑈 = {𝑥 ∈ ℕ : 𝑝 ?⊢ 𝑥 ∈𝑊𝐺
𝑒 }

Since the forcing question is Σ0
1-preserving, the set 𝑈 is Σ0

1. There are three
cases:

▶ Case 1: 𝑥 ∈ 𝑈 \ 𝐼 for some 𝑥 ∈ ℕ. By Property (1) of the forcing
question, there is an extension 𝑞 ≤ 𝑝 forcing 𝑥 ∈ 𝑊𝐺

𝑒 , hence forcing
𝑊𝐺
𝑒 ⊈ 𝐼.

▶ Case 2: 𝑈 is finite. Since the forcing question is countably Π0
1-merging,

there is an extension 𝑞 ≤ 𝑝 forcing ∀𝑥 ∉ 𝑈 𝑥 ∉ 𝑊𝐺
𝑒 , hence forcing

𝑊𝐺
𝑒 to be finite.

▶ Case 3: 𝑈 is an infinite c.e. subset of 𝐼. This contradicts the immunity
of 𝐼.

We are now ready to prove Theorem 5.9.4. Given 𝑒 ∈ ℕ, let D𝑒 be the set
of all conditions 𝑞 ∈ ℙ forcing𝑊𝐺

𝑒 not to be an infinite subset of 𝐼. It follows
from Lemma 5.9.5 that every D𝑒 is dense, hence every sufficiently generic
filter F is {D𝑒 : 𝑒 ∈ ℕ}-generic, so 𝐼 is 𝐺F-immune. This completes the proof
of Theorem 5.9.4.

There exists some problems, such as the Ascending Descending sequence
principle (ADS) which admits DNC avoidance, but not preservation of 1 immu-
nity. This naturally raises the following question:

Question 5.9.6. Does preservation of 1 immunity imply DNC avoidance? ★

1: Turing ideal of this form are called topped.
A model of RCA0 is topped if its correspond-
ing Turing ideal is topped.

2: Note that if 𝐶 is computable, then W𝐶 =

∅, and then P vacuously preserves W𝐶 .

Custom properties 6
6.1 Separation framework . . . 75
6.2 Immunity and variants . . . 76
6.3 Hyperimmunity and WKL . . 78
6.4 Erdős-Moser theorem 79
6.5 Partial orders 83
6.6 Linear orders 88

Prerequisites: Chapters 2, 3 and 5

The classical study of computability theory puts the emphasis on some con-
cepts such as hyperimmunity, PA degrees, or the arithmetic hierarchy. These
notions induce invariant properties like preservation of hyperimmunity, PA
avoidance, or low𝑛ness, enabling to separate second-order statements in re-
verse mathematics. However, the diversity of second-order statements makes
it impossible to always separate them with classical notions.

In this chapter, we explain how to design custom computability-theoretic proper-
ties to separate two mathematical problems. As it turns out, their design is once
again driven by the definability and combinatorial properties of their correspond-
ing forcing questions. The main ideas are presented in this chapter through
the study of three important statements: the Erdős-Moser theorem (EM), the
Ascending Descending Sequence principle (ADS) and the Chain-AntiChain
principle (CAC).

6.1 Separation framework

Consider two Π1
2 problems P and Q. In order to separate P from Q over RCA0,

one needs to build a model M |= RCA0 + P containing an instance 𝑋Q,
but such that M contains no Q-solution to 𝑋Q. The model M is usually built
as a limit of a countable increasing sequence M0 ⊆ M1 ⊆ . . . of Turing
ideals as follows. First, construct a Q-instance 𝑋Q with no 𝑋Q-computable
solution, and let M0 = {𝑌 ∈ 2ℕ : 𝑌 ≤𝑇 𝑋Q}. Then, assuming M𝑛 is a
Turing ideal of the form {𝑌 ∈ 2ℕ : 𝑌 ≤𝑇 𝑍𝑛}1 for some set 𝑍𝑛 , pick a P-
instance 𝑋P in M𝑛 with no solution in M𝑛 , construct a solution 𝑌P to 𝑋P, and
let M𝑛+1 = {𝑌 ∈ 2ℕ : 𝑌 ≤𝑇 𝑍𝑛 ⊕ 𝑌P}. One furthermore wants to maintain
the invariant that 𝑋Q has no Q-solution in M𝑛 , so the difficulty is to build a
solution𝑌P to 𝑋P such that 𝑋Q has no 𝑍𝑛⊕𝑌P-computable solution, assuming
it has no𝑍𝑛-computable solution. Usually, one needs to find a stronger invariant
than just having no 𝑍𝑛-computable solution. A class W⊆ 2ℕ is a weakness
property if it is downward-closed under the Turing reduction.

Definition 6.1.1. A problem P preserves a weakness property W if for every
𝑍 ∈ Wand every 𝑍-computable instance 𝑋, there is a solution 𝑌 to 𝑋 such
that 𝑍 ⊕ 𝑌 ∈ W. ♦

This previous definition generalizes many properties defined in the previous
chapters. For instance, a problem P admits cone avoidance iff it preserves
W𝐶 = {𝑋 ∈ 2ℕ : 𝐶 ≰𝑇 𝑋} for every set 𝐶.2

Exercise 6.1.2. Formulate PA avoidance (Definition 5.1.1) as a preservation
of a family of weakness properties. ★

The following theorem gives the general construction underlying almost all the
separation proofs over 𝜔-models.

76 6 Custom properties

3: These systems are known as the “Big
Five” (see Montalbán [40]).

4: One can often define “Ramsey-type” ver-
sions of standard problems, where a solu-
tion is an infinite number of bits of informa-
tion of the original solution. For instance, the
Ramsey-type weak König’s lemma (RWKL)
is a Ramsey-type version of weak König’s
lemma, stating the existence of an infinite
set homogeneous for one of the path.

Theorem 6.1.3
Let P be a Π1

2 problem preserving a weakness property W. Then for every
set 𝑍 ∈ W, there is an 𝜔-model M of RCA0 + P such that M ⊆ Wand
𝑍 ∈ M.

Proof. We are going to define a countable sequence of Turing ideals M0 ⊆
M1 ⊆ . . . , where M𝑛 = {𝑌 ∈ 2ℕ : 𝑌 ≤𝑇 𝑍𝑛}, such that for all 𝑛 ∈ ℕ,

(1) if 𝑛 = ⟨𝑎, 𝑏⟩ and 𝑋 is the 𝑎-th P-instance of M𝑏 , then 𝑍𝑛+1 computes
a P-solution to 𝑋;

(2) 𝑍𝑛+1 ∈ W, or equivalently M𝑛 ⊆ W.

First 𝑍0 = 𝑍. Suppose we have defined 𝑍𝑛 ∈ Wand say 𝑛 = ⟨𝑎, 𝑏⟩. Let 𝑋
be the 𝑎-th P-instance of M𝑏 , Since P preserves W, there is a solution 𝑌 to 𝑋
such that 𝑌 ⊕ 𝑍𝑛 ∈ W. Let 𝑍𝑛+1 = 𝑍𝑛 ⊕ 𝑌. This completes the construction.

Let M=
⋃
𝑛 M𝑛 = {𝑌 ∈ 2ℕ : ∃𝑛 𝑌 ≤𝑇 𝑍𝑛}. By construction, the class M is

a Turing ideal, thus M |= RCA0. Moreover, by (1), every P-instance 𝑋 ∈ M

admits a solution in M. By (2), M⊆ Wand by construction, 𝑍 ∈ M.

Corollary 6.1.4
Fix a weakness property W. Let P and Q be two Π1

2 problems such that P
preserves Wbut Q does not. Then RCA0 + P ⊬ Q.

Proof. Since Q does not preserve W, there is some 𝑍 ∈ Wand some 𝑍-
computable instance𝑋Q of Q such that for every solution𝑌 to𝑋Q,𝑌⊕𝑋Q ∉ W.
Since P preserves W, by Theorem 6.1.3, there is an 𝜔-model Mof RCA0 +P
such that M⊆ Wand 𝑍 ∈ M. In particular, 𝑋Q ∈ M, but Mdoes not contain
any Q-solution to 𝑋Q, so M ̸|= Q.

The purpose of this chapter is to emphasize the relation between the com-
binatorial features of the forcing question of a problem P and the invariant
properties it preserves, and to learn through examples how to design a custom
invariant property to separate two problems.

6.2 Immunity and variants

The early study of reverse mathematics has shown the emergence of an
empirical structural phenomenon: the vast majority of ordinary theorems of
mathematics, once formulated as second-order statements, are either provable
over RCA0, or provably equivalent over RCA0 to one among four main systems
of axioms, namely, WKL0, ACA0, ATR0 and Π1

1-CA0.3 These systems can be
separated over 𝜔-models using standard notions from computability theory or
higher recursion theory. Thus, when considering two second-order statements,
they are likely to be either equivalent over RCA0, or to belong to two of the
above-mentioned systems, and therefore separable using standard notions.

Some exceptions exist to this structural phenomenon, mostly coming from
Ramsey theory.4 Overall, Ramsey’s theory seeks to understand the inherent
structure and order that can arise within large sets by investigating the existence
of specific patterns, colorings, or configurations. In the setting of second-order
arithmetic, statements from Ramsey theory assert the existence of infinite

6.2 Immunity and variants 77

5: Recall that an infinite set 𝐴 is immune
if it has no infinite computable subset, or
equivalently if it has no infinite c.e. subset.

sets satisfying some property which is closed under subset. For instance,
Ramsey’s theorem states the existence, for every coloring 𝑓 : [ℕ]𝑛 → 𝑘, of
an infinite 𝑓 -homogeneous set 𝐻, and every infinite subset 𝐺 ⊆ 𝐻 is also
𝑓 -homogeneous, hence also a solution. We shall therefore give a particular
attention to statements such that the collection of solutions is closed under
infinite subsets.

It follows that if Q is a statement from Ramsey theory and 𝑋 is an instance
with no computable solution, then every solution 𝑌 is immune.5 Thus, when
separating a Π1

2 problem P from a Q over 𝜔-models, one usually considers
preservations of strong notions of immunity. Some of the invariant properties
studied in previous chapters can already be formulated in terms of preservation
of strong immunity.

Hyperimmunity. As explained in Section 3.6, cone avoidance is equivalent
to preservation of 1 hyperimmunity. In Chapter 2, hyperimmunity is defined
in terms of domination of functions, but the original definition over sets is
formulated as a strong variant of immunity.

Definition 6.2.1. Let 𝐷0 , 𝐷1 , . . . be a canonical enumeration of all non-
empty finite sets.6

6: One can let 𝐷𝑛 be such that∑
𝑥∈𝐷𝑛 2𝑥 = 𝑛 + 1, in other words,

the binary representation of 𝑛 + 1 is seen
as the characteristic function of 𝐷𝑛 .

A c.e. array7

7: One usually requires a c.e. array to be
made of pairwise disjoint sets rather than re-
quiring that min𝐷 𝑓 (𝑛) > 𝑛. Both definitions
yield the same notion of hyperimmunity, but
our formulation will be more convenient for
merging c.e. arrays.

is a collection of finite sets for the form
{𝐷 𝑓 (𝑛) : 𝑛 ∈ ℕ} for some computable function 𝑓 : ℕ → ℕ, such that
min𝐷 𝑓 (𝑛) > 𝑛 for every 𝑛 ∈ ℕ. An infinite set 𝐴 is hyperimmune if for every
c.e. array {𝐷 𝑓 (𝑛) : 𝑛 ∈ ℕ}, there is some 𝑛 ∈ ℕ such that 𝐴 ∩ 𝐷 𝑓 (𝑛) = ∅.

Intuitively, an infinite set 𝐴 is hyperimmune if not only one cannot find an
infinite subset of it, but one cannot even approximate an infinite subset by
giving blocks of elements, each of them capturing an element of 𝐴. It is clear
from the definition that if 𝐴 is hyperimmune, then 𝐴 is immune.

Exercise 6.2.2 (Kuznecov, Medvedev, Uspenskii). Recall that the principal
function of an infinite set 𝐴 = {𝑥0 < 𝑥1 < . . . } is the function 𝑝𝐴 : ℕ →
ℕ defined by 𝑝𝐴(𝑛) = 𝑥𝑛 . Show that an infinite set 𝐴 is hyperimmune iff
its principal function 𝑝𝐴 is hyperimmune, that is, is not dominated by any
computable function. ★

Diagonal non-computability. Recall that a total function 𝑓 : ℕ → ℕ is diag-
onally non-computable (DNC) if 𝑓 (𝑒) ≠ Φ𝑒(𝑒) for every 𝑒 ∈ ℕ. The degrees
computing DNC function admit many characterizations, and thus are arguably
natural. By Proposition 5.7.2, a set 𝑋 computes a DNC function iff every Π0

1
class of positive measure admits an infinite 𝑋-computable homogeneous set.
Such degrees can also be formulated in terms of strong immunity.

Definition 6.2.3. Given a function ℎ : ℕ → ℕ, an infinite set𝐴 is ℎ-immune
if for every c.e. set 𝑊𝑒 such that𝑊𝑒 ⊆ 𝐴, then card𝑊𝑒 ≤ ℎ(𝑒). An infinite
set is effectively immune if it is ℎ-immune for some computable function
ℎ : ℕ → ℕ. ♦

Theorem 6.2.4 (Jockusch [41])
Let 𝑋 be a set. The following are equivalent.

1. 𝑋 computes a DNC function;

78 6 Custom properties

8: The left part {𝑦 : 𝑦 ≤ 𝑥𝑠} of the union is
to ensure that 𝑥𝑠+1 > 𝑥𝑠 , hence the set 𝐴
is 𝑋-computable.

2. 𝑋 computes an effectively immune set;
3. 𝑋 computes a fixpoint-free function.

Proof. (1) → (2): By Proposition 5.7.1, 𝑋 computes a function 𝑔 : ℕ2 → ℕ

such that for every 𝑒 , 𝑏 ∈ ℕ, if card𝑊𝑒 ≤ 𝑏, then 𝑔(𝑒 , 𝑏) ∉ 𝑊𝑒 . Let
𝐷0 , 𝐷1 , . . . be a canonical enumeration of all non-empty finite sets. Let
ℎ : ℕ → ℕ be a partial computable function such that for every 𝑒 ∈ ℕ,
if card𝑊𝑒 > 𝑒, then 𝐷ℎ(𝑒) ⊆ 𝑊𝑒 and card𝐷ℎ(𝑒) = 𝑒 + 1. We shall construct
an infinite increasing, 𝑋-computable sequence of integers 𝑥0 < 𝑥1 < . . .

such that for every 𝑠 ∈ ℕ,

∀𝑒 ≤ 𝑠, (card𝑊𝑒 > 𝑒 → 𝐷ℎ(𝑒) ⊊ {𝑥𝑖 : 𝑖 ≤ 𝑠}). (★)

Then, 𝐴 = {𝑥𝑛 : 𝑛 ∈ ℕ} is effectively immune, as witnessed by the identity
function. Indeed, if 𝑊𝑒 ⊆ 𝐴, then card𝑊𝑒 ≤ 𝑒. Assume 𝑥0 < · · · < 𝑥𝑠 is
already constructed, satisfying (★). Let 8

𝑊𝑣(𝑠) = {𝑦 : 𝑦 ≤ 𝑥𝑠} ∪
⋃

𝑒≤𝑠+1 ∧ ℎ(𝑒)↓
𝐷ℎ(𝑒)

Note that the function 𝑣 : ℕ → ℕ is 𝑋-computable, and card𝑊𝑣(𝑠) ≤
𝑥𝑠 + 1 +∑

𝑛≤𝑠+2 𝑛, so, letting 𝑥𝑠+1 = 𝑔(𝑣(𝑠), 𝑥𝑠 + 1 +∑
𝑛≤𝑠+2 𝑛), we have

𝑥𝑠+1 ∉ 𝑊𝑣(𝑠). In particular, 𝑥𝑠+1 > 𝑥𝑠 and 𝑥0 , . . . , 𝑥𝑠+1 satisfies (★). This
completes the construction.

(2) → (3): Let 𝐴 ≤𝑇 𝑋 be an ℎ-effectively immune set, for some computable
function ℎ : ℕ → ℕ. Let 𝑓 : ℕ → ℕ be an 𝑋-computable function such
that 𝑊𝑓 (𝑒) is the set of the ℎ(𝑒) + 1 first elements of 𝐴. We claim that 𝑓 is
a fixpoint-free function. Suppose for the contradiction that 𝑊𝑓 (𝑒) = 𝑊𝑒 for
some 𝑒 ∈ ℕ. Then 𝑊𝑒 ⊆ 𝐴, but card𝑊𝑒 > ℎ(𝑒), contradiction.

(3) → (1): Let 𝑓 ≤𝑇 𝑋 be a fixpoint-free function. Let 𝑔 : ℕ → ℕ be the
𝑋-computable function such that for every 𝑛, 𝑔(𝑛) creates the code 𝑒𝑛 of
the function 𝑚 ↦→ ΦΦ𝑛 (𝑛)(𝑚)9

9: Here, 𝑚 ↦→ ΦΦ𝑛 (𝑛)(𝑚) is an abuse
of notation for the program which, on in-
put 𝑚, first executes Φ𝑛(𝑛), and if it halts
and outputs some 𝑒, executes Φ𝑒 (𝑚). In
other words, the computation of Φ𝑛(𝑛) is
not part of the computation of 𝑔, hence 𝑔 is
total even if Φ𝑛(𝑛)↑.

, and outputs 𝑓 (𝑒𝑛). We claim that 𝑔 is DNC.
Suppose for the contradiction that 𝑔(𝑛) = Φ𝑛(𝑛) for some 𝑛 ∈ ℕ. Then by
definition of 𝑔, 𝑓 (𝑒𝑛) = Φ𝑛(𝑛). In particular, Φ 𝑓 (𝑒𝑛) = ΦΦ𝑛 (𝑛) = Φ𝑒𝑛 . This
contradicts the fact that 𝑓 is fixpoint-free.

6.3 Hyperimmunity and WKL

Immunity and its variants form a unifying language to express custom invariant
enabling to separate statements from Ramsey theory. The difficulty to sep-
arate to statements P and Q is to find a notion of immunity which is strong
enough to be preserved by P, but weak enough not to be preserved by Q. This
strengthening can often be obtained by studying the combinatorial features of
the forcing question for P.

Let us consider the case of weak König’s lemma, which captures the notion of
compactness. Suppose one wants to prove that WKL preserves 1 immunity.
This proof will fail, but one will exploit this failure to design a custom invariant.
Fix an infinite immune set 𝐴, and let P⊆ 2ℕ be a non-empty Π0

1 class. The
natural notion of forcing to build members of Π0

1 classes is Jockusch-Soare
forcing (ℙ,≤), that is, the set of all infinite computable binary trees partially

6.4 Erdős-Moser theorem 79

12: This formalizes real-world tournaments:
Intuitively, 𝑇(𝑎, 𝑏) if Player 𝑎 beats Player 𝑏
in a tournament. In general, a tournament is
not transitive, that is, it might be that Player 𝑎
beats Player 𝑏, who beats Player 𝑐, who
himself beats Player 𝑎.
13: It is important to note that transitivity is
a property over [𝐷]3. Thus, if a tournament
is not transitive, then it is witnessed by a
3-tuple of elements of 𝐷.

ordered by inclusion. Given a Turing index 𝑒 ∈ ℕ, one wants to force the
following requirement:

R𝑒 : 𝑊𝐺
𝑒 is not an infinite subset of 𝐴.

Recall that Jockusch-Soare forcing admits the following natural forcing question
for Σ0

1 formulas: Given a Σ0
1-formula 𝜑(𝐺), let 𝑇 ?⊢𝜑(𝐺) hold if there is some

level ℓ ∈ ℕ such that for every 𝜎 ∈ 𝑇 ∩ 2ℓ , 𝜑(𝜎) holds. This forcing question
is Σ0

1-preserving and Σ0
1-compact. The proof of R𝑒 usually goes as follows:

Given a condition 𝑇 ⊆ 2<ℕ and a Turing index 𝑒, if 𝑇 does not force 𝑊𝐺
𝑒 to

be an infinite subset of 𝐴, then there is an extension 𝑆 ⊆ 𝑇 forcing R𝑒 . If, on
the other hand, 𝑇 already forces𝑊𝐺

𝑒 to be an infinite subset of 𝐴, then exploit
the forcing question to compute an infinite subset of 𝐴, contradicting immunity
of 𝐴.

Suppose we are in the second case. Given some 𝑛 ∈ ℕ, one wants to find
computably an element 𝑥 > 𝑛 in 𝐴. The problem comes from the difference
between the following two statements:

𝑇 ?⊢ ∃𝑥(𝑥 > 𝑛 ∧ 𝑥 ∈𝑊𝐺
𝑒) and ∃𝑥 (𝑇 ?⊢ 𝑥 > 𝑛 ∧ 𝑥 ∈𝑊𝐺

𝑒)

Assuming 𝑇 forces 𝑊𝐺
𝑒 to be an infinite subset of 𝐴, the left statement holds,

as otherwise, one would find an extension forcing 𝑊𝐺
𝑒 to be bounded by 𝑛,

hence to be finite. On the other hand, the right statement does not hold
in general. It might be that for each individual 𝑥 > 𝑛, 𝑇 ?⊬ 𝑥 ∈ 𝑊𝐺

𝑒 , but
𝑇 ?⊢ “𝑊𝐺

𝑒 is infinite ′′. Thankfully, by Σ0
1-compactness of the forcing question,

one has the following implication

𝑇 ?⊢ ∃𝑥(𝑥 > 𝑛 ∧ 𝑥 ∈𝑊𝐺
𝑒) → ∃𝐹 finite (𝑇 ?⊢min 𝐹 > 𝑛 ∧ 𝐹 ∩𝑊𝐺

𝑒 ≠ ∅)

Moreover, for any such 𝐹, we claim that 𝐴∩ 𝐹 ≠ ∅. Indeed, by definition of the
forcing question, there is an extension 𝑆 ⊆ 𝑇 forcing 𝐹 ∩𝑊𝐺

𝑒 ≠ ∅, but 𝑆 also
forces𝑊𝐺

𝑒 ⊆ 𝐴. Last, since the forcing question is Σ0
1-preserving, for every 𝑛,

one can computably find some 𝐹𝑛 such that 𝐹𝑛 ∩ 𝐴 ≠ ∅ and min 𝐹𝑛 > 𝑛.
In order to obtain a contradiction, one therefore must assume that no infinite
subset of 𝐴 can be approximated by finite sets, hence that 𝐴 is hyperimmune.
It happens that this is a sufficient invariant. Indeed, a finite union of finite sets
is again a finite set.10

10: The computably dominated basis theo-
rem for Π0

1 classes is a much stronger form
of preservation of 1 hyperimmunity, in the
sense that every non-empty Π0

1 class P⊆
2ℕ has a member 𝐺 such that every hyper-
immune function is 𝐺-hyperimmune.Statements from Ramsey theory do not usually imply weak König’s lemma,

and therefore might preserve a weaker form of immunity. For instance, the
“compactness part” of Ramsey’s theorem for pairs is the Ramsey-type weak
König’s lemma (RWKL).11

11: This sentence has to be taken in an
informal sense. On one hand, RCA0 ⊢
RT2

2 → RWKL, so the compactness part
of RT2

2 is at least RWKL. For the converse,
the usual notion of forcing for Ramsey’s the-
orem for pairs with a good first-jump control
can be done with reservoirs restricted to any
𝜔-model of RCA0 + RWKL.

However, it is often not necessary to consider the
optimal invariant, and in many cases, on works with variants of hyperimmunity
as soon as the statement contains some amount of compactness.

6.4 Erdős-Moser theorem

Let us step up and separate two statements from Ramsey’s theory with very
similar combinatorics: the Erdős-Moser theorem and Ramsey’s theorem for
pairs. The Erdős-Moser theorem is a statement about tournaments at the
intersection of graph theory and Ramsey theory. A tournament12 over an
infinite domain 𝐷 ⊆ ℕ is an irreflexive binary relation 𝑇 ⊆ 𝐷2 such that for
every 𝑎, 𝑏 ∈ 𝐷 with 𝑎 ≠ 𝑏, 𝑇(𝑎, 𝑏) iff ¬𝑇(𝑏, 𝑎). The tournament 𝑇 is transitive
if for all 𝑎, 𝑏, 𝑐 ∈ 𝐷, if 𝑇(𝑎, 𝑏) and 𝑇(𝑏, 𝑐) hold, then 𝑇(𝑎, 𝑐) also holds.13 A

80 6 Custom properties

16: It is sometimes possible to satisfy multi-
ple requirements using a pairing argument,
by forcing all the possible disjunctive pairs:
R∨R, S∨ S, R∨ Sand S∨R.

sub-tournament of 𝑇 is the restriction of 𝑇 to a subdomain 𝐷1 ⊆ 𝐷. Thus,
given 𝑇, a sub-tournament is fully specified by the sub-domain 𝐷1, and is
therefore identified with it, and we say that 𝐷1 is 𝑇-transitive if 𝑇 is transitive
on 𝐷1.

The Erdős-Moser theorem states that every infinite tournament admits an
infinite transitive subtournament. It can be seen as a Π1

2 problem EM whose
instances are tournaments on ℕ, and whose solutions are infinite domains
on which the tournament is transitive. It follows from Ramsey’s theorem for
pairs and two colors by defining, given a tournament 𝑇 on ℕ, a coloring
𝑓 : [ℕ]2 → 2 such that for every 𝑎 < 𝑏, 𝑓 (𝑎, 𝑏) = 1 iff 𝑇(𝑎, 𝑏). Then any
infinite 𝑓 -homogeneous set is 𝑇-transitive.14

14: The Erdős-Moser theorem was first
studied in reverse mathematics by Bovykin
and Weiermann [42]. Lerman, Solomon
and Towsner [43] proved that EM is strictly
weaker than RT2

2 over RCA0, later simplified
by Patey [44].

Recall from Section 5.3 that RWKL is the Π1
2 problem whose instances are

infinite binary trees, and whose solutions are infinite homogeneous sets.15

15: By Definition 5.3.1, given an infinite
tree 𝑇 ⊆ 2<ℕ , a finite set 𝐹 ⊆ ℕ is 𝑇-
homogeneous for color 𝑖 < 2 if {𝜎 ∈ 𝑇 :
(∀𝑥 ∈ 𝐹)𝜎(𝑥) = 𝑖} is infinite. An infinite
set 𝐻 is 𝑇-homogeneous if every finite sub-
set of 𝐻 is 𝑇-homogeneous.

The following lemma shows that EM has the same amount of compactness as
RT2

2.

Exercise 6.4.1 (Bienvenu, Patey and Shafer [37]). Let 𝑇 ⊆ 2<ℕ be an in-
finite binary tree. For each 𝑠 ∈ ℕ, let 𝜎𝑠 be the left-most element of 𝑇 of
length 𝑠. Define a tournament 𝑇 as follows: For 𝑥 < 𝑠, if 𝜎𝑠(𝑥) = 1, then
𝑅(𝑥, 𝑠) holds and 𝑅(𝑠, 𝑥) fails. Otherwise, if 𝜎𝑠(𝑥) = 0, then 𝑅(𝑥, 𝑠) fails and
𝑅(𝑠, 𝑥) holds. Show that every infinite transitive subtournament computes an
infinite 𝑇-homogeneous set. ★

Looking at the standard notion of forcing for Ramsey’s theorem for pairs and
for the Erdős-Moser theorem, the combinatorics are very similar, except that
Ramsey’s theorem for pairs is a disjunctive statement. Forcing multiple require-
ments is not an issue for the Erdős-Moser theorem. On the other hand, the
situation for disjunctive statements is more delicate: if one forces requirements
of the form R∨R and S∨ S, it might be that the R-requirements and the S-
requirements are not satisfied on the same side.16 This motivates the following
definition:

Definition 6.4.2. A problem P admits preservation of 𝑘 hyperimmunities if
for every set 𝑍 and every 𝑘-tuple of 𝑍-hyperimmune functions 𝑓0 , . . . , 𝑓𝑘−1,
every 𝑍-computable instance 𝑋 of P admits a solution 𝑌 such that each 𝑓𝑖
is 𝑍 ⊕ 𝑌-hyperimmune. ♦

We now prove that the Erdős-Moser theorem admits preservation of 𝜔 hyper-
immunities.

Theorem 6.4.3 (Patey [44])
Let ℎ0 , ℎ1 , . . . be a countable collection of hyperimmune functions, and
let 𝑇 ⊆ ℕ2 be a computable tournament. There is an infinite 𝑇-transitive
subtournament 𝐺 ⊆ 𝑇 such that every ℎ𝑖 is 𝐺-hyperimmune.

Proof. Given two sets 𝐸, 𝐹 ⊆ ℕ, we write 𝐸 →𝑇 𝐹 if for every 𝑥 ∈ 𝐸 and
every 𝑦 ∈ 𝐹, 𝑇(𝑥, 𝑦). A set 𝑋 is in a minimal 𝑇-interval of 𝐹 if for every 𝑎 ∈ 𝐹,
either {𝑎} →𝑇 𝑋, or 𝑋 →𝑇 {𝑎}.17

17: One can actually define the notion of
𝑇-interval (𝑎, 𝑏)𝑇 to be the set of all 𝑥 ∈ ℕ

such that𝑇(𝑎, 𝑥) and𝑇(𝑥, 𝑏) (see [43]), but
for our purpose, it is sufficient to work with
a coarser definition.

Consider the notion of forcing whose conditions18

18: One would naturally be tempted to de-
fine a condition as a pair satisfying Items 1
and 3. Actually, Item 2 is already sufficient
to ensure extendibility of the stem, but it
requires some extra work. With the actual
definition, one can simply apply the Erdős-
Moser theorem to 𝑇↾[𝑋]2 to obtain an infi-
nite 𝑇-transitive subset 𝑌 ⊆ 𝑋, and thanks
to Item 1 and Item 2, 𝜎 ∪ 𝑌 is 𝑇-transitive. are Mathias conditions

(𝜎, 𝑋) such that

1. 𝜎 ∪ {𝑥} is 𝑇-transitive for every 𝑥 ∈ 𝑋;
2. 𝑋 is in a minimal 𝑇-interval of 𝜎;19

19: Note that this property can be obtained
for free by considering the map 𝑔 : 𝑋 →
2|𝜎| which to 𝑥 associates the string 𝜌 of
length |𝜎| such that for every 𝑦 < |𝜎|,
𝜌(𝑦) = 1 iff 𝑇(𝑦, 𝑥) holds. By the pi-
geonhole principle, there is an infinite 𝑋-
computable 𝑔-homogeneous subset 𝑌 ⊆
𝑋. Any such 𝑌 is in a minimal 𝑇-interval
of 𝜎.

6.4 Erdős-Moser theorem 81

3. ℎ𝑖 is 𝑋-hyperimmune for every 𝑖 ∈ ℕ.

The notion of extension is exactly Mathias extension. Every filter F induces a
set 𝐺F defined by

⋃{𝜎 : (𝜎, 𝑋) ∈ F}. The following lemma shows that 𝐺F

is infinite for every sufficiently generic filter 𝐺F.

Lemma 6.4.4. Let 𝑝 = (𝜎, 𝑋) be a condition. There is an extension (𝜏, 𝑌)
of 𝑝 and some 𝑛 > |𝜎| such that 𝑛 ∈ 𝜏. ★

Proof. Pick any 𝑛 ∈ 𝑋. Let 𝜏 = 𝜎 ∪ {𝑛}, and 𝑌 be either {𝑥 ∈ 𝑋 :
𝑇(𝑛, 𝑥)} or {𝑥 ∈ 𝑋 : 𝑇(𝑥, 𝑛)}, depending on which one is infinite. Then,
(𝜏, 𝑌 \ {0, . . . , 𝑛 − 1}) is an extension of 𝑝 such that 𝑛 ∈ 𝜏.

This notion of forcing admits a non-disjunctive, Σ0
1-preserving, Σ0

1-compact
forcing question.

Definition 6.4.5. Let 𝑝 = (𝜎, 𝑋) be a condition, and let 𝜑(𝐺) be a Σ0
1-

formula. Let 𝑝 ?⊢𝜑(𝐺) hold if for every 2-partition 𝑍0 ⊔ 𝑍1 = 𝑋, there is
some 𝑖 < 2 and some finite 𝑇-transitive set 𝜌 ⊆ 𝑍𝑖 such that 𝜑(𝜎 ∪ 𝜌)
holds.20 20: Note the similarity of this forcing ques-

tion with the one from Exercise 3.4.12.
♦

Note that by compactness, the forcing question is Σ0
1(𝑋). The following lemma

states that the forcing question meets its specification.

Lemma 6.4.6. Let 𝑝 = (𝜎, 𝑋) be a condition, and let 𝜑(𝐺) be a Σ0
1-formula.

1. If 𝑝 ?⊢𝜑(𝐺), then there is an extension 𝑞 ≤ 𝑝 forcing 𝜑(𝐺);
2. If 𝑝 ?⊬𝜑(𝐺), then there is an extension 𝑞 ≤ 𝑝 forcing ¬𝜑(𝐺). ★

Proof. Suppose first 𝑝 ?⊢𝜑(𝐺). Then, by compactness, there is some thresh-
old ℓ ∈ ℕ such that for every 2-partition 𝑍0 ⊔ 𝑍1 = 𝑋↾ℓ , there is some 𝑖 < 2
and some finite 𝑇-transitive set 𝜌 ⊆ 𝑍𝑖 such that 𝜑(𝜎 ∪ 𝜌) holds. For ev-
ery 𝑥 ∈ 𝑋 \ {0, . . . , ℓ}, let 𝜎𝑥 be the binary string of length ℓ such that for
every 𝑦 < ℓ , 𝑇(𝑦, 𝑥) = 𝜎𝑥(𝑦). By the pigeonhole principle, there is some
string 𝜎 of length ℓ and an infinite 𝑋-computable subset 𝑌 ⊆ 𝑋 \ {0, . . . , ℓ}
such that for 𝜎 = 𝜎𝑥 for every 𝑥 ∈ 𝑌. Let 𝑍𝑖 = 𝑋 ∩ {𝑦 : 𝜎(𝑦) = 𝑖} for
each 𝑖 < 2. By assumption, there is some 𝑖 < 2 and some finite 𝑇-transitive
set 𝜌 ⊆ 𝑍𝑖 such that 𝜑(𝜎∪ 𝜌) holds. We claim that (𝜎∪ 𝜌, 𝑌) is an extension
of 𝑝 forcing 𝜑(𝐺).

Suppose now 𝑝 ?⊬𝜑(𝐺). Let Cbe the Π0
1(𝑋) class of all 𝑍0 ⊕ 𝑍1 such that,

𝑍0 ⊔ 𝑍1 = 𝑋 and for every 𝑖 < 2 and every finite 𝑇-transitive set 𝜌 ⊆ 𝑍𝑖 ,
𝜑(𝜎 ∪ 𝜌) does not hold. By the computably dominated basis theorem (see
Jockusch and Soare [9]), there is some 2-partition 𝑍0 ⊔ 𝑍1 = 𝑋 such that
𝑍0⊕𝑍1⊕𝑋 is computably 𝑋-dominated. In particular, each ℎ𝑖 is 𝑍0⊕𝑍1⊕𝑋-
hyperimmune. Let 𝑖 < 2 be such that 𝑍𝑖 is infinite. Then (𝜎, 𝑍𝑖) is an extension
of 𝑝 forcing ¬𝜑(𝐺).

The following lemma is an adaptation of Theorem 3.6.4.

Lemma 6.4.7. Let 𝑝 = (𝜎, 𝑋) be a condition. For every Turing index 𝑒 and
every 𝑖 ∈ ℕ, there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 not to dominate ℎ𝑖 .21 21: By this, we mean forcing eitherΦ𝐺𝑒 to be
partial, or Φ𝐺𝑒 (𝑥) < ℎ𝑖(𝑥) for some 𝑥 ∈ ℕ.

★

82 6 Custom properties

Proof. Let ?⊢ be the forcing question of Definition 6.4.5. Suppose first that
𝑝 ?⊬∃𝑣Φ𝐺

𝑒 (𝑥)↓= 𝑣 for some 𝑥 ∈ ℕ. Then by Lemma 6.4.6(2), there is an
extension 𝑞 ≤ 𝑝 forcing Φ𝐺

𝑒 (𝑥)↑, and we are done. Suppose now that for
every 𝑥 ∈ ℕ, 𝑝 ?⊢ ∃𝑣Φ𝐺

𝑒 (𝑥)↓= 𝑣. By Σ0
1-compactness of the forcing question,

for every 𝑥 ∈ ℕ, there is a finite set 𝐹𝑥 ⊆ ℕ such that 𝑝 ?⊢ ∃𝑣 ∈ 𝐹𝑥 Φ𝐺
𝑒 (𝑥)↓= 𝑣.

Let 𝑔 : ℕ → ℕ be the function which on input 𝑥, looks for some finite
set 𝐹𝑥 such that 𝑝 ?⊢ ∃𝑣 ∈ 𝐹𝑥 Φ𝐺

𝑒 (𝑥) ↓= 𝑣 and outputs max 𝐹𝑥 . Such a
function is total by hypothesis, and 𝑋-computable since the forcing question
is Σ0

1(𝑋). Since ℎ𝑖 is 𝑋-hyperimmune, 𝑔(𝑥) < ℎ𝑖(𝑥) for some 𝑥 ∈ ℕ. By
Lemma 6.4.6(1), there is an extension 𝑞 ≤ 𝑝 forcing ∃𝑣 ∈ 𝐹𝑥Φ

𝐺
𝑒 (𝑥)↓= 𝑣.

Since ℎ𝑖(𝑥) > max 𝐹𝑥 , 𝑞 forces Φ𝐺
𝑒 (𝑥)↓< ℎ𝑖(𝑥).

We are now ready to prove Theorem 6.4.3. Let F be a sufficiently generic
filter for this notion of forcing,. By Lemma 6.4.4, 𝐺F is infinite. Moreover, by
Lemma 6.4.7, ℎ𝑖 is 𝐺F-hyperimmune for every 𝑖 ∈ ℕ. This completes the
proof of Theorem 6.4.3.

The following proposition shows that RT2
2 does not admit preservation of 2

hyperimmunities.

Proposition 6.4.8. There exists two hyperimmune functions 𝑔0 , 𝑔1 : ℕ → ℕ

and a computable coloring 𝑓 : [ℕ]2 → 2 such that for every infinite 𝑓 -
homogeneous set 𝐻 for color 𝑖, 𝑔𝑖 is not 𝐻-hyperimmune. ★

Proof. Let𝐴0⊔𝐴1 be a Δ0
2 2-partition such that𝐴0 and𝐴1 are hyperimmune,

and let 𝑔𝑖 = 𝑝𝐴𝑖 be the principal function of 𝐴𝑖 for each 𝑖 < 2. By Shoenfield’s
limit lemma, there is a computable function 𝑓 : [ℕ]2 → 2 such that for every 𝑥,
lim𝑦 𝑓 (𝑥, 𝑦) exists, and equals 𝑖 iff 𝑥 ∈ 𝐴𝑖 . For every infinite 𝑓 -homogeneous
set 𝐻 for color 𝑖, 𝐻 ⊆ 𝐴𝑖 . In particular, 𝑝𝐻 dominates 𝑔𝑖 , so 𝑔𝑖 is not 𝐻-
hyperimmune.

Corollary 6.4.9 (Lerman, Solomon and Towsner [43])
EM does not imply RT2

2 over RCA0.

Proof. Immediate by Proposition 6.4.8, Theorem 6.4.3 and Corollary 6.1.4.

Consider three kinds of requirement R, Sand T. Suppose one can construct
solutions to Ramsey’s theorem for pairs and two colors by satisfying require-
ments of type R∨R, S∨ Sand T∨ T. By the pigeonhole principle, there
must be a side preserving two kinds of requirements simultaneously. In the
case of preservation of hyperimmunities, it yields that, given 3 hyperimmune
functions, one can always construct solutions to computable instances of RT2

2
while preserving two among the three hyperimmunities simultaneously. We
leave the proofs as an exercise.

Exercise 6.4.10 (Patey [45]). A problem P admits preservation of ℓ among 𝑘
hyperimmunities if for every set 𝑍 and every 𝑘-tuple of 𝑍-hyperimmune func-
tions 𝑓0 , . . . , 𝑓𝑘−1, every 𝑍-computable instance 𝑋 of P admits a solution 𝑌
and some finite set 𝐹 ∈ [𝑘]ℓ such that for each 𝑖 ∈ 𝐹, 𝑓𝑖 is 𝑍⊕𝑌-hyperimmune.

1. Show that RT2
3 does not admit preservation of 3 among 3 hyperimmuni-

6.5 Partial orders 83

ties.22
22: Hint: Adapt the proof of Proposi-
tion 6.4.8).2. Show that RT2

2 admits preservation of 2 among 3 hyperimmunities.23

23: Hint: Adapt the proof of Theorem 6.4.3,
but with the notion of forcing of Exer-
cise 3.4.12.

★

6.5 Partial orders

Partial orders also provide a good family of Ramsey-type theorems requiring
custom preservations properties. A partial order is a pair P = (𝐷, <P),
where 𝐷 ⊆ ℕ and <L is an irreflexive transitive binary relation over 𝐷. A
set 𝑋 ⊆ 𝐷 is an chain (antichain) if every two elements of 𝑋 are comparable
(incomparable) over <P. A set𝑋 ⊆ 𝐷 is an ascending (descending) sequence
if for every 𝑥, 𝑦 ∈ 𝑋, 𝑥 < 𝑦 iff 𝑥 <P 𝑦 (𝑥 >P 𝑦). The Chain AntiChain
principle24

24: This principle was studied by Her-
rmann [21] and Hirschfeldt and Shore [23]
in reverse mathematics.(CAC) is the Π1

2-problem whose instances are partial orders over ℕ
and whose solutions are infinite chains or infinite antichains.

Exercise 6.5.1 (Hirschfeldt and Shore [23]). Show that RCA0+CAC proves
that every partial order on ℕ admits either an infinite ascending or descending
sequence, or an infinite antichain. ★

Exercise 6.5.2 (Hirschfeldt and Shore [23]). A coloring 𝑓 : [ℕ]2 → 𝑘 is
transitive for color 𝑖 < 𝑘 if for every 𝑥 < 𝑦 < 𝑧 such that 𝑓 (𝑥, 𝑦) = 𝑓 (𝑦, 𝑧) = 𝑖,
then 𝑓 (𝑥, 𝑧) = 𝑖. Show that CAC is equivalent over RCA0 to the statement
“For every transitive coloring 𝑓 : [ℕ]2 → 2 for some color, there is an infinite
𝑓 -homogeneous set.” ★

Exercise 6.5.3 (Herrmann [21]). Construct a computable partial order on ℕ

with no infinite computable chain or antichain. ★

As it happens, building either an ascending or a descending sequence has
better combinatorial properties than building a chain. We shall therefore build
a strong solution to CAC, in the sense of Exercise 6.5.1. The corresponding
notion of forcing admits a forcing question for Σ0

1 formulas which is strongly
Σ0

1-compact, in that if 𝑝 ?⊢ ∃𝑥𝜑(𝐺, 𝑥), then there is a set 𝐹 of size 3 such that
𝑝 ?⊢(∃𝑥 ∈ 𝐹)𝜑(𝐺, 𝑥). Following the process of Section 6.3, this yields the
following notion of immunity:

Definition 6.5.4. A c.e. 𝑘-array is a c.e. array {𝐷 𝑓 (𝑛) : 𝑛 ∈ ℕ} such that
card𝐷 𝑓 (𝑛) ≤ 𝑘 for each 𝑛. An infinite set 𝐴 ⊆ ℕ is 𝑘-immune if for every c.e.
𝑘-array {𝐷 𝑓 (𝑛) : 𝑛 ∈ ℕ}, there is some 𝑛 such that 𝐴 ∩𝐷 𝑓 (𝑛) = ∅. A set 𝐴
is constant-bound immune (c.b-immune) if it is 𝑘-immune for every 𝑘 ∈ ℕ.♦

Constant-bound immunity is a strong form of immunity. The following exercise
shows that two notions coincide on co-c.e. sets.

Exercise 6.5.5. Let 𝐴 be a co-c.e. set. Show that 𝐴 is immune iff 𝐴 is c.b-
immune. ★

As usual, every notion of immunity induces a preservation property.

Definition 6.5.6. A problem P admits preservation of 1 c.b-immuniy if for
every set 𝑍 and every c.b-𝑍-immune set 𝐴, every 𝑍-computable instance 𝑋
of P admits a solution 𝑌 such that 𝐴 is c.b-𝑍 ⊕ 𝑌-immune. ♦

We now prove that CAC admits preservation of 1 c.b-immuniy.

84 6 Custom properties

25: Having a notion of forcing with a good
first-jump control while keeping the reser-
voir computable is a good indicator that the
statement does not imply any form of com-
pactness.

26: In other words, every element of the as-
cending sequence 𝜌0 is below (with respect
to <P) every element of the antichain 𝜌2,
and every element of 𝜌2 is below every ele-
ment of the descending sequence 𝜌1.

Theorem 6.5.7 (Patey [46])
Let 𝐴 be a c.b-immune set, and P = (ℕ, <P) be a computable partial
order. Then there is either an infinite ascending or descending sequence 𝐺,
or an infinite antichain 𝐺 such that 𝐴 is c.b-𝐺-immune.

Proof. Consider the notion of forcing whose conditions are 4-tuples (𝜎0 , 𝜎1 , 𝜎2 ,

𝑋), where

1. (𝜎𝑖 , 𝑋) is a Mathias condition for each 𝑖 < 3;
2. 𝜎0 ∪ {𝑥}, 𝜎1 ∪ {𝑥} and 𝜎2 ∪ {𝑥} form respectively an ascending

sequence, a descending sequence and an antichain, for each 𝑥 ∈ 𝑋;
3. 𝑋 is computable.25

A condition (𝜏0 , 𝜏1 , 𝜏2 , 𝑌) extends (𝜎0 , 𝜎1 , 𝜎2 , 𝑋) if (𝜏𝑖 , 𝑌) Mathias extends
(𝜎𝑖 , 𝑋) for every 𝑖 < 3. One can therefore see a condition as three simultane-
ous Mathias conditions sharing a same reservoir. Every filter F induces three
sets: 𝐺0,F, 𝐺1,F and 𝐺2,F, defined by 𝐺𝑖 ,F =

⋃{𝜎𝑖 : (𝜎0 , 𝜎1 , 𝜎2 , 𝑋) ∈ F}.

As in the proof of Theorem 3.4.6, if F is a sufficiently generic filter, then 𝐺𝑖 ,F
is not necessarily infinite. We shall therefore make the following hypothesis:

(H1): For every infinite computable set𝑋, there is some 𝑥0 , 𝑥1 , 𝑥2 ∈
𝑋 such that {𝑦 ∈ 𝑋 : 𝑥0 <P 𝑦}, {𝑦 ∈ 𝑋 : 𝑥1 >P 𝑦} and
{𝑦 ∈ 𝑋 : 𝑥2 |P 𝑦} are all infinite.

If the (H1) hypothesis fails for some set 𝑋, one can computably thin it out to
obtain an infinite subset 𝑌 ⊆ 𝑋 which avoids one of the three behaviors. One
then restarts the construction with conditions whose reservoirs are subsets
of 𝑌. The conditions will then have less stems, and the forcing questions must
be adapted accordingly.

Lemma 6.5.8. Suppose (H1) holds. Let 𝑝 = (𝜎0 , 𝜎1 , 𝜎2 , 𝑋) be a condition
and 𝑖 < 3. There is an extension (𝜏0 , 𝜏1 , 𝜏2 , 𝑌) of 𝑝 and some 𝑥 > |𝜎𝑖| such
that 𝑥 ∈ 𝜏𝑖 . ★

Proof. Say 𝑖 = 0. Then two other cases are similar. By (H1), there is
some 𝑥0 ∈ 𝑋 such that 𝑌 = {𝑦 ∈ 𝑋 : 𝑥0 <P 𝑦} is infinite. Let 𝜏0 =

𝜎0 ∪ {𝑥0}, and 𝜏𝑖 = 𝜎𝑖 otherwise. Then, (𝜏0 , 𝜏1 , 𝜏2 , 𝑌) is an extension of 𝑝
such that 𝑥0 ∈ 𝜏0.

We now define a disjunctive forcing question for Σ0
1-formulas. Given a condition

𝑝 = (𝜎0 , 𝜎1 , 𝜎2 , 𝑋), a split triple is a 3-tuple (𝜌0 , 𝜌1 , 𝜌2) such that 𝜌𝑖 ⊆ 𝑋

for each 𝑖 < 3, 𝜌0 is ascending, 𝜌1 is descending, 𝜌2 is an antichain, and for
every 𝑥 ∈ 𝜌2, maxP(𝜌0) <P 𝑥 <P minP(𝜌1).26

Definition 6.5.9. Let 𝑝 = (𝜎0 , 𝜎1 , 𝜎2 , 𝑋) be a condition and 𝜑0(𝐺), 𝜑1(𝐺)
and 𝜑2(𝐺) be three Σ0

1-formulas. Let 𝑝 ?⊢𝜑0(𝐺0)∨𝜑1(𝐺1)∨𝜑2(𝐺2) hold if
there is a split triple (𝜌0 , 𝜌1 , 𝜌2) such that for each 𝑖 < 3, 𝜑𝑖(𝜎𝑖∪𝜌𝑖) holds.♦

Note that being a split triple is a decidable predicate, hence the forcing question
is Σ0

1-preserving. The following lemma shows that the forcing question meets
its specification.

Lemma 6.5.10. Let 𝑝 = (𝜎0 , 𝜎1 , 𝜎2 , 𝑋) be a condition and 𝜑0(𝐺), 𝜑1(𝐺)
and 𝜑2(𝐺) be three Σ0

1-formulas.

1. If 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1) ∨ 𝜑2(𝐺2), then there is some 𝑖 < 3 and some

6.5 Partial orders 85

extension 𝑞 ≤ 𝑝 forcing 𝜑𝑖(𝐺𝑖).
2. If 𝑝 ?⊬𝜑0(𝐺0) ∨ 𝜑1(𝐺1) ∨ 𝜑2(𝐺2), then there is some 𝑖 < 3 and some

extension 𝑞 ≤ 𝑝 forcing ¬𝜑𝑖(𝐺𝑖). ★

Proof. Suppose first 𝑝 ?⊢𝜑0(𝐺0)∨𝜑1(𝐺1)∨𝜑2(𝐺2) holds, as witnessed by
some split triple (𝜌0 , 𝜌1 , 𝜌2). By the pigeonhole principle, there is some infinite
𝑋-computable subset 𝑌 ⊆ 𝑋 such that for every 𝑥 ∈ 𝜌0 ∪ 𝜌1 ∪ 𝜌2, either
for every 𝑦 ∈ 𝑌, 𝑥 <P 𝑦, or for every 𝑦 ∈ 𝑌, 𝑥 >P 𝑦, or for every 𝑦 ∈ 𝑌,
𝑥|P𝑦. We say that 𝑥 is small if it is on the first case, large if it is on the
second case, and isolated if it is on the third case. If every 𝑥 ∈ 𝜌2 is isolated,
then the condition (𝜎0 , 𝜎1 , 𝜎2 ∪ 𝜌2 , 𝑌) is an extension of 𝑝 forcing 𝜑2(𝐺2). If
some 𝑥 ∈ 𝜌2 is small, then every element in 𝜌0 is small, so (𝜎0∪𝜌0 , 𝜎1 , 𝜎2 , 𝑌)
is an extension of 𝑝 forcing 𝜑0(𝐺0). Last, if some 𝑥 ∈ 𝜌2 is large, then every
element in 𝜌1 is large, thus (𝜎0 , 𝜎1 ∪ 𝜌1 , 𝜎2 , 𝑌) is an extension of 𝑝 forcing
𝜑1(𝐺1).

Suppose now 𝑝 ?⊬𝜑0(𝐺0) ∨ 𝜑1(𝐺1) ∨ 𝜑2(𝐺2). We have two cases. Case 1:
there are two sets 𝜌0 , 𝜌1 ⊆ 𝑋 such that 𝜌0 is ascending, 𝜌1 is descending,
and the set 𝑌 = {𝑥 ∈ 𝑋 : maxP 𝜌0 <P 𝑥 <P minP 𝜌1} is infinite. Then the
condition 𝑞 = (𝜎0∪𝜌0 , 𝜎1∪𝜌1 , 𝜎2 , 𝑌) is an extension forcing¬𝜑2(𝐺2). Indeed,
if there is an extension 𝑟 = (𝜏0 , 𝜏1 , 𝜏2 , 𝑍) of 𝑞 such that 𝜑2(𝜏2) holds, then,
letting 𝜌2 = 𝜏2 \ 𝜎2, the tuple (𝜌0 , 𝜌1 , 𝜌2) forms a split triple contradicting our
hypothesis. Case 2: there are no such two sets. Then we claim that 𝑝 already
forces¬𝜑(𝐺0)∨¬𝜑(𝐺1). Indeed, if there is some extension 𝑞 = (𝜏0 , 𝜏1 , 𝜏2 , 𝑌)
of 𝑝 such that 𝜑0(𝜏0) and 𝜑1(𝜏1) both hold, then, letting 𝜌𝑖 = 𝜏𝑖 \ 𝜎𝑖 , the sets
𝜌0 , 𝜌1 witness Case 1. Thus there is an extension of 𝑝 forcing either ¬𝜑(𝐺0),
or ¬𝜑(𝐺1).

By definition of the forcing question, if

𝑝 ?⊢ ∃𝑥𝜑0(𝐺0 , 𝑥) ∨ ∃𝑥𝜑1(𝐺1 , 𝑥) ∨ ∃𝑥𝜑2(𝐺2 , 𝑥)

then there are three elements 𝑛0 , 𝑛1 , 𝑛2 ∈ ℕ such that

𝑝 ?⊢𝜑0(𝐺0 , 𝑛0) ∨ 𝜑1(𝐺1 , 𝑛1) ∨ 𝜑2(𝐺2 , 𝑛2)

This can be seen as some strong form of Σ0
1-compactness, where the finite

set is of size at most 3.

Lemma 6.5.11. Let 𝑝 = (𝜎0 , 𝜎1 , 𝜎2 , 𝑋) be a condition and Φ𝑒0 ,Φ𝑒1 ,Φ𝑒2 be
three c.e. 𝑘-array functionals.27 27: By this, we mean that for every oracle𝑍,

if Φ𝑍𝑒𝑖 (𝑛)↓, then its output is a finite set 𝐹 of
size at most 𝑘 with min 𝐹 > 𝑛.

There is an extension 𝑞 of 𝑝 forcing Φ
𝐺𝑖
𝑒𝑖 to be

partial, or Φ𝐺𝑖
𝑒𝑖 (𝑛)↓ ∩𝐴 = ∅ for some 𝑛 ∈ ℕ. ★

Proof. Suppose first that 𝑝 ?⊬Φ𝐺0
𝑒0 (𝑛)↓ ∨Φ𝐺1

𝑒1 (𝑛)↓ ∨Φ𝐺2
𝑒2 (𝑛)↓ for some 𝑛.

Then by Lemma 6.5.10(2), there is an extension 𝑞 of 𝑝 forcing Φ
𝐺𝑖
𝑒𝑖 (𝑛)↑ for

some 𝑖 < 3.

Suppose now that for every 𝑛 ∈ ℕ, 𝑝 ?⊢Φ𝐺0
𝑒0 (𝑛) ↓ ∨Φ𝐺1

𝑒1 (𝑛) ↓ ∨Φ𝐺2
𝑒2 (𝑛) ↓.

Then for each 𝑛 ∈ ℕ, there is some finite set 𝐸𝑛 of size at most 3𝑘 such
𝑝 ?⊢Φ𝐺0

𝑒0 (𝑛)↓⊆ 𝐸𝑛 ∨ Φ
𝐺1
𝑒1 (𝑛)↓⊆ 𝐸𝑛 ∨ Φ

𝐺2
𝑒2 (𝑛)↓⊆ 𝐸𝑛 . Moreover, since the

forcing question is Σ0
1-preserving, then the map 𝑛 ↦→ 𝐸𝑛 is computable, so

(𝐸𝑛 : 𝑛 ∈ ℕ) forms a c.e. 3𝑘-array. By c.b-immunity of 𝐴, there is some 𝑛 ∈ ℕ

such that 𝐸𝑛∩𝐴 = ∅. By Lemma 6.5.10(1), there is an extension 𝑞 of 𝑝 forcing
Φ
𝐺𝑖
𝑒𝑖 (𝑛)↓⊆ 𝐸𝑛 for some 𝑖 < 3. In particular, 𝑞 forces Φ

𝐺𝑖
𝑒𝑖 (𝑛)↓ ∩𝐴 = ∅.

86 6 Custom properties

28: Note that this modulus is left-c.e., that is,
there is a uniformly computable sequence
of functions 𝑔0 , 𝑔1 , . . . such that for ev-
ery 𝑠, 𝑥 ∈ ℕ, 𝑔𝑠 (𝑥) ≤ 𝑔𝑠+1(𝑥) ≤ 𝜇∅′ (𝑥).
In other words, the set {(𝑥, 𝑦) : 𝑦 <
𝜇∅′ (𝑥)} is c.e.

𝜇(0)

𝜇(1)

𝜇(2)

𝑋0 𝑋1 𝑋2

Figure 6.1: The set 𝐴 (in blue) is a count-
able union of some finite initial segments
𝐹0 , 𝐹1 , . . . of the columns 𝑋0 , 𝑋1 , . . . ,
from which finitely many elements have
been removed in a c.e. way. The holes in
the columns are the elements of 𝑊 .

29: The function 𝑔 can be obtained from
Proposition 5.7.1 by “renaming” the ele-
ments of 𝑋𝑖 using the bijection between 𝑋𝑖
and ℕ.

We are now ready to prove Theorem 6.5.7 in the case (H1) holds. Let Fbe a
sufficiently generic filter for this notion of forcing. For each 𝑖 < 3, let 𝐺𝑖 = 𝐺F,𝑖 .
By Lemma 6.5.8, 𝐺𝑖 is infinite for every 𝑖 < 3. By Lemma 6.5.11, there is
some 𝑖 < 3 such that 𝐴 is c.b-𝐺𝑖-immune. The case where (H1) does not hold
is left to the reader, and consists in a degenerate forcing construction. This
completes the proof of Theorem 6.5.7.

Looking at the proof of Theorem 6.5.7, the core of the combinatorics lies in
the existence of a Σ0

1-preserving forcing question which admits the following
strong form of Σ0

1-compactness.

Definition 6.5.12. Given a notion of forcing (ℙ,≤), a forcing question is
constant-bound Σ0

𝑛-compact if for every 𝑝 ∈ ℙ, there is some 𝑘 ∈ ℕ such
that for every Σ0

𝑛 formula 𝜑(𝐺, 𝑥), if 𝑝 ?⊢ ∃𝑥𝜑(𝐺, 𝑥) holds, then there is a
finite set 𝐹 ⊆ ℕ of size 𝑘 such that 𝑝 ?⊢ ∃𝑥 ∈ 𝐹 𝜑(𝐺, 𝑥). ♦

We leave the following abstract theorem of preservation of 1 c.b-immunity as
an exercise.

Exercise 6.5.13. Let (ℙ,≤) be a notion of forcing with a constant-bound
Σ0

1-compact, Σ0
1-preserving forcing question. Show that for every c.b-immune

set 𝐴 and every sufficiently generic filter F, 𝐴 is c.b-immmune relative to 𝐺F.★

Let DNC be the Π1
2-problem whose instances are any sets, and, given a set 𝑋,

a solution is a DNC function relative to 𝑋. Recall that by Section 5.7, DNC
can be seen as a form of compactness statement, in that it is equivalent to the
Ramsey-type weak weak König’s lemma (see Proposition 5.7.2). The following
theorem therefore shows, as expected, that DNC not to admit preservation of
constant-bound immunity.

Theorem 6.5.14 (Patey [46])
There is a Δ0

2, c.b-immune set 𝐴 ⊆ ℕ such that every DNC function com-
putes an infinite subset.

Proof. Let 𝜇∅′ be the modulus of ∅′, that is, such that 𝜇∅′(𝑥) is the minimum
stage 𝑠 at which ∅′

𝑠↾𝑥 = ∅′↾𝑥.28

Computably split ℕ into countably many columns 𝑋0 , 𝑋1 , . . . of infinite size.
For example, set 𝑋𝑖 = {⟨𝑖 , 𝑛⟩ : 𝑛 ∈ ℕ} where ⟨·, ·⟩ is the Cantor bijection
from ℕ2 to ℕ. For each 𝑖, let 𝐹𝑖 be the set of the 𝜇∅′(𝑖) first elements of 𝑋𝑖 . The
sequence 𝐹0 , 𝐹1 , . . . is ∅′-computable. Assume for now that we have defined
a c.e. set 𝑊 such that the Δ0

2 set 𝐴 =
⋃
𝑖 𝐹𝑖 \𝑊 is c.b-immune, and such

that |𝑋𝑖 ∩𝑊 | ≤ 𝑖. We claim that every DNC function computes an infinite
subset of 𝐴.

Let 𝑓 be any DNC function. By Proposition 5.7.1, 𝑓 computes a function 𝑔(·, ·, ·)
such that whenever |𝑊𝑒 | ≤ 𝑛, then 𝑔(𝑒 , 𝑛, 𝑖) ∈ 𝑋𝑖 \𝑊𝑒 .29 For each 𝑖, let 𝑒𝑖
be the index of the c.e. set 𝑊𝑒𝑖 = 𝑊 ∩ 𝑋𝑖 , and let 𝑛𝑖 = 𝑔(𝑒𝑖 , 𝑖 , 𝑖). Since
|𝑋𝑖 ∩𝑊 | ≤ 𝑖, then |𝑊𝑒𝑖 | ≤ 𝑖, so 𝑛𝑖 = 𝑔(𝑒𝑖 , 𝑖 , 𝑖) ∈ 𝑋𝑖 \𝑊𝑒𝑖 , which implies
𝑛𝑖 ∈ 𝑋𝑖 \𝑊 . We then have two cases.

▶ Case 1: 𝑛𝑖 ∈ 𝐹𝑖 for infinitely many 𝑖’s. One can 𝑓 -computably find
infinitely many of them since 𝜇∅′ is left-c.e. and the sequence of the 𝑛’s
is 𝑓 -computable. Therefore, one can 𝑓 -computably find an infinite subset
of
⋃
𝑖 𝐹𝑖 \𝑊 = 𝐴.

6.5 Partial orders 87

▶ Case 2: 𝑛𝑖 ∈ 𝐹𝑖 for only finitely many 𝑖’s. Then the sequence of the 𝑛𝑖 ’s
eventually dominates the modulus function 𝜇∅′ , and therefore computes
the halting set. Since the set 𝐴 is Δ0

2, 𝑓 computes an infinite subset
of 𝐴.

We now detail the construction of the c.e. set 𝑊 . In what follows, interpret
Φ𝑒 as a partial computable sequence of finite sets such that if Φ𝑒(𝑥) halts,
then min(Φ𝑒(𝑥)) > 𝑥. We need to satisfy the following requirements for
each 𝑒 , 𝑘 ∈ ℕ:

R𝑒 ,𝑘 : [Φ𝑒 total ∧ (∀𝑖)(∀∞𝑥)(Φ𝑒(𝑥) ∩ 𝑋𝑖 = ∅)]
→ (∃𝑥) [|Φ𝑒(𝑥)| > 𝑘 ∨Φ𝑒(𝑥) ⊆ 𝑊]

We furthermore want to ensure that |𝑋𝑖 ∩𝑊 | ≤ 𝑖 for each 𝑖. We can prove
by induction over 𝑘 that if R𝑒 ,ℓ is satisfied for each ℓ ≤ 𝑘, then the set 𝐴 =⋃
𝑖 𝐹𝑖\𝑊 is 𝑘-immune. The case 𝑘 = 1 is trivial, since ifΦ𝑒 is a total c.e. 1-array

and ∃∞𝑥Φ𝑒(𝑥)∩𝑋𝑖 ≠ ∅, then ∃∞𝑥Φ𝑒(𝑥) ⊆ 𝑋𝑖 , so ∃𝑥Φ𝑒(𝑥) ⊆ (𝑋𝑖\𝐹𝑖) ⊆ 𝐴.
For the case 𝑘 ≥ 2, assume that Φ𝑒 is a total c.e. 𝑘-array. If the right-hand
side of the implication R𝑒 ,𝑘 holds, then we are done, so suppose it does not
hold. In particular, the set 𝑌𝑖 = {𝑥 : Φ𝑒(𝑥)∩𝑋𝑖 ≠ ∅} is infinite for some 𝑖 ∈ ℕ.
Let 𝑍𝑖 ⊆ 𝑌𝑖 be a computable infinite subset such that min𝑍𝑖 > max 𝐹𝑖 .
Say 𝑍𝑖 = {𝑥0 < 𝑥1 < . . . }. Since 𝑥 < min(Φ𝑒(𝑥)), then for every 𝑛 ∈ ℕ,
𝐹𝑖 < Φ𝑒(𝑥𝑛), hence Φ𝑒(𝑥𝑛) ∩ 𝑋𝑖 ⊆ 𝐴. Let 𝐸0 < 𝐸1 < . . . be defined by
𝐸𝑛 = Φ𝑒(𝑥𝑛) \ 𝑋𝑖 . Then |𝐸𝑛| < 𝑘 for every 𝑛, so by induction hypothesis,
there is some 𝑛 such that 𝐸𝑛 ∩ 𝐴 = ∅. In particular, Φ𝑒(𝑥𝑛) ∩ 𝐴 = ∅.

We now explain how to satisfy R𝑒 ,𝑘 for each 𝑒 , 𝑘 ∈ ℕ. For each pair of
indices 𝑒 , 𝑘 ∈ ℕ, let 𝑖𝑒 ,𝑘 =

∑
⟨𝑒′ ,𝑘′⟩≤⟨𝑒 ,𝑘⟩ 𝑘′. A strategy for R𝑒 ,𝑘 requires

attention at stage 𝑠 > ⟨𝑒 , 𝑘⟩ if there is an 𝑥 < 𝑠 such thatΦ𝑒 ,𝑠(𝑥)↓, |Φ𝑒 ,𝑠(𝑥)| ≤
𝑘, and Φ𝑒 ,𝑠(𝑥) ⊆

⋃
𝑗≥𝑖𝑒 ,𝑘 𝑋𝑗 . Then, the strategy enumerates all the elements

of Φ𝑒 ,𝑠 in 𝑊 , and is declared satisfied, and will never require attention again.
First, notice that if Φ𝑒 is total, outputs 𝑘-sets, and meets finitely many times
each 𝑋𝑖 , then it will require attention at some stage 𝑠 and will be declared
satisfied. Therefore each requirement R𝑒 ,𝑘 is satisfied. Second, suppose for
the sake of contradiction that |𝑋𝑖 ∩𝑊 | > 𝑖 for some 𝑖. Let 𝑠 be the stage
at which it happens, and let ⟨𝑒 , 𝑘⟩ < 𝑠 be the maximal pair such that R𝑒 ,𝑘

has enumerated some element of 𝑋𝑖 in 𝑊 . In particular, 𝑖𝑒 ,𝑘 ≤ 𝑖. Since the
strategy for R𝑒′ ,𝑘′ enumerates at most 𝑘′ elements in 𝑊 ,∑

⟨𝑒′ ,𝑘′⟩≤⟨𝑒 ,𝑘⟩
𝑘′ ≥ |𝑋𝑖 ∩𝑊 | > 𝑖 ≥ 𝑖𝑒 ,𝑘 =

∑
⟨𝑒′ ,𝑘′⟩≤⟨𝑒 ,𝑘⟩

𝑘′

Contradiction.

Corollary 6.5.15 (Hirschfeldt and Shore [23])
CAC implies neither DNC nor RT2

2 over RCA0.30 30: Actually, this separation was originally
proven using DNC avoidance. However, the
design c.b-immunity is more straightforward
from an analysis for the combinatorial prop-
erties of the forcing question for CAC.

Proof. By Theorem 6.5.7, Theorem 6.5.14 and Corollary 6.1.4, CAC does not
imply DNC over RCA0. By Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and
Slaman [47], RCA0 ⊢ RT2

2 → DNC, so CAC does not imply RT2
2 over RCA0.

88 6 Custom properties

6.6 Linear orders

A linear order is a pair L= (𝐷, <L) where 𝐷 ⊆ ℕ and <L is an irreflexive
and transitive total binary relation over 𝐷. A set 𝑋 ⊆ 𝐷 is an ascending
(descending) sequence if for every 𝑥, 𝑦 ∈ 𝑋, 𝑥 < 𝑦 iff 𝑥 <L 𝑦 (𝑥 >L 𝑦). Let
ADS be the Π1

2 problem whose instances are infinite linear orders over ℕ and
whose solutions are infinite ascending or descending sequences.

Exercise 6.6.1 (Hirschfeldt and Shore [23]). Show that RCA0 ⊢ CAC →
ADS. ★

Exercise 6.6.2 (Hirschfeldt and Shore [23]). Let ®𝑅 = 𝑅0 , 𝑅1 , . . . be a count-
able sequence of sets. Let L= (ℕ, <L) be the linear order defined by setting
𝑥 <L 𝑦 iff ⟨𝑅𝑖(𝑥) : 𝑖 ≤ 𝑥⟩ <lex ⟨𝑅𝑖(𝑦) : 𝑖 ≤ 𝑦⟩, where <lex is the lex-
icographic order on 2<ℕ . Show that every infinite ascending or descending
sequence of L is ®𝑅-cohesive. ★

The Ascending Descending Sequence plays a dual role with the Erdős-Moser
theorem with respect to RT2

2 in the following sense: Any coloring 𝑓 : [ℕ]2 → 2
can be interpreted as a tournament 𝑇 ⊆ ℕ2 by letting 𝑇(𝑥, 𝑦) hold if 𝑥 < 𝑦

and 𝑓 ({𝑥, 𝑦}) = 1, or if 𝑥 > 𝑦 and 𝑓 ({𝑦, 𝑥}) = 0. Every infinite 𝑇-transitive
sub-tournament 𝑈 ⊆ ℕ induces a linear order (𝑈, <U) defined by 𝑥 <U 𝑦

iff 𝑇(𝑥, 𝑦) holds. Then, every infinite ascending and descending sequence is
𝑓 -homogeneous for colors 1 and 0, respectively.

Exercise 6.6.3 (Montálban, see [42]). Show that RCA0 ⊢ RT2
2 ↔ EM ∧

ADS. ★

One can naturally ask whether a reversal exists, that is, whether ADS im-
plies CAC over RCA0. The goal of this section is to separate the two statements.
The natural notion of forcing for ADS is a degenerate version of the notion of
forcing for CAC used in Theorem 6.5.7. The combinatorics are therefore very
similar, with one notable exception:

Definition 6.6.4. Given a notion of forcing (ℙ,≤) and a family of formulas
Γ, a forcing question is Γ-extremal if for every formula 𝜑 ∈ Γ and every
condition 𝑝 ∈ ℙ, if 𝑝 ?⊢𝜑(𝐺) then 𝑝 forces 𝜑(𝐺). ♦

By extension, we say that a forcing question for Σ0
𝑛-formulas is Π0

𝑛-extremal if
for every Σ0

𝑛-formula 𝜑 and every condition 𝑝 ∈ ℙ, if 𝑝 ?⊬𝜑(𝐺), then 𝑝 forces
¬𝜑(𝐺).
Contrary to CAC, the notion of forcing for ADS admits a disjunctive forcing
question which satisfies some form of Π0

1-extremality. This extremality can
be exploited to force countably many Π0

1 facts simultaneously, yielding the
following notion of immunity.

Definition 6.6.5. A formula 𝜑(𝑈,𝑉) is essential31

31: The terminology comes from Lerman,
Solomon and Towsner [43] who first proved
that ADS does not imply CAC over RCA0.
The proof was then simplified by Patey [46].

if for every 𝑥 ∈ ℕ, there
is a finite set 𝑅 > 𝑥 such that for every 𝑦 ∈ ℕ, there is a finite set 𝑆 > 𝑦

such that 𝜑(𝑅, 𝑆) holds. A pair of sets 𝐴0 , 𝐴1 ⊆ ℕ is dependently 𝑋-
hyperimmune32

32: One could as well have defined the
notion of dependently constant-bound 𝑋-
immune by fixing the cardinality of the sets𝑅
and 𝑆. This would also yield a notion sepa-
rating ADS from CAC over RCA0.

if for every essential Σ0,𝑋
1 formula 𝜑(𝑈,𝑉), 𝜑(𝑅, 𝑆) holds

for some 𝑅 ⊆ 𝐴0 and 𝑆 ⊆ 𝐴1. ♦

The following exercise shows that dependent hyperimmunity can be seen as a
strong form of hyperimmunity. The two notions coincide on co-c.e. sets.

6.6 Linear orders 89

33: Note that this notion of forcing for build-
ing solutions to ADS is a particular case of
the one in Theorem 6.5.7, since any linear
order is a degenerate partial order.

Exercise 6.6.6 (Patey [46]). Show that

1. If 𝐴0 , 𝐴1 are dependently hyperimmune, then 𝐴0 and 𝐴1 are both hy-
perimmune.

2. If 𝐴0 , 𝐴1 are both hyperimmune and 𝐴0 is co-c.e., then 𝐴0 , 𝐴1 are
dependently hyperimmune. ★

As usual, one can define the corresponding notion of preservation.

Definition 6.6.7. A problem P admits preservation of 1 dependent hyperim-
munity if for every set𝑍 and every pair𝐴0 , 𝐴1 of dependently𝑍-hyperimmune
sets, every 𝑍-computable instance 𝑋 of P admits a solution 𝑌 such that
𝐴0 , 𝐴1 are dependently 𝑍 ⊕ 𝑌-hyperimmune. ♦

We now prove that ADS admits preservation of 1 dependent hyperimmunity,
while we shall see later that CAC does not.

Theorem 6.6.8 (Patey [46])
Let 𝐴0 , 𝐴1 be dependently hyperimmune, and L = (ℕ, <L) be a com-
putable linear order. Then there is an infinite ascending or descending
sequence 𝐺 such that 𝐴0 , 𝐴1 is dependently 𝐺-hyperimmune.

Proof. Consider the notion of forcing whose conditions33 are 3-tuples (𝜎0 , 𝜎1 , 𝑋),
where

1. (𝜎𝑖 , 𝑋) is a Mathias condition for each 𝑖 < 2;
2. 𝜎0∪{𝑥} and 𝜎1∪{𝑥} form respectively an ascending and a descending

sequence, for each 𝑥 ∈ 𝑋;
3. 𝑋 is computable.

A condition (𝜏0 , 𝜏1 , 𝑌) extends (𝜎0 , 𝜎1 , 𝑋) if (𝜏𝑖 , 𝑌) Mathias extends (𝜎𝑖 , 𝑋)
for every 𝑖 < 2. One can therefore see a condition as two simultaneous Mathias
conditions sharing a same reservoir. Every filter F induces two sets: 𝐺0,F and
𝐺1,F, defined by 𝐺𝑖 ,F =

⋃{𝜎𝑖 : (𝜎0 , 𝜎1 , 𝑋) ∈ F}.

We make the following hypothesis:

(H1): For every infinite computable set 𝑋, there is some 𝑥0 , 𝑥1 ∈
𝑋 such that {𝑦 ∈ 𝑋 : 𝑥0 <L 𝑦} and {𝑦 ∈ 𝑋 : 𝑥1 >L 𝑦} are
both infinite.

If the (H1) hypothesis fails for some set 𝑋, then one can computably thin it out
to obtain a computable infinite ascending or descending sequence 𝑌 ⊆ 𝑋. In
particular, 𝐴0 , 𝐴1 are dependently 𝑌-hyperimmune, so we are done. We can
therefore from now on assume that (H1) holds.

Lemma 6.6.9. Suppose (H1) holds. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition and 𝑖 <
2. There is an extension (𝜏0 , 𝜏1 , 𝑌) of 𝑝 and some 𝑥 > |𝜎𝑖| such that 𝑥 ∈ 𝜏𝑖 .★

Proof. Say 𝑖 = 0 as the other case is symmetric. By (H1), there is some 𝑥0 ∈
𝑋 such that 𝑌 = {𝑦 ∈ 𝑋 : 𝑥0 <L 𝑦} is infinite. Let 𝜏0 = 𝜎0 ∪ {𝑥0}, and
𝜏1 = 𝜎1. Then, (𝜏0 , 𝜏1 , 𝑌) is an extension of 𝑝 such that 𝑥0 ∈ 𝜏0.

We now define a disjunctive forcing question for Σ0
1-formulas. Given a condition

𝑝 = (𝜎0 , 𝜎1 , 𝑋), a split pair34

34: Note that the notion of split pair is the
restriction of split triples from Theorem 6.5.7
to linear orders.is an ordered pair (𝜌0 , 𝜌1) such that 𝜌𝑖 ⊆

𝑋 for each 𝑖 < 2, 𝜌0 is ascending, 𝜌1 is descending, and maxL(𝜌0) <L

minL(𝜌1).35 35: In other words, every element of the as-
cending sequence 𝜌0 is below (with respect
to <L) every element of the descending
sequence 𝜌1.

90 6 Custom properties

Definition 6.6.10. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition and 𝜑0(𝐺), 𝜑1(𝐺)
be two Σ0

1-formulas. Let 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1) hold if there is a split pair
(𝜌0 , 𝜌1) such that for each 𝑖 < 2, 𝜑𝑖(𝜎𝑖 ∪ 𝜌𝑖) holds. ♦

Note that being a split pair is a decidable predicate, hence the forcing question
is Σ0

1-preserving. The following lemma shows that the forcing question not only
meets its specification, but also satisfies some form of Π0

1-extremality.

Lemma 6.6.11. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition and 𝜑0(𝐺), 𝜑1(𝐺) be two
Σ0

1-formulas.

1. If 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1), then there is some 𝑖 < 2 and some exten-
sion 𝑞 ≤ 𝑝 forcing 𝜑𝑖(𝐺𝑖).

2. If 𝑝 ?⊬𝜑0(𝐺0) ∨ 𝜑1(𝐺1), then 𝑝 forces ¬𝜑0(𝐺0) ∨ ¬𝜑1(𝐺1). ★

Proof. Suppose first 𝑝 ?⊢𝜑0(𝐺0)∨𝜑1(𝐺1) holds, as witnessed by some split
pair (𝜌0 , 𝜌1). By the pigeonhole principle, there is some infinite 𝑋-computable
subset𝑌 ⊆ 𝑋 such that for every 𝑥 ∈ 𝜌0∪𝜌1, either for every 𝑦 ∈ 𝑌, 𝑥 <L 𝑦,
or for every 𝑦 ∈ 𝑌, 𝑥 >L 𝑦. We say that 𝑥 is small if it is on the first case and
large otherwise. If maxL(𝜌0) is small, then every element in 𝜌0 is small, so the
condition (𝜎0 ∪ 𝜌0 , 𝜎1 , 𝑌) is an extension of 𝑝 forcing 𝜑0(𝐺0). If maxL(𝜌0) is
large, then every element in 𝜌1 is large, so (𝜎0 , 𝜎1 ∪ 𝜌1 , 𝑌) is an extension
of 𝑝 forcing 𝜑1(𝐺1).
Suppose now 𝑝 ?⊬𝜑0(𝐺0) ∨ 𝜑1(𝐺1). Suppose for the contradiction that there
is an extension 𝑞 = (𝜏0 , 𝜏1 , 𝑌) of 𝑝 such that 𝜑0(𝜏0) and 𝜑1(𝜏1) both hold.
Then, letting 𝜌0 = 𝜏0 \ 𝜎0 and 𝜌1 = 𝜏1 \ 𝜎1, the pair (𝜌0 , 𝜌1) forms a split pair
contradicting our hypothesis. Thus, 𝑝 already forces ¬𝜑0(𝐺0) ∨ ¬𝜑1(𝐺1).

We now prove that for every sufficiently generic filter F, there is some 𝑖 < 2
such that 𝐴0 , 𝐴1 is dependently 𝐺𝑖 ,F-hyperimmune.

Lemma 6.6.12. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition and 𝜑0(𝐺,𝑈,𝑉), 𝜑1(𝐺,𝑈,
𝑉) be two Σ0

1-formulas. There is some 𝑖 < 2 and an extension 𝑞 of 𝑝 forc-
ing 𝜑𝑖(𝐺𝑖 , 𝑈, 𝑉) not to be essential, or 𝜑𝑖(𝐺𝑖 , 𝑈, 𝑉) to hold for some sets
𝑈 ⊆ 𝐴0 and 𝑉 ⊆ 𝐴1. ★

Proof. Let 𝜓(𝑈,𝑉) be the Σ0
1-formula which holds if there is some𝑈0 , 𝑈1 ⊆

𝑈 and some 𝑉0 , 𝑉1 ⊆ 𝑉 such that 𝑝 ?⊢𝜑0(𝐺0 , 𝑈0 , 𝑉0) ∨ 𝜑1(𝐺1 , 𝑈1 , 𝑉1).
If 𝜓(𝑈,𝑉) is essential, then by dependent hyperimmunity of 𝐴0 , 𝐴1, there
are some finite sets 𝑈 ⊆ 𝐴0 and 𝑉 ⊆ 𝐴1 such that 𝜓(𝑈,𝑉) holds. Let
𝑈0 , 𝑈1 , 𝑉0 , 𝑉1 witness this. By Lemma 6.6.11(1), there is some 𝑖 < 2 and an
extension 𝑞 of 𝑝 forcing 𝜑𝑖(𝐺𝑖 , 𝑈𝑖 , 𝑉𝑖). Since 𝑈𝑖 ⊆ 𝐴0 and 𝑉𝑖 ⊆ 𝐴1, then 𝑞
is the desired extension.

Suppose now that 𝜓(𝑈,𝑉) is not essential. Unfolding the definition, there
is some 𝑥 ∈ ℕ such that for every finite set 𝑅 > 𝑥, there is some 𝑦𝑅 ∈ ℕ

such that for every finite set 𝑆 > 𝑦𝑅, 𝜓(𝑅, 𝑆) does not hold. Suppose for the
contradiction that there is a filter Fcontaining 𝑝 such that 𝜑0(𝐺0,F, 𝑈, 𝑉) and
𝜑1(𝐺1,F, 𝑈, 𝑉) are both essential. For each 𝑖 < 2, since 𝜑𝑖(𝐺𝑖 ,F, 𝑈, 𝑉) is
essential, there is some𝑅𝑖 > 𝑥 such that for every 𝑦 ∈ ℕ, there is some 𝑆𝑖 > 𝑦

such that 𝜑𝑖(𝐺𝑖 ,F, 𝑅𝑖 , 𝑆𝑖) holds. Let 𝑅 = 𝑅0 ∪ 𝑅1, and for each 𝑖 < 2, let
𝑆𝑖 > 𝑦𝑅 be such that 𝜑𝑖(𝐺𝑖 ,F, 𝑅𝑖 , 𝑆𝑖) holds. Let 𝑆 = 𝑆0 ∪ 𝑆1. Then 𝑝

does not force ¬𝜑0(𝐺0 , 𝑅0 , 𝑆0) ∨ ¬𝜑1(𝐺1 , 𝑅1 , 𝑆1), so by Lemma 6.6.11(2),
𝑝 ?⊢𝜑0(𝐺0 , 𝑅0 , 𝑆0) ∨ 𝜑1(𝐺1 , 𝑅1 , 𝑆1). Thus, 𝜓(𝑅, 𝑆) holds, with 𝑅 > 𝑥 and
𝑆 > 𝑦𝑅, contradiction.

6.6 Linear orders 91

37: Note that by stability of P, we will have
𝐿∗ ⊔ 𝐼∗ = ℕ, thus in the requirement, one
must think of 𝐼∗ as 𝐿∗ and 𝐿∗ as 𝐼∗.

We are now ready to prove Theorem 6.6.8. Let F be a sufficiently generic
filter for this notion of forcing. For each 𝑖 < 2, let 𝐺𝑖 = 𝐺F,𝑖 . By Lemma 6.6.9,
𝐺𝑖 is infinite for every 𝑖 < 2. Moreover, by construction, 𝐺0 is an ascending
sequence and 𝐺1 is a descending sequence. Last, by Lemma 6.6.12, there is
some 𝑖 < 2 such that 𝐴0 , 𝐴1 is dependently 𝐺𝑖-hyperimmune. This completes
the proof of Theorem 6.6.8.

We leave the abstract preservation theorem as an exercise.

Exercise 6.6.13. Let (ℙ,≤) be a notion of forcing with a Π0
1-extremal, Σ0

1-
preserving forcing question. Show that for every pair 𝐴0 , 𝐴1 of dependently
hyperimmune sets and every sufficiently generic filter F,𝐴0 , 𝐴1 is dependently
𝐺F-hyperimmune. ★

We construct a computable partial order witnessing that CAC does not admit
preservation of 1 dependent hyperimmunity. This partial order will satisfy
some strong structural properties that we now define. Given a partial order
P = (𝐷, <P), we say that 𝑥 ∈ 𝑃 is small, large or isolated if for all but finitely
many 𝑦 ∈ 𝐷, 𝑥 ≤𝑃 𝑦, 𝑥 ≥𝑃 𝑦, or 𝑥|𝑃𝑦, respectively. We write 𝑆∗(P), 𝐿∗(P)
and 𝐼∗(P) for the set of small, large and isolated elements of P, respectively.
A partial order is weakly stable36

36: Weak stability is arguably the natural
notion of stability for CAC, in that a partial
order over ℕ can be seen as a 3-coloring
of [ℕ]2, and this partial order is weakly sta-
ble if the corresponding 3-coloring is stable.
The stronger notion of stability was first in-
troduced by Hirschfeldt and Shore [23], who
proved that ADS is equivalent to the state-
ment “Every infinite partial order admits an
infinite sub-domain over which it is weakly
stable.”

if every element is either small, large, or
isolated, that is, 𝐷 = 𝑆∗(P) ∪ 𝐿∗(P) ∪ 𝐼∗(P). A partial order is stable if every
element is small or isolated, or if every element is large or isolated, that is,
𝐷 = 𝑆∗(P) ∪ 𝐼∗(P) or 𝐷 = 𝐿∗(P) ∪ 𝐼∗(P).

Theorem 6.6.14 (Patey [46])
There exists a computable, stable partial order P = (ℕ, <P) such that the
pair 𝐼∗(P), 𝐿∗(P) is dependently hyperimmune.

Proof. Fix an enumeration 𝜑0(𝑈,𝑉), 𝜑1(𝑈,𝑉), . . . of all Σ0
1 formulas. The

construction of the partial order <P is done by a finite injury priority argument
with a movable marker procedure. We want to satisfy the following scheme of
requirements for each 𝑒, where 𝐿∗ = 𝐿∗(P) and 𝐼∗ = 𝐼∗(P).37

R𝑒 : 𝜑𝑒(𝑈,𝑉) essential → (∃𝑅 ⊆fin 𝐿∗)(∃𝑆 ⊆fin 𝐼∗)𝜑𝑒(𝑅, 𝑆)

The requirements are given the usual priority ordering. We proceed by stages,
maintaining two sets 𝐼∗ , 𝐿∗ which represent the limit of the partial order <P.
At stage 0, 𝐼∗0 = 𝐿∗0 = ∅ and <P is nowhere defined. Moreover, each require-
ment R𝑒 is given a movable marker 𝑚𝑒 initialized to 0.

A strategy for R𝑒 requires attention at stage 𝑠+1 if 𝜑𝑒(𝑅, 𝑆) holds for some𝑅 <
𝑆 ⊆ (𝑚𝑒 , 𝑠]. The strategy sets 𝐼∗

𝑠+1 = (𝐼∗𝑠 \ (𝑚𝑒 , 𝑚𝑖𝑛(𝑆)) ∪ [𝑚𝑖𝑛(𝑆), 𝑠]
and 𝐿∗

𝑠+1 = (𝐿∗𝑠 \ [𝑚𝑖𝑛(𝑆), 𝑠]) ∪ (𝑚𝑒 , 𝑚𝑖𝑛(𝑆)). Note that 𝑅 ⊆ (𝑚𝑒 , 𝑚𝑖𝑛(𝑆))
since 𝑅 < 𝑆. Then it is declared satisfied and does not act until some strategy
of higher priority changes its marker. Each marker 𝑚𝑒′ of strategies of lower
priorities is assigned the value 𝑠 + 1.

At stage 𝑠 + 1, assume that 𝐼∗𝑠 ∪ 𝐿∗𝑠 = [0, 𝑠) and that <P is defined for each
pair over [0, 𝑠).38

38: By “<P is defined over [0, 𝑠)”, we don’t
mean that it is a linear order on [0, 𝑠), but
that the status “below/above/incomparable”
is defined for every pair over [0, 𝑠).For each 𝑥 ∈ [0, 𝑠), set 𝑥 <P 𝑠 if 𝑥 ∈ 𝐿∗𝑠 and 𝑥|P𝑠 if 𝑥 ∈ 𝐼∗𝑠 .

If some strategy requires attention at stage 𝑠 +1, take the least one and satisfy
it. If no such requirement is found, set 𝐿∗

𝑠+1 = 𝐿∗𝑠 and 𝐼∗
𝑠+1 = 𝐼∗𝑠 ∪ {𝑠}.39

39: This choice is arbitrary. One could have
defined 𝐿∗

𝑠+1 = 𝐿∗𝑠 ∪ {𝑠} and 𝐼∗
𝑠+1 = 𝐼∗𝑠 .

Then
go to the next stage. This ends the construction.

92 6 Custom properties

Each time a strategy acts, it changes the markers of strategies of lower priority,
and is declared satisfied. Once a strategy is satisfied, only a strategy of higher
priority can injure it. Therefore, each strategy acts finitely often and the markers
stabilize. It follows that lim𝑠 𝐼

∗
𝑠 and lim𝑠 𝐿

∗
𝑠 both exist, and that (ℕ, <P) is

stable.

Claim. For every 𝑥 < 𝑦 < 𝑧, if 𝑥 <P 𝑦 and 𝑦 <P 𝑧, then 𝑥 <P 𝑧.

Proof. Suppose that 𝑥 <P 𝑦 and 𝑦 <P 𝑧 but 𝑥|P𝑧. By construction of <P,
𝑥 ∈ 𝐼∗𝑧 , 𝑥 ∈ 𝐿∗𝑦 and 𝑦 ∈ 𝐿∗𝑧 . Let 𝑠 ≤ 𝑧 be the last stage such that 𝑥 ∈ 𝐿∗𝑠 .
Then at stage 𝑠 + 1, some strategy R𝑒 receives attention and moves 𝑥 to 𝐼∗

𝑠+1
and therefore moves [𝑥, 𝑠] to 𝐼∗

𝑠+1. In particular 𝑦 ∈ 𝐼∗
𝑠+1 since 𝑦 ∈ [𝑥, 𝑠].

Moreover, the strategies of lower priority have had their marker moved to 𝑠 + 1
and therefore will never move any element below 𝑠. Since 𝑦 <P 𝑧, then
𝑦 ∈ 𝐿∗𝑧 . In particular, some strategy R𝑖 of higher priority moved 𝑦 to 𝐿∗

𝑡+1
at stage 𝑡 + 1 for some 𝑡 ∈ (𝑠, 𝑧). Since R𝑖 has a higher priority, 𝑚𝑖 ≤ 𝑚𝑒 ,
and since 𝑦 is moved to 𝐿∗

𝑡+1, then so is [𝑚𝑖 , 𝑦], and in particular 𝑥 ∈ 𝐿∗
𝑡+1

since 𝑚𝑖 ≤ 𝑚𝑒 ≤ 𝑥 ≤ 𝑦. This contradicts the maximality of 𝑠.

Claim. For every 𝑒 ∈ 𝜔, R𝑒 is satisfied.

Proof. By induction over the priority order. Let 𝑠0 be a stage after which no
strategy of higher priority will ever act. By construction, 𝑚𝑒 will not change
after stage 𝑠0. If 𝜑𝑒(𝑈,𝑉) is essential, then 𝜑𝑒(𝑅, 𝑆) holds for two sets 𝑚𝑒 <
𝑅 < 𝑆. Let 𝑠 = 1+𝑚𝑎𝑥(𝑠0 , 𝑆). The strategy R𝑒 will require attention at some
stage before 𝑠, will receive attention, be satisfied and never be injured.

This last claim finishes the proof of Theorem 6.6.14.

Corollary 6.6.15 (Lerman, Solomon and Towsner [43])
ADS does not imply CAC over RCA0.

Proof. Let P = (ℕ, <P) be the partial order of Theorem 6.6.14, and let
𝐴0 = 𝐼∗(P) and 𝐴1 = 𝐿∗(P). Let 𝐻 be either infinite chain, or an infinite
antichain, and let 𝜑(𝑈,𝑉) be the essential Σ0

1(𝐻)-formula “𝑈 ∪ 𝑉 ⊆ 𝐻”.
If 𝐻 is a chain, then by stability of P, it is an ascending sequence, hence
𝐻 ⊆ 𝐴1. If 𝐻 is an antichain, then 𝐻 ⊆ 𝐴0. In both cases, 𝜑 witnesses
the fact that 𝐴0 , 𝐴1 is not dependently 𝐻-hyperimmune. Thus CAC does not
admit preservation of 1 dependent hyperimmunity. On the other hand, by
Theorem 6.6.8, ADS admits preservation of 1 dependent hyperimmunity. Thus,
by Corollary 6.1.4, ADS does not imply CAC over RCA0.

1: There is an excellent article from Simp-
son [1] on the subject, presenting reverse
mathematics as a partial realization of
Hilbert’s program.

2: PRA is a system in the language of func-
tions, capturing primitive recursive functions.
Technically, the languages being different,
saying that WKL0 is Π2-conservative over
PRA requires some work in translating sen-
tences from one language to the other. See
Simpson [5, p. IX.3] for a formal develop-
ment of the subject.

Conservation theorems 7
7.1 Context and motivation . . 93
7.2 Induction and collection . 94
7.3 Conservation over RCA0 . 97
7.4 Isomorphism theorem . . 103
7.5 Conservation over BΣ0

2 . . 109
7.6 Shore blocking and BME . 115

Prerequisites: Chapters 2 to 4

The importance of the combinatorial features of the forcing question extends
to the proof-theoretic realm, especially for proving conservation theorems. In
this setting, one usually starts with a model of a weak theory, and extends it to
satisfy a stronger theory, while preserving some features of the original model.
When working with models of weak arithmetic, the stake is to add new sets to
the model while preserving induction. We shall see that Σ0

𝑛-induction can be
preserved thanks to the existence of a Σ0

𝑛-preserving forcing question which is
able to find a common extension witnessing a positive and a negative answer
simultaneously.

In this chapter, we shall consider conservation theorems over RCA0, a weak
theory capturing computable mathematics. Thanks to the correspondence
between computability and definability, we shall benefit from the framework
of first-jump control to prove our main conservations theorems. However, the
translation of computability-theoretic constructions to proof-theoretic ones
requires a careful formalization, as many intuitive features of the integers are
not necessarily true in models of weak arithmetic.

7.1 Context and motivation

At the end of the 19th century, the various paradoxes arising in the development
of set theory led to a foundational crisis of mathematics. Mathematicians started
to question the use of infinity in mathematics, partially due to the lack of ground
to reality: with the discovery of the atom, and of the finiteness of the universe,
infinity seemed to be a purely intellectual construction in which intuition failed.
In the early 1920s, David Hilbert proposed a program as a solution to the
foundational crisis, called finitistic reductionism. The goal was to show that
every finitary statement proven by infinitary means, could also be proven
finitarily. Thus, infinity would be a convenience language not affecting the truth
value of finitary statements.1

Sadly, Gödel’s incompleteness theorems showed the unrealizability of Hilbert’s
program in its full generality, as the consistency of Peano arithmetic is a
finitary statement which is not provable by finitary means, but provable in set
theory. Reverse mathematics can be considered as a partial realization of
Hilbert’s program, as it showed that many theorems of ordinary mathematics
are provable over WKL0, which is Π2-conservative over primitive recursive
arithmetic (PRA).2 PRA is considered as capturing finitary mathematics (see
Tait [48]), so any Π2 theorem of WKL0 can be proved by finitary means.

More generally, it is of foundational importance to understand the first-order
part of a second-order theory, that is, the set of its first-order theorems. There
exist two main methods to characterize the first-order part of a second-order
theory 𝑇: either directly identify a first-order theory capturing the first-order part
of 𝑇, or reduce the theory 𝑇 to a weaker second-order theory for which the
first-order part is already known. We shall mostly adopt the second approach,
through Π1

1-conservation.

94 7 Conservation theorems

Definition 7.1.1. Let 𝑇0 , 𝑇1 be two theories of second-order arithmetic. A
theory 𝑇1 is Π1

1-conservative over 𝑇0 if every Π1
1 sentence provable in 𝑇1 is

also provable in 𝑇0. ♦

If furthermore 𝑇1 implies 𝑇0, then we say that 𝑇1 is a Π1
1-conservative extension

of 𝑇0. Proving that a theory 𝑇1 is a Π1
1-conservative extension of 𝑇0 is a strong

way of proving that 𝑇1 and 𝑇0 have the same first-order part. Indeed, the class
of Π1

1 sentences not only contains all the first-order sentences, but also every
arithmetic sentence with second-order parameters.

Recall that a model of second-order arithmetic is of the formM= (𝑀, 𝑆,+,×, <
, 0, 1) where 𝑆 ⊆ P(𝑀). A model M is topped3

3: Topped models should not be confused
with top models, although there is a lot of
beauty in models of weak arithmetic.

by a set𝑌 ∈ 𝑆 if every 𝑋 ∈ 𝑆
is Δ0

1(𝑌)-definable with parameters in 𝑀.4

4: One can define a notion of Turing func-
tional in weak models of arithmetic, and
therefore define the Turing reduction. How-
ever, if the theory is too weak, the Turing
reduction is not transitive. In order to have
a Turing reduction 𝑌 ≤𝑇 𝑋 with a good be-
havior, one needs (𝑀, {𝑋}) |= BΣ0

1. See
Groszek and Slaman [49].

Definition 7.1.2. A model N= (𝑁,𝑇,+N,×N, <N, 0N, 1N) is an 𝜔-exten-
sion5

5: The terminology might be confusing, as
being an 𝜔-extension has nothing to do with
𝜔-models.

of a model M= (𝑀, 𝑆,+M,×M, <M, 0M, 1M) if Nand M differ only
by their second-order part and 𝑇 ⊇ 𝑆. In other words, 𝑀 = 𝑁 , and the basic
operations coincide. ♦

We shall often omit the signature, and simply write M= (𝑀, 𝑆) when there is
no ambiguity. Proofs ofΠ1

1-conservation are usually done through 𝜔-extensions
of countable models.

Proposition 7.1.3. Let 𝑇0 and 𝑇1 be two theories of second-order arithmetic.
Suppose that every countable model M |= 𝑇0 can be 𝜔-extended into a
model N |= 𝑇1. Then 𝑇1 is Π1

1-conservative over 𝑇0. ★

Proof. Let 𝜑 ≡ ∀𝑋𝜃(𝑋) be a Π1
1 sentence, where 𝜃 is an arithmetic formula.

Suppose that 𝑇0 ⊬ 𝜑. Then by Gödel’s completeness theorem6

6: Recall that second-order arithmetic is a
two-sorted first-order theory. A Henkin struc-
ture is a structure of second-order arithmetic
in which the ownership relation ∈ has its
standard interpretation. Henkin proved that
Gödel’s completeness theorem also applies
to Henkin tructures, that is, a second-order
theory is consistent iff it admits a Henkin
model.

, there is a
model of 𝑇0 ∪ {¬𝜑}. By the downward Löwenheim–Skolem theorem7

7: The downward Löwenheim-Skolem the-
orem is a classical theorem from model the-
ory, stating that for every structure M over
a signature 𝜎, and every infinite cardinal 𝜅
between cardM and card 𝜎, there is an el-
ementary substructure of M of cardinal 𝜅.
In particular, the language of second-order
arithmetic is countable, so consistency of a
theory 𝑇 implies the existence of a count-
able model of 𝑇.

, there
is a countable such model M = (𝑀, 𝑆) |= 𝑇0 ∪ {¬𝜑}. Let 𝑋 ∈ 𝑆 be such
that M |= ¬𝜃(𝑋). By assumption, there is an 𝜔-extension N= (𝑀, 𝑆1) |= 𝑇1
of M. Since 𝑆1 ⊇ 𝑆, then 𝑋 ∈ 𝑆1. Moreover, since N is an 𝜔-extension of M,
then N |= ¬𝜃(𝑋), so N |= ¬𝜑.

In this chapter, we shall consider two base theories for 𝑇0: RCA0 and RCA0 +
BΣ0

2. The techniques to prove Π1
1-conservation over these two theories are

pretty different, but both use a formalization of first-jump control.

7.2 Induction and collection

Before turning to the actual proofs of conservation, it is important to get familiar
with some fundamental concepts of weak arithmetic. Classical mathematicians
being used to work with full induction, it can be challenging to get an intuition
on what constructions and theorems of mathematics remain valid over weak
arithmetic. See Hájek and Pudlák [50] for a development of the basics of
mathematics over increasingly strong axiomatic systems. The base system,
RCA0, is a restriction of the full second-order arithmetic on two axis:

▶ The comprehension scheme is restricted to Δ0
1 predicates with param-

eters. By Post’s theorem, this restrictions allows only the construction
of sets computably from existing sets in the model. In 𝜔-models, this
ensures that the second-order part is a Turing ideal. The computability-
theorist should already be familiar with this restriction.

7.2 Induction and collection 95

8: One should not confuse the arithmetic
hierarchy on sets and on formulas. The for-
mer is a semantic notion, starting a the first
level with computable predicates. The lat-
ter is a syntactic hierarchy, starting at the
first level with bounded arithmetic formulas,
that is, formulas with only quantifiers of the
form ∀𝑥 < 𝑡 and ∃𝑥 < 𝑡 where 𝑡 is a term.
By a theorem of Gödel, the Σ0

𝑛 sets are ex-
actly the ones definable by a Σ0

𝑛 formula,
for 𝑛 ≥ 1, so the hierarchies coincide start-
ing from level 1. On the other hand, some
computable sets and even some primitive
recursive sets are not definable by bounded
arithmetic formulas.

Note that the hierarchies of Σ0
𝑛 and Π0

𝑛

formulas allow integer and set parameters,
which is equivalent to quantify universally
all free variables.

▶ The induction scheme is restricted to Σ0
1 formulas with parameters. This

might be the less intuitive part, both in terms of consequences over the
theory, and in terms of design choice. Indeed, why restrict induction to
capture computable mathematics?

This section therefore focuses on the second restriction, and gives a brief
overview on the impact of induction over the models of weak arithmetic. One can
define a hierarchy of systems based on the complexity of formulas satisfying
induction.

Definition 7.2.1. Given a class of formulas Γ, the Γ-induction scheme (writ-
ten IΓ) states, for every formula 𝜑(𝑥) ∈ Γ,

𝜑(0) ∧ ∀𝑥(𝜑(𝑥) → 𝜑(𝑥 + 1)) → ∀𝑥 𝜑(𝑥)

We shall in particular be interested in the theories IΣ0
𝑛 and IΠ0

𝑛 .8 Recall that Q
denotes Robinson arithmetic (see Section 2.2). Most of our equivalences will
be stated either over Q, Q+ IΔ0

0 or Q+ IΔ0
0 + exp, where exp is the statement

of the totality of the exponential.9

9: Note that Q + IΣ0
1, and a fortiori RCA0,

proves exp, so all the implications of
this section hold over RCA0, and even
over RCA∗

0, a weaker system that will be
introduced in Section 7.4.

Proposition 7.2.2 (Paris and Kirby [51]). Fix 𝑛 ≥ 1. Then Q ⊢ IΣ0
𝑛 ↔

IΠ0
𝑛 . ★

Proof. We first prove Q ⊢ IΣ0
𝑛 → IΠ0

𝑛 . Suppose that IΣ0
𝑛 holds but IΠ0

𝑛 fails.
Let 𝐹(𝑥) be a Π0

𝑛 formula such that 𝐹(0) and ∀𝑥(𝐹(𝑥) → 𝐹(𝑥+1)), but ¬𝐹(𝑎)
for an integer 𝑎 > 0. Let 𝐺(𝑦) be the formula ∃𝑥 (𝑎 = 𝑥 + 𝑦 ∧ ¬𝐹(𝑥)). Note
that𝐺(𝑦) is equivalent to aΣ0

𝑛 formula. Moreover,𝐺(0) is true and𝐺(𝑎) is false.
Let 𝑦 be such that 𝐺(𝑦) is true. In particular, there is an 𝑥 such that 𝑎 = 𝑥 + 𝑦
and ¬𝐹(𝑥). Since 𝐹(0) holds, then 𝑥 > 0 and 𝑦 < 𝑎. Thus 𝑎 = (𝑥−1)+(𝑦+1)
and by hypothesis, ¬𝐹(𝑥) → ¬𝐹(𝑥 − 1), therefore 𝐺(𝑦 + 1) is true. As 𝐺(0)
and ∀𝑦 (𝐺(𝑦) → 𝐺(𝑦 + 1)) and ¬𝐺(𝑎), then IΣ0

𝑛 fails.

We now prove Q ⊢ IΠ0
𝑛 → IΣ0

𝑛 . Suppose IΠ0
𝑛 holds but IΣ0

𝑛 fails. Let 𝐹(𝑥)
be a Σ0

𝑛 formula such that 𝐹(0) and ∀𝑥(𝐹(𝑥) → 𝐹(𝑥 + 1)), but ¬𝐹(𝑎) for
an integer 𝑎 > 0. Let 𝐻(𝑦) be the formula ∀𝑥 (𝑎 = 𝑥 + 𝑦 → ¬𝐹(𝑥)). As
before, 𝐻(𝑦) is equivalent to a Π0

𝑛 formula. Additionally 𝐻(0) is true and 𝐻(𝑎)
is false. We also show 𝐻(𝑦) → 𝐻(𝑦 + 1). Then, 𝐻(0) and ∀𝑦 (𝐻(𝑦) →
𝐻(𝑦 + 1)) and ¬𝐻(𝑎), so IΠ0

𝑛 fails.10

10: Note that in both directions, we used a
formula with parameter 𝑎 to witness failure
of the other induction scheme. This is neces-
sary, as the parameter-free versions of IΣ0

𝑛

and IΠ0
𝑛 are not equivalent for 𝑛 ≥ 1. [52]

Exercise 7.2.3 (Hájek and Pudlák [50]). Given a class of formulas Γ, the Γ-
least principle (written LΓ) states, for every formula 𝜑(𝑥) ∈ Γ,

∃𝑥𝜑(𝑥) → ∃𝑥(𝜑(𝑥) ∧ ∀𝑦 < 𝑥¬𝜑(𝑦))

Show that Q ⊢ IΣ0
𝑛 ↔ LΠ0

𝑛 and Q ⊢ IΠ0
𝑛 ↔ LΣ0

𝑛 . ★

From a computability-theoretic viewpoint, bounded sets are finite and therefore
trivially computable. In weak arithmetic on the other hand, not all bounded
sets exist in the model, and their existence is closely related to the hierarchy
of induction. A set 𝐹 ⊆ 𝑀 is 𝑀-coded if it has a canonical code in 𝑀, that is,
there is some 𝑠 ∈ 𝑀 such that 𝑠 =

∑
𝑥∈𝐹 2𝑥 . Given 𝑠 ∈ 𝑀, we write Ack(𝑠)

for the set coded by 𝑠.

96 7 Conservation theorems

Definition 7.2.4. Let M= (𝑀, 𝑆) be a model. A set 𝐴 ⊆ 𝑀 is 𝑀-regular1111: These sets are also called amenable
or piecewise coded. If M |= Q + IΔ0

0 + exp
then every set in 𝑆 is 𝑀-regular.

if every initial segment of 𝐴 is 𝑀-coded. ♦

The following proposition states that the induction scheme is equivalent to
a bounded version of the comprehension scheme. Therefore, restricting the
induction corresponds to restricting the complexity of the finite sets in the
model.

Proposition 7.2.5 (Hájek and Pudlák [50]). Fix 𝑛 ≥ 1. Then the following
are equivalent over Q + IΔ0

0 + exp:

1. IΣ0
𝑛 ;

2. Every Σ0
𝑛-definable set is regular. ★

Proof. Suppose first that every Σ0
𝑛-definable set is regular. Let 𝜑 be a Σ0

𝑛

formula such that 𝜑(0) holds and ∀𝑥(𝜑(𝑥) → 𝜑(𝑥 + 1)). Fix any 𝑎 ∈ ℕ and
let 𝜎 ∈ 2𝑎+1 be the string defined by 𝜎(𝑥) = 1 iff 𝜑(𝑥) holds. By regularity, 𝜎
exists. Let 𝜓(𝑥) be the Δ0

0 formula defined by 𝜓(𝑥) ≡ (𝑥 ≤ 𝑎 → 𝜎(𝑥) = 1).
By IΔ0

0, 𝜓(𝑥) holds for every 𝑥, so 𝜑(𝑎) holds.

Suppose now IΣ0
𝑛 . Let 𝜑 be a Σ0

𝑛 formula and 𝑎 ∈ ℕ. Let 𝜓(𝑞) be the Π0
𝑛

formula (∀𝑥 < 𝑎)(𝜑(𝑥) → 𝑥 ∈ 𝑞), where 𝑥 ∈ 𝑞 means that 𝑥 belongs
to the set canonically coded by 𝑞. Note that 2𝑎 − 1 is a canonical code for
{𝑥 ∈ ℕ : 𝑥 < 𝑎}, so 𝜓(2𝑎 − 1) holds. By LΠ0

𝑛 (which is equivalent to IΣ0
𝑛

by Exercise 7.2.3), there is a least 𝑞 ∈ ℕ such that 𝜓(𝑞) holds. Then 𝑞 is a
canonical code of {𝑥 < 𝑎 : 𝜑(𝑥)}.

The collection scheme is a principle equivalent to induction, but whose induced
hierarchy is interleaved with the induction hierarchy. It plays a very important
role in proving closure properties of levels of the arithmetic hierarchy.

Definition 7.2.6. Given a class of formulas Γ, the Γ-collection scheme (writ-
ten BΓ) states, for every formula 𝜑(𝑥, 𝑦) ∈ Γ,

∀𝑎[(∀𝑥 < 𝑎∃𝑦𝜑(𝑥, 𝑦)) → ∃𝑏∀𝑥 < 𝑎∃𝑦 < 𝑏𝜑(𝑥, 𝑦)]

In other words, the collection scheme states that every bounded family of exis-
tential formulas admits a uniform existential bound. By contraction of quantifiers,
BΣ0

𝑛+1 is equivalent to BΠ0
𝑛 .

Exercise 7.2.7 (Hájek and Pudlák [50]). Prove that Q + IΔ0
0 ⊢ BΣ0

𝑛+1 ↔
BΠ0

𝑛 . ★

The following proposition is very useful for formulas manipulation:

Proposition 7.2.8 (Parsons [53]). Fix 𝑛 ≥ 1. Let 𝜑0(𝑥), 𝜑1(𝑥), 𝜑(𝑥) be Σ0
𝑛

(resp. Π0
𝑛) formulas. Then the following formulas are provably equivalent to a

Σ0
𝑛 (resp. Π0

𝑛) formula over Q + IΔ0
0 + BΣ0

𝑛 :

(1) 𝜑0(𝑥) ∧ 𝜑1(𝑥), 𝜑0(𝑥) ∨ 𝜑1(𝑥) ;
(2) ∃𝑥 < 𝑎𝜑(𝑥), ∀𝑥 < 𝑎𝜑(𝑥) ;
(3) ∃𝑥𝜑(𝑥) (resp. ∀𝑥𝜑(𝑥)). ★

7.3 Conservation over RCA0 97

IΣ0
𝑛 IΠ0

𝑛

IΔ0
𝑛 BΣ0

𝑛

IΣ0
𝑛−1 IΠ0

𝑛−1

Figure 7.1: Induction hierarchy. Arrows
stand for implications in Q + IΔ0

0 + exp.

12: We distinguish the class of Σ0
𝑛 formulas

in the language of second-order arithmetic
from the class of Σ𝑛 formulas in first-order
arithmetic. In particular, in the former case,
second-order parameters are allowed.

Proof. Say 𝜑0(𝑥) ≡ ∃𝑦𝜃0(𝑥, 𝑦), 𝜑1(𝑥) ≡ ∃𝑦𝜃1(𝑥, 𝑦) and 𝜑(𝑥) ≡ ∃𝑦𝜃(𝑥, 𝑦).
The proof goes by induction, using the following equivalences:

𝜑0(𝑥) ∧ 𝜑1(𝑥) ↔ ∃𝑦∃𝑦0 , 𝑦1 < 𝑦(𝜃0(𝑥, 𝑦0) ∧ 𝜃1(𝑥, 𝑦1)) (𝑎)
𝜑0(𝑥) ∨ 𝜑1(𝑥) ↔ ∃𝑦(𝜃0(𝑥, 𝑦) ∨ 𝜃1(𝑥, 𝑦)) (𝑏)
∃𝑥 < 𝑎𝜑(𝑥) ↔ ∃𝑦∃𝑥 < 𝑎𝜃(𝑥, 𝑦) (𝑐)
∀𝑥 < 𝑎𝜑(𝑥) ↔ ∃𝑎∀𝑥 < 𝑎∃𝑦 < 𝑧𝜃(𝑥, 𝑦) (𝑑)

∃𝑥𝜃(𝑥) ↔ ∃𝑧∃𝑥, 𝑦 < 𝑧𝜃(𝑥, 𝑦) (𝑒)

Note that (a)(b)(c) and (e) are provable over Q + IΔ0
0, while (d) uses BΣ0

𝑛 .

The following theorem shows that the hierarchies of induction and collection
are interleaved. Paris and Kirby [51] proved the following implications, which
are both strict:

Theorem 7.2.9 (Paris and Kirby [51])
Fix 𝑛 ≥ 1.

1. Q ⊢ IΣ0
𝑛 → BΣ0

𝑛

2. Q + IΔ0
0 ⊢ BΣ0

𝑛+1 → IΣ0
𝑛 .

Actually, the levels of the collection hierarchy can be understood in terms of
induction, using Δ0

𝑛 predicates. Recall that for 𝑛 ≥ 1, Δ0
𝑛 predicates do not

form a syntactic class for formulas. Thankfully, one can extend the various
schemes to Δ0

𝑛 predicates using a syntactical trick.

Definition 7.2.10. Fix 𝑛 ≥ 1. The Δ0
𝑛-induction scheme (written IΔ0

𝑛) states,
for every Σ0

𝑛 formula 𝜑(𝑥) and every Π0
𝑛 formula 𝜓(𝑥):

∀𝑥(𝜑(𝑥) ↔ 𝜓(𝑥)) → [(𝜑(0) ∧ ∀𝑥(𝜑(𝑥) → 𝜑(𝑥 + 1))) → ∀𝑥𝜑(𝑥)]

TheΔ0
𝑛-least principle (LΔ0

𝑛) is defined accordingly. By Gandy (see Slaman [54]),
Q + IΔ0

0 ⊢ BΣ0
𝑛 ↔ LΔ0

𝑛 . The proof of following theorem goes far beyond the
scope of this book.

Theorem 7.2.11 (Slaman [54])
Fix 𝑛 ≥ 1.

▶ Q + IΔ0
0 ⊢ BΣ0

𝑛 → IΔ0
𝑛 ;

▶ Q + IΔ0
0 + exp ⊢ IΔ0

𝑛 → BΣ0
𝑛 .

Exercise 7.2.12 (Hájek and Pudlák [50]). Fix 𝑛 ≥ 1. Show that the following
are equivalent over Q + IΔ0

0 + exp:

1. IΔ0
𝑛 ;

2. Every Δ0
𝑛-definable set is regular. ★

7.3 Conservation over RCA0

The proof-theoretic strength of RCA0 is relatively well understood. Its first-
order part is Q + IΣ1

12, and it is a Π2-conservative extension of PRA. In

98 7 Conservation theorems

13: Given a class of formulas Γ and a struc-
ture M, we write Γ(M) for the class of for-
mulas with parameters in M.

particular, every primitive recursive function is provably total over RCA0, and
every theorem of RCA0 is finitistically reducible in the sense of Hilbert’s program.
Proving that a theory 𝑇 is Π1

1 conservative over RCA0 is therefore a good way
to show that 𝑇 is finitistically reducible.

Given a model M = (𝑀, 𝑆) and a set 𝐺 ⊆ 𝑀, we denote by M ∪ {𝐺}
and M[𝐺] the 𝜔-extensions whose second-order parts are 𝑆 ∪ {𝐺} and the
Δ0

1(M, 𝐺)-definable sets13, respectively. The following exercise reflects the fact
that everyΣ0

1-formula over M[𝐺] is equivalent to aΣ0
1-formula over M∪{𝐺}.

Exercise 7.3.1 (Friedman [55]). Let M = (𝑀, 𝑆) |= RCA0 and 𝐺 ⊆ 𝑀 be
such that M∪ {𝐺} |= IΣ0

1. Show that M[𝐺] |= RCA0. ★

Proposition 7.1.3 gives a general proof scheme to obtain conservation theo-
rems between two second-order theories. One can prove a refined proposition
in the particular case of conservation of Π1

2 problems over RCA0. Recall that
a problem P is Π1

2 if the relations 𝑋 ∈ dom P and 𝑌 ∈ P(𝑋) are both arith-
metically definable. The sentence ∀𝑋 ∈ dom P ∃𝑌 ∈ P(𝑋) is then Π1

2.

Proposition 7.3.2. Let P be a Π1
2 problem. Suppose that for every countable

topped model M= (𝑀, 𝑆) |= RCA0, and every 𝑋 ⊆ 𝑀 such that M |= 𝑋 ∈
dom P, there is a set 𝑌 ⊆ 𝑀 such that M[𝑌] |= RCA0 + (𝑌 ∈ P(𝑋)). Then
RCA0 + P is Π1

1-conservative over RCA0.1414: By Exercise 7.3.1, it is actually sufficient
to require that

M∪ {𝑌} |= IΣ0
1 + (𝑌 ∈ P(𝑋))

★

Proof. Let 𝜑 ≡ ∀𝑍𝜃(𝑍) be a Π1
1-sentence, where 𝜃 is an arithmetic formula.

Suppose that RCA0 ⊬ 𝜑. Then by Gödel’s completeness theorem and the
downward Löwenheim-Skolem theorem, there is a countable model M =

(𝑀, 𝑆) |= RCA0 ∪ {¬𝜑}. Let 𝑍0 ∈ 𝑆 be such that M |= ¬𝜃(𝑍0). Let M0 =

(𝑀, 𝑆0), where 𝑆0 be the set of Δ0
1-definable sets over (𝑀, {𝑍0}). By Fried-

man [56], M0 |= RCA0, and by construction, M0 is topped by 𝑍0.

We define by external induction a countable sequence of sets 𝑍0 , 𝑍1 , . . . and
models M0 ,M1 , . . . such that for every 𝑛 ∈ 𝜔,

1. M𝑛 = (𝑀, 𝑆𝑛) |= RCA0 is topped by 𝑍0 ⊕ · · · ⊕ 𝑍𝑛 ;
2. for every 𝑋 ∈ 𝑆𝑛 such that M𝑛 |= 𝑋 ∈ dom P, there is some 𝑝 ∈ 𝜔

such that M𝑝 |= 𝑍𝑝 ∈ P(𝑋).

Assuming M𝑛 is defined and given some 𝑋 ∈ M𝑛 such that M𝑛 |= 𝑋 ∈
dom P, by assumption, there is a set 𝑍𝑛+1 ⊆ 𝑀 such that M[𝑍𝑛+1] |=
RCA0 + (𝑍𝑛+1 ∈ P(𝑋)}. Let M𝑛+1 = M𝑛[𝑍𝑛+1]. By construction, M𝑛+1 is
topped by 𝑍0 ⊕ · · · ⊕ 𝑍𝑛+1.

Let N= (𝑀,𝑇) be defined by 𝑇 =
⋃
𝑛 𝑆𝑛 . Note that N |= RCA0 since it is

a union of models of RCA0. By construction, N is an 𝜔-extension of M and
a model of P. Last, since 𝑍0 ∈ 𝑇 and 𝜃 is arithmetic N |= ¬𝜃(𝑍0), hence
N |= ¬𝜑.

The first-conservation theorem, due to Harrington (see Simpson [5]), is the
most important one for its implications to Hilbert’s program. Indeed, many
theorems are provable by compactness arguments.

Theorem 7.3.3 (Harrington)
Let M= (𝑀, 𝑆) |= RCA0 be a countable model and𝑇 ⊆ 2<𝑀 be an infinite
tree in 𝑆. There is a path 𝐺 ∈ [𝑇] such that M[𝐺] |= RCA0.

7.3 Conservation over RCA0 99

16: In general, the predicate “𝑋 is finite” is
Σ0

2, so if 𝑇1 was an arbitrary set of strings,
the existence of an extendible node would
require BΣ0

2. Thanks to prefix closure, the
predicate “𝑇 is finite” for a tree 𝑇 is Σ0

1 and
BΣ0

1 is sufficient.

Proof. Consider the Jockusch-Soare forcing whose conditions are infinite
trees 𝑇1 ⊆ 𝑇 in 𝑆, partially ordered by inclusion. First of all, some simple
facts such as the existence of extendible nodes of arbitrary length are not
immediate in weak arithmetic. We prove a lemma stating that it is the case in
models of RCA0. Recall that a node 𝜎 is extendible in 𝑇1 if the set of nodes
in 𝑇1 comparable with 𝜎 is infinite.

Lemma 7.3.4 (Fernandes et al. [57]). Let 𝑇1 be a condition and ℓ ∈ 𝑀.
There is an extendible node 𝜎 ∈ 𝑇1 of length ℓ .15 15: Note that the proof of this lemma only

uses Q + BΣ0
1.

★

Proof. Assume by contradiction that for every 𝜎 ∈ 2ℓ the tree {𝜏 ∈ 𝑇1 :
𝜏 is comparable with 𝜎} is 𝑀-bounded. Then

∀𝜎 ∈ 2ℓ∃𝑏∀𝜏 ∈ 2𝑏 , 𝜎 ≺ 𝜏 → 𝜏 ∉ 𝑇1

The formula ∀𝜏 ∈ 2𝑏 , 𝜎 ≺ 𝜏 → 𝜏 ∉ 𝑇1 is Δ0
0, so by BΣ0

1 (which holds in RCA0
by Theorem 7.2.9), there is some 𝑏 ∈ 𝑀 such that

∀𝜎 ∈ 2ℓ∃𝑐 < 𝑏∀𝜏 ∈ 2𝑐 , 𝜎 ≺ 𝜏 → 𝜏 ∉ 𝑇1

This yields that 𝑇1 is bounded by 𝑏, contradicting our assumption that 𝑇1 is
𝑀-infinite.16

Thanks to Lemma 7.3.5, for every sufficiently generic filter F, the class
⋂
𝑇1∈F[𝑇1]

is a singleton 𝐺F. Indeed, for every condition 𝑇1 and ℓ ∈ 𝑀, letting 𝜎 be an
extendible node in 𝑇1 of length ℓ , the condition 𝑇2 = {𝜏 ∈ 𝑇1 : 𝜏 ⪯ 𝜎∨ 𝜎 ≺ 𝜏}
exists by Δ0

0-comprehension and is a valid extension of 𝑇1 forcing 𝜎 ≺ 𝐺.

Exercise 3.3.7 defined a Σ0
1-preserving forcing question for Jockusch-Soare

forcing in a standard context. We re-define it and prove its properties in the
context of weak arithmetic.

Given a condition 𝑇1 and a Σ0
1-formula (with parameters in M) 𝜑(𝐺) ≡

∃𝑦𝜓(𝑦, 𝐺↾𝑦), let 𝑇1 ?⊢𝜑(𝐺) hold if there is some ℓ ∈ 𝑀 such that for ev-
ery 𝜎 ∈ 𝑇 such that |𝜎| = ℓ , there is some 𝑦 < ℓ such that 𝜓(𝑦, 𝜎↾𝑦) holds.
By Theorem 7.2.9, RCA0 ⊢ BΣ0

1, so by Proposition 7.2.8, Σ0
1-formulas are

closed under bounded quantification. It follows that this relation is Σ0
1. The

following lemma shows that this is a forcing question in a strong sense, that is,
if it holds, then the condition already forces the Σ0

1 formula.

Lemma 7.3.5. Let 𝑇1 be a condition and 𝜑(𝐺) be a Σ0
1 formula.

1. If 𝑇1 ?⊢𝜑(𝐺) then 𝑇1 forces 𝜑(𝐺) ;
2. If 𝑇1 ?⊬𝜑(𝐺) then there is an extension 𝑇2 ⊆ 𝑇1 forcing ¬𝜑(𝐺). ★

Proof. Say 𝜑(𝐺) ≡ ∃𝑦𝜓(𝑦, 𝐺↾𝑦).

1. Suppose 𝑇1 ?⊢𝜑(𝐺). Then we claim that for every 𝑃 ∈ [𝑇1], 𝜑(𝑃) holds.
Indeed, let ℓ ∈ 𝑀 be such that for every 𝜎 ∈ 𝑇 such that |𝜎| = ℓ , there
is some 𝑦 < ℓ such that 𝜓(𝑦, 𝜎↾𝑦) holds. Fix some 𝑃 ∈ [𝑇1]. Since
𝑃↾ℓ ∈ 𝑇, there is some 𝑦 < ℓ such that 𝜓(𝑦, 𝑃↾𝑦) holds, so 𝜑(𝑃)
holds.

2. Suppose 𝑇1 ?⊬𝜑(𝐺). Let 𝑇2 = {𝜎 ∈ 𝑇1 : ∀𝑦 < |𝜎|¬𝜓(𝑦, 𝜎↾𝑦}. By
assumption, 𝑇2 is an infinite subtree of 𝑇1 and by Δ0

0-comprehension it
belongs to 𝑆. We claim that for every 𝑃 ∈ [𝑇2], ¬𝜑(𝑃) holds. Suppose
for the contradiction that 𝜑(𝑃) holds for some 𝑃 ∈ [𝑇2]. Let 𝑦 ∈ 𝑀 be

100 7 Conservation theorems

such that 𝜓(𝑦, 𝑃↾𝑦) holds. Then 𝑃↾𝑦 + 1 ∉ 𝑇2, contradiction. So 𝑇2
forces ¬𝜑(𝐺).

It follows from Lemma 7.3.5 that if 𝜑(𝐺) and 𝜓(𝐺) are two Σ0
1-formulas such

that 𝑇1 ?⊢𝜑(𝐺) and 𝑇1 ?⊬𝜓(𝐺), then there is an extension 𝑇2 ⊆ 𝑇1 forcing
𝜑(𝐺) ∧ ¬𝜓(𝐺). The following lemma shows that if F is sufficiently generic,
then M∪ {𝐺F} |= IΣ0

1.

Lemma 7.3.6. Let 𝑇1 be a condition and 𝜑(𝑥, 𝑋) be a Σ0
1 formula such that

𝑇1 forces ¬𝜑(𝑏, 𝐺) for some 𝑏 ∈ 𝑀. Then there is an extension 𝑇2 ⊆ 𝑇1
and some 𝑎 ∈ 𝑀 such that 𝑇2 forces ¬𝜑(𝑎, 𝐺), and if 𝑎 > 0, then 𝑇2 forces
𝜑(𝑎 − 1, 𝐺).1717: Note that the proof of Lemma 7.3.6

uses essentially two properties of the forc-
ing question: the fact that it isΣ0

1-preserving,
and its ability to find a simultaneous witness
extension to a positive and a negative an-
swer.

★

Proof. Let 𝐴 = {𝑥 ∈ 𝑀 : 𝑇1 ?⊢𝜑(𝑥, 𝐺)}. Since the forcing question is
Σ0

1-preserving, the set 𝐴 is Σ0
1(M). Moreover, 𝑇1 forces ¬𝜑(𝑏, 𝐺), so by

Lemma 7.3.5, 𝑇1 ?⊬𝜑(𝑏, 𝐺), hence 𝑏 ∉ 𝐴. Since M |= IΣ0
1, and 𝐴 ≠ 𝑀,

there is some 𝑎 ∈ 𝑀 such that 𝑎 ∉ 𝐴, and if 𝑎 > 0, then 𝑎 − 1 ∈ 𝐴. By
Lemma 7.3.5, there is an extension 𝑇2 ⊆ 𝑇1 forcing ¬𝜑(𝑎, 𝐺). Moreover, if
𝑎 > 0, then since 𝑎 − 1 ∈ 𝐴, by Lemma 7.3.5, 𝑇1 forces 𝜑(𝑎 − 1, 𝐺), hence
so does 𝑇2. This completes the proof of Lemma 7.3.6.

We are now ready to prove Theorem 7.3.3. Let Fbe a sufficiently generic filter
for this notion of forcing. By Lemma 7.3.4, there is a unique set 𝐺 ∈ ⋂

𝑇1∈F[𝑇1].
In particular, 𝐺 ∈ [𝑇]. By Lemma 7.3.6, M∪{𝐺} |= IΣ0

1, so by Exercise 7.3.1,
M[𝐺] |= RCA0. This completes the proof of Theorem 7.3.3.

Corollary 7.3.7 (Harrington)
WKL0 is a Π1

1-conservative extension of RCA0.

Proof. Immediate by Theorem 7.3.3 and Proposition 7.3.2.

Recall that by Theorem 3.2.4, every set can become Δ0
2 relative to a cone

avoiding degree. This can be interpreted as saying that cone avoidance for Δ0
2

instances and strong cone avoidance are equivalent. A formalization due to
Towsner [58] of the notion of forcing yields a conservation theorem over RCA0,
saying informally that from the viewpoint of RCA0, Δ0

2 sets are indistiguishable
from arbitrary sets.

Theorem 7.3.8 (Toswner [58])
Let M= (𝑀, 𝑆) |= RCA0 be a countable model and 𝐴 ⊆ 𝑀 be an arbitrary
set. There is a set 𝐺 ⊆ 𝑀 such that 𝐴 is Δ0

2(𝐺) and M[𝐺] |= RCA0.

Proof. Based on Shoenfield’s limit lemma [8], we will construct a stable
function 𝑓 : ℕ2 → 2 such that for every 𝑥 ∈ ℕ, lim𝑦 𝑓 (𝑥, 𝑦) exists and
equals 𝐴(𝑥). We are therefore going to build directly the function 𝑓 by forcing,
and let 𝐺 be the graph of 𝑓 .

The idea is to use the notion of forcing from Theorem 3.2.4, however there is
a technical difficulty: Assume 𝐴 is not regular, and fix 𝑎 ∈ 𝑀 such that 𝐴↾𝑎
does not belong to 𝑀. Then, the condition (∅, 𝑎) has no extension (𝑔, 𝑏) in M

with {0, . . . , 𝑎} × {0} ⊆ dom 𝑔. Worse, the set of extensions of (∅, 𝑎) is not

7.3 Conservation over RCA0 101

18: Even if 𝐴 is not regular, the set 𝐼 being
of standard cardinality, the restriction 𝐴↾𝐼
belongs to 𝑀. Therefore, the extension re-
lation is Δ0

1-definable with parameters in M.

Δ0
1-definable with parameters in M. Thankfully, the model being countable,

one can lock non-uniformly a standard number of columns for each condition,
and still obtain a stable function.

Consider the notion of forcing whose conditions are pairs (𝑔, 𝐼), such that

▶ 𝑔 ⊆ 𝑀2 → {0, 1} is a partial function with two parameters whose
domain is 𝑀-finite, representing an initial segment of the function 𝑓 that
we are building.

▶ 𝐼 ⊆ 𝑀 is a set of “locked” columns with card 𝐼 ∈ 𝜔, meaning that from
now on, when we extend the domain of 𝑔 with a new pair (𝑥, 𝑦), if 𝑥 ∈ 𝐼
then 𝑔(𝑥, 𝑦) = 𝐴(𝑥).

The interpretation [𝑔, 𝐼] of a condition (𝑔, 𝐼) is the class of all partial or total
functions ℎ ⊆ 𝑀2 → 2 such that

(1) 𝑔 ⊆ ℎ, i.e. dom 𝑔 ⊆ dom ℎ and for all (𝑥, 𝑦) ∈ dom 𝑔, 𝑔(𝑥, 𝑦) =

ℎ(𝑥, 𝑦);
(2) for all (𝑥, 𝑦) ∈ dom ℎ \ dom 𝑔, if 𝑥 ∈ 𝐼, then ℎ(𝑥, 𝑦) = 𝐴(𝑥).18

A condition (ℎ, 𝐽) extends (𝑔, 𝐼) (denoted (ℎ, 𝐽) ≤ (𝑔, 𝐼)) if 𝐽 ⊇ 𝐼 and ℎ ∈
[𝑔, 𝐼].
For every condition (𝑔, 𝐼) and every 𝑥 ∈ 𝑀, (𝑔, 𝐼 ∪ {𝑥}) is a valid extension.
Moreover, for every condition (𝑔, 𝐼) and every (𝑥, 𝑦) ∈ 𝑀2, there is an exten-
sion (ℎ, 𝐼) ≤ (𝑔, 𝐼) such that (𝑥, 𝑦) ∈ dom ℎ. Therefore, if F is a sufficiently
generic filter, then, letting 𝑓F =

⋃{𝑔 : (𝑔, 𝐼) ∈ F}, dom 𝑓F = 𝑀2 and every
column will eventually be locked, so 𝑓F is stable with limit 𝐴.

Given a condition (𝑔, 𝐼) and a Σ0
1-formula (with parameters in M) 𝜑(𝐺) ≡

∃𝑦𝜓(𝑦, 𝐺↾𝑦), let (𝑔, 𝐼) ?⊢𝜑(𝐺) hold if there is a finite ℎ ∈ [𝑔, 𝐼] and some 𝑦 ∈
𝑀 such that 𝜓(𝑦, ℎ↾𝑦) holds. The formula is Σ0

1-preserving. We show that
it is a forcing question in a strong sense, that is, if it does not hold, then the
condition already forces the Π0

1 formula.

Lemma 7.3.9. Let (𝑔, 𝐼) be a condition and 𝜑(𝐺) be a Σ0
1 formula.

▶ If (𝑔, 𝐼) ?⊢𝜑(𝐺) then there is an extension (ℎ, 𝐼) forcing 𝜑(𝐺) ;
▶ If (𝑔, 𝐼) ?⊬𝜑(𝐺), then (𝑔, 𝐼) forces ¬𝜑(𝐺). ★

Proof. Say 𝜑(𝐺) ≡ ∃𝑦𝜓(𝑦, 𝐺↾𝑦).
1. Suppose (𝑔, 𝐼) ?⊢𝜑(𝐺). Then, letting ℎ ∈ [𝑔, 𝐼] and 𝑦 ∈ 𝑀 witness it,

the condition (ℎ, 𝐼) is an extension forcing 𝜑(𝐺).
2. Suppose (𝑔, 𝐼) ?⊬𝜑(𝐺). Suppose for the contradiction that there is

some ℎ ∈ [𝑔, 𝐼] such that 𝜑(ℎ) holds. Unfolding the definition, there is
some 𝑦 ∈ 𝑀 such that 𝜓(𝑦, ℎ↾𝑦) holds. Let ℎ1 ⊆ ℎ be a finite function
such that dom 𝑔 ⊆ dom ℎ1 and ℎ↾𝑦 = ℎ1↾𝑦, then 𝑦 and ℎ1 witness
the fact that (𝑔, 𝐼) ?⊢𝜑(𝐺). Contradiction. So (𝑔, 𝐼) forces ¬𝜑(𝐺).

It follows from Lemma 7.3.9 that if 𝜑(𝐺) and 𝜓(𝐺) are two Σ0
1-formulas such

that (𝑔, 𝐼) ?⊢𝜑(𝐺) and (𝑔, 𝐼) ?⊬𝜓(𝐺), then there is an extension (ℎ, 𝐼) ≤
(𝑔, 𝐼) forcing 𝜑(𝐺)∧¬𝜓(𝐺). The following lemma shows that if Fis sufficiently
generic, then M∪ { 𝑓F} |= IΣ0

1.

Lemma 7.3.10. Let (𝑔, 𝐼) be a condition and 𝜑(𝑥, 𝑋) be a Σ0
1 formula such

that (𝑔, 𝐼) forces¬𝜑(𝑏, 𝐺) for some 𝑏 ∈ 𝑀. Then there is an extension (ℎ, 𝐼) ≤
(𝑔, 𝐼) and some 𝑎 ∈ 𝑀 such that (ℎ, 𝐼) forces ¬𝜑(𝑎, 𝐺), and if 𝑎 > 0, (ℎ, 𝐼)

102 7 Conservation theorems

forces 𝜑(𝑎 − 1, 𝐺).1919: Note the similarity of the proof
of Lemma 7.3.10 with the proof of
Lemma 7.3.6. We again only exploit some
abstract properties of the forcing question.

★

Proof. Let 𝐴 = {𝑥 ∈ 𝑀 : (𝑔, 𝐼) ?⊢𝜑(𝑥, 𝐺)}. Since the forcing question is
Σ0

1-preserving, the set 𝐴 is Σ0
1(M). Moreover, (𝑔, 𝐼) forces ¬𝜑(𝑏, 𝐺), so by

Lemma 7.3.9, (𝑔, 𝐼) ?⊬𝜑(𝑏, 𝐺), hence 𝑏 ∉ 𝐴. Since M |= IΣ0
1, and 𝐴 ≠ 𝑀,

there is some 𝑎 ∈ 𝑀 such that 𝑎 ∉ 𝐴, and if 𝑎 > 0, then 𝑎 − 1 ∈ 𝐴. By
Lemma 7.3.9, (𝑔, 𝐼) forces ¬𝜑(𝑎, 𝐺). Moreover, if 𝑎 > 0, then since 𝑎−1 ∈ 𝐴,
by Lemma 7.3.9, there is an extension (ℎ, 𝐼) forcing 𝜑(𝑎 − 1, 𝐺). Note that
(ℎ, 𝐼) forces ¬𝜑(𝑎, 𝐺). This completes the proof of Lemma 7.3.10.

We are now ready to prove Theorem 7.3.8. Let F be a sufficiently generic
filter for this notion of forcing. As mentioned, it induces a stable function 𝑓F =⋃{𝑔 : (𝑔, 𝐼) ∈ F} whose limit is𝐴. By Lemma 7.3.10, M∪{ 𝑓F} |= IΣ0

1, so by
Exercise 7.3.1, M[𝑓F] |= RCA0. This completes the proof of Theorem 7.3.8.

The careful reader will have recognized some common pattern in the proofs of
Theorem 7.3.3 and Theorem 7.3.8. Indeed, in both theorems, the lemma stating
the preservation of Σ0

1-induction used the existence of a Σ0
1-preserving function

which was able to give simultaneously a positive and a negative answer to two
independent Σ0

1 questions. This motivates the following definition.

Definition 7.3.11. Given a notion of forcing (ℙ,≤) and some 𝑛 ∈ ℕ, a
forcing question is (Σ0

𝑛 ,Π
0
𝑛)-merging if for every 𝑝 ∈ ℙ and every pair of Σ0

𝑛

formulas 𝜑(𝐺),𝜓(𝐺) such that 𝑝 ?⊢𝜑(𝐺) but 𝑝 ?⊬𝜓(𝐺), then there is an
extension 𝑞 ≤ 𝑝 forcing 𝜑(𝐺) ∧ ¬𝜓(𝐺). ♦

Recall that a forcing question can be seen as a dividing line within the slice of
conditions which do not already decide a formula (see Figure 7.2).

Figure 7.2: The yellow part and the dark
blue part represent the conditions forcing a
fixed Σ0

1 and its negation, respectively. The
light blue part represent the conditions of the
third category. With Jockusch-Soare forcing
(Theorem 7.3.3), the dividing line is at the
left-most position, while for Towsner forcing
(Theorem 7.3.8), the dividing line is at the
opposite position.

Forcing Π0
1Forcing Σ0

1

Jockusch-Soare
forcing question

Towsner
forcing question

As shown in the picture, Jockush-Soare forcing and Towsner forcing have
extremal values. Any forcing question at one of these extremes is (Σ0

1 ,Π
0
1)-

merging, as if 𝑝 ?⊢𝜑(𝐺) and 𝑝 ?⊬𝜓(𝐺) for two Σ0
1 formulas 𝜑 and 𝜓, then

either 𝑝 forces 𝜑(𝐺) or 𝑝 forces ¬𝜓(𝐺), and one simply has to take the
extension witnessing the answer to the other question. We now prove the
abstract theorem associated to preservation of Σ0

1-induction.

Theorem 7.3.12
Let M = (𝑀, 𝑆) |= Q + IΣ0

1 be a countable model and let (ℙ,≤) be a
notion of forcing with a Σ0

1-preserving (Σ0
1 ,Π

0
1)-merging forcing question.

For every sufficiently generic filter F, M∪ {𝐺F} |= IΣ0
1.

Proof. It suffices to prove the following lemma:

7.4 Isomorphism theorem 103

20: There are mostly two reasons why
RCA0 was chosen as the base theory rather
than RCA∗

0: a historical and a pragmatical
one.
Historically, Friedman used a language
of functions rather than sets, with a
Δ0

0-recursion principle which turned out
to be equivalent to Σ0

1-induction. See
Hirschfeldt [7, Chapter 4] for a more thor-
ough discussion on the subject.
Pragmatically, basic features such as the
equivalence of the various notions of infinity,
are equivalent to Σ0

1-induction. One expects
from a base theory to be able to prove the
robustness of the core concepts. In particu-
lar, the provably total functions over RCA0
are the primitive recursive functions, while
RCA∗

0 only proves the totality of the elemen-
tary recursive functions.

Lemma 7.3.13. For every condition 𝑝 ∈ ℙ and every Σ0
1-formula such that 𝑝

forces ¬𝜑(𝑏, 𝐺) for some 𝑏 ∈ 𝑀, there is an extension 𝑞 ≤ 𝑝 and some 𝑎 ∈
𝑀 such that 𝑞 forces ¬𝜑(𝑎, 𝐺), and if 𝑎 > 0, then 𝑞 forces 𝜑(𝑎 − 1, 𝐺). ★

Proof. Let 𝐴 = {𝑥 ∈ 𝑀 : 𝑝 ?⊢𝜑(𝑥, 𝐺)}. Since the forcing question is Σ0
1-

preserving, the set 𝐴 is Σ0
1(M). Moreover, 𝑝 forces ¬𝜑(𝑏, 𝐺), so by definition

of the forcing question, 𝑝 ?⊬𝜑(𝑏, 𝐺), hence 𝑏 ∉ 𝐴. Since M |= IΣ0
1, and

𝐴 ≠ 𝑀, there is some 𝑎 ∈ 𝑀 such that 𝑎 ∉ 𝐴, and if 𝑎 > 0, then 𝑎 − 1 ∈ 𝐴.
If 𝑎 = 0, then by definition of the forcing question, there is an extension 𝑞 ≤ 𝑝

forcing ¬𝜑(0, 𝐺). If 𝑎 > 0, then since the forcing question is (Σ0
1 ,Π

0
1)-merging,

there is an extension 𝑞 ≤ 𝑝 forcing ¬𝜑(𝑎, 𝐺) and 𝜑(𝑎 − 1, 𝐺).

We are now ready to prove Theorem 7.3.12. Given a Σ0
1 formula 𝜑, let D𝜑

be the set of all conditions 𝑞 ∈ ℙ forcing either ∀𝑏𝜑(𝑏, 𝐺), or ¬𝜑(0, 𝐺), or
𝜑(𝑎 − 1, 𝐺) ∧ ¬𝜑(𝑎, 𝐺) for some 𝑎 > 0. It follows from Lemma 7.3.13 that
every D𝜑 is dense, hence every sufficiently generic filter F is {D𝜑 : 𝜑 ∈ Σ0

1}-
generic, so M∪ {𝐺F} |= IΣ0

1. This completes the proof of Theorem 7.3.12.

Exercise 7.3.14 (Cholak, Jockusch and Slaman [27]). Let M= (𝑀, 𝑆) |=
RCA0 be a countable model and ®𝑅 = 𝑅0 , 𝑅1 , . . . be a sequence of sets in M.
Use a formalized notion of computable Mathias forcing (see Exercise 3.2.8) to
prove the existence of an infinite ®𝑅-cohesive set 𝐺 ⊆ 𝑀 such that M[𝐺] |=
RCA0. Deduce that RCA0 + COH is Π1

1-conservative over RCA0. ★

7.4 Isomorphism theorem

The choice of RCA0 as a base theory capturing computable mathematics
can be questioned because of Σ0

1-induction. Indeed, by Proposition 7.2.5, Σ0
𝑛-

induction corresponds to Σ0
𝑛-regularity, so Σ0

1-induction will add every bounded
c.e. set in the model. By Post’s theorem, one would arguably restrict the base
theory to Δ0

1-induction to have Δ0
1-regularity.20 Simpson and Smith [59] intro-

duced RCA∗
0, the theory based on Robinson arithmetic (Q), together with the

Δ0
1-comprehension scheme, the Δ0

0-induction scheme (IΔ0
0) and the statement

of the totality of the exponential (exp).

Exercise 7.4.1. Show that RCA∗
0 proves IΔ0

1 and BΣ0
1. ★

Although RCA0 remains the mainstream base theory to found reverse mathe-
matics, RCA∗

0 is useful to compare very weak statements of arithmetic [59]. In
particular, the notion of infinity is not robust in RCA∗

0, as some unbounded sets
may not be in bijection with ℕ. As it turns out, RCA∗

0 became an essential tool
in the study of models of RCA0 + BΣ0

2, through the notion of jump model.

Definition 7.4.2. Given a model M= (𝑀, 𝑆), its jump model is the structure
N= (𝑀,Δ0

2-Def(M)), where Δ0
2-Def(M) denotes the Δ0

2 definable sets with
parameters in M. We then call M a ground model of N. ♦

The following exercise puts a bridge between models of RCA0 + BΣ0
2 and

models of RCA∗
0.

104 7 Conservation theorems

Exercise 7.4.3 (Belanger [60]). Let M= (𝑀, 𝑆) |= RCA0. Show that M |=
BΣ0

2 iff (𝑀,Δ0
2-Def(M)) |= RCA∗

0. ★

Models of RCA0+BΣ0
2 play an important role in the study of Ramsey’s theorem

for pairs. Let RT1 be the statement ∀𝑎RT1
𝑎 . This statement easily follows from

RCA0 + RT2
2. Indeed, given a coloring 𝑓 : ℕ → 𝑎 for some 𝑎 ∈ ℕ, one can

define the coloring 𝑔 : [ℕ]2 → 2 by 𝑔(𝑥, 𝑦) = 1 iff 𝑓 (𝑥) = 𝑓 (𝑦). Any infinite
𝑔-homogeneous set is 𝑓 -homogeneous. The following proposition therefore
shows that any model of RCA0 + RT2

2 satisfies BΣ0
2.

Proposition 7.4.4 (Hirst [61]). RCA0 ⊢ BΣ0
2 ↔ RT1. ★

Proof.

▶ Assume BΣ0
2. Let 𝑓 : ℕ → 𝑎 be an instance of RT1 for some 𝑎 ∈ ℕ.

Suppose that there is no infinite 𝑓 -homogeneous set. Then (∀𝑥 <
𝑎)(∃𝑦)(∀𝑤)[𝑤 > 𝑦 → 𝑓 (𝑤) ≠ 𝑥]. Then by BΣ0

2, there is some 𝑏 ∈ ℕ

such that (∀𝑥 < 𝑎)(∃𝑦 < 𝑏)(∀𝑤)[𝑤 > 𝑦 → 𝑓 (𝑤) ≠ 𝑥]. Then
(∀𝑥 < 𝑎)[𝑓 (𝑏) ≠ 𝑥], contradiction.

▶ Assume RT1. Let 𝜃(𝑥, 𝑦, 𝑤) be a Δ0
0-formula. Fix 𝑎 ∈ ℕ and suppose

that (∀𝑥 < 𝑎)(∃𝑦)(∀𝑧)𝜃(𝑥, 𝑦, 𝑤). Let 𝑓 : ℕ → ℕ be such that 𝑓 (𝑡) is
the least 𝑏 < 𝑡 such that (∀𝑥 < 𝑎)(∃𝑦 < 𝑏)(∀𝑤 < 𝑡)𝜃(𝑥, 𝑦, 𝑤), if such
a 𝑏 exists. Otherwise, let 𝑓 (𝑡) = 𝑡. Suppose first that there exists an
infinite 𝑓 -homogeneous set 𝐻, for some color 𝑏. Then (∀𝑥 < 𝑎)(∃𝑦 <
𝑏)∀𝑤𝜃(𝑥, 𝑦, 𝑤) holds by RT1. Suppose now that there is no infinite 𝑓 -
homogeneous set. Then by RT1, the range of 𝑓 is unbounded. Construct
a strictly increasing sequence (𝑡𝑠)𝑠∈ℕ such that 𝑓 (𝑡𝑠) < 𝑓 (𝑡𝑠+1) for
every 𝑠 ∈ ℕ. Let 𝑔 : ℕ → 𝑎 be such that 𝑔(𝑠) is the least 𝑥 < 𝑎 such
that (∀𝑦 < 𝑓 (𝑡𝑠)−1)(∃𝑤 < 𝑡𝑠)¬𝜃(𝑥, 𝑦, 𝑤). By RT1, there is an infinite
𝑔-homogeneous set 𝑆 for some color 𝑥. Fix some 𝑦 ∈ ℕ. Since 𝑆
is infinite, there is some 𝑠 ∈ 𝑆 such that 𝑓 (𝑡𝑠) − 1 > 𝑦. So (∃𝑤 <
𝑡𝑠)¬𝜃(𝑥, 𝑦, 𝑤) holds. Hence (∀𝑦)(∃𝑤)¬𝜃(𝑥, 𝑦, 𝑤), contradiction.

Π1
1-conservation theorems over RCA∗

0 follow the same structure as over RCA0,
mutatis mutandis.

Exercise 7.4.5 (Simpon and Smith [59]). Let M= (𝑀, 𝑆) |= RCA∗
0 and fix

a set 𝐺 ⊆ 𝑀. Show that

1. If 𝐺 is 𝑀-regular, then M[𝐺] |= IΔ0
0.

2. If moreover M∪ {𝐺} |= BΣ0
1, then M[𝐺] |= RCA∗

0. ★

Exercise 7.4.6 (Simpon and Smith [59]). Let P be a Π1
2 problem. Suppose

that for every countable topped model M= (𝑀, 𝑆) |= RCA∗
0, and every𝑋 ∈ 𝑆

such that M |= 𝑋 ∈ dom P, there is set 𝑌 ⊆ 𝑀 such that M[𝑌] |= RCA∗
0 +

(𝑌 ∈ P(𝑋)). Adapt the proof of Proposition 7.3.2 to show that RCA∗
0 + P is

Π1
1-conservative over RCA∗

0. ★

Let WKL∗0 be the theory RCA∗
0 augmented with the statement “Every infinite

binary tree admits an infinite path”. Simpson and Smith proved that WKL∗0
is Π1

1-conservative over RCA∗
0, and we shall see that this is the best result

possible, in the sense that weak König’s lemma is the strongest Π1
2 statement

that is Π1
1-conservative over RCA∗

0 + ¬IΣ0
1.

7.4 Isomorphism theorem 105

22: Recall that a forcing question is Σ0
𝑛 -

compact if for every 𝑝 ∈ ℙ and every Σ0
𝑛

formula 𝜑(𝐺, 𝑥), if 𝑝 ?⊢ ∃𝑥𝜑(𝐺, 𝑥) holds,
then there is a finite set 𝐹 ⊆ ℕ such that
𝑝 ?⊢ ∃𝑥 ∈ 𝐹 𝜑(𝐺, 𝑥).

Theorem 7.4.7 (Simpson and Smith [59])
Let M= (𝑀, 𝑆) |= RCA∗

0 be a countable model and𝑇 ⊆ 2<𝑀 be an infinite
tree in 𝑆. There is an 𝑀-regular path 𝐺 ∈ [𝑇] such that M[𝐺] |= RCA∗

0.21 21: The proof of preservation of BΣ0
1

(Lemma 7.4.8) uses the existence of a Σ0
1-

preserving, Σ0
1-compact forcing question

such that if 𝑝 ?⊢𝜑(𝐺) holds for some Σ0
1 for-

mula 𝜑, then 𝑝 already forces 𝜑(𝐺). Since
weak König’s lemma is the strongest Π1

2 the-
ory which is Π1

1-conservative over RCA∗
0 +

¬IΣ0
1, the Jockusch-Soare forcing is in some

sense the strongest notion of forcing with
the existence of a forcing question with the
above mentioned properties.

Proof. The proof of Theorem 7.4.7 is very similar to that of Theorem 7.3.3. It
also uses Jockusch-Soare forcing whose conditions are infinite trees 𝑇1 ⊆ 𝑇

in 𝑆, partially ordered by inclusion. Lemma 7.3.4 and Lemma 7.3.5 both hold
in models of RCA∗

0, so for every sufficiently generic filter F,
⋂
𝑇1∈F[𝑇1] is a

singleton 𝐺F, which is 𝑀-regular. The main difference lies in the following
lemma:

Lemma 7.4.8. Let 𝑇1 be a condition, 𝑎 ∈ 𝑀, and 𝜑(𝑥, 𝑦, 𝑋) be a Σ0
1 formula

forcing (∀𝑥 < 𝑎)(∃𝑦)𝜑(𝑥, 𝑦, 𝐺). Then there is some 𝑏 ∈ 𝑀 such that 𝑇1
forces (∀𝑥 < 𝑎)(∃𝑦 < 𝑏)𝜑(𝑥, 𝑦, 𝐺). ★

Proof. Let 𝜃(𝑥, 𝑧) ≡ 𝑇1 ?⊢(∃𝑦 < 𝑧)𝜑(𝑥, 𝑦, 𝐺). Since the forcing ques-
tion is Σ0

1-preserving, the formula 𝜃 is Σ0
1(M). Moreover, 𝑇1 forces (∀𝑥 <

𝑎)(∃𝑦)𝜑(𝑥, 𝑦, 𝐺), so by Lemma 7.3.5, for every 𝑥 < 𝑎, 𝑇1 ?⊢ ∃𝑦𝜑(𝑥, 𝑦, 𝐺).
By Σ0

1-compactness22 of the forcing question, for every 𝑥 < 𝑎, there is
some 𝑧 ∈ 𝑀 such that 𝑇1 ?⊢(∃𝑦 < 𝑧)𝜑(𝑥, 𝑦, 𝐺). Thus, for every 𝑥 < 𝑎,
there is some 𝑧 ∈ 𝑀 such that 𝜃(𝑥, 𝑧) holds. By BΣ0

1, there is some 𝑏 ∈ 𝑀
such that (∀𝑥 < 𝑎)(∃𝑧 < 𝑏)𝜃(𝑥, 𝑧). Unfolding the definition of 𝜃, (∀𝑥 <
𝑎)(∃𝑧 < 𝑏)𝑇1 ?⊢(∃𝑦 < 𝑧)𝜑(𝑥, 𝑦, 𝐺). By Lemma 7.3.5, for every 𝑥 < 𝑎,
there is some 𝑧 < 𝑏 such that 𝑇1 forces (∃𝑦 < 𝑧)𝜑(𝑥, 𝑦, 𝐺), so 𝑇1 forces
(∃𝑦 < 𝑏)𝜑(𝑥, 𝑦, 𝐺).

We are now ready to prove Theorem 7.4.7. Let Fbe a sufficiently generic filter
for this notion of forcing. By Lemma 7.3.4, there is a unique 𝑀-regular set 𝐺 ∈⋂
𝑇1∈F[𝑇1]. In particular, 𝐺 ∈ [𝑇]. By Lemma 7.3.6, M∪ {𝐺} |= BΣ0

1, so by
Exercise 7.4.5, M[𝐺] |= RCA∗

0. This completes the proof of Theorem 7.4.7.

Corollary 7.4.9 (Simpson and Smith [59])
WKL∗0 is a Π1

1-conservative extension of RCA∗
0.

Proof. Immediate by Theorem 7.4.7 and Exercise 7.4.6.

Fiori-Carones, Kołodziejczyk, Wong and Yokoyama [62] proved a beauti-
ful isomorphism theorem for countable models of WKL∗0 + ¬IΣ0

1 with many
consequences, not only for provability over RCA∗

0, but also for conservation
over RCA0 + BΣ0

2.

Theorem 7.4.10 (Fiori-Carones et al [62])
Let (𝑀, 𝑆0) and (𝑀, 𝑆1) be countable models of WKL∗0 such that (𝑀, 𝑆0 ∩
𝑆1) |= ¬IΣ0

1. Let ®𝑐 be a tuple of elements of 𝑀 and ®𝐶 be a tuple of elements
of 𝑆0 ∩ 𝑆1. Then there is an isomorphism ℎ between (𝑀, 𝑆0) and (𝑀, 𝑆1)
such that ℎ(®𝑐) = ®𝑐 and ℎ(®𝐶) = ®𝐶.

Proof. Let M= (𝑀, 𝑆0 ∩ 𝑆1) and M𝑖 = (𝑀, 𝑆𝑖) for each 𝑖 < 2. A cut is an
initial segment of 𝑀 which is closed under successor. Any model of RCA∗

0 +
¬IΣ0

1 contains a proper Σ0
1-definable cut. Indeed, since 𝜑(𝑥) be a Σ0

1 formula
such that 𝜑(0) ∧ ∀𝑥(𝜑(𝑥) → 𝜑(𝑥 + 1)) holds, but ¬𝜑(𝑎) for some 𝑎 ∈ ℕ.

106 7 Conservation theorems

23: The construction uses the language of
forcing for convenience, but it will not use
its whole machinery, such as the forcing
relation.

24: We write ⌜𝛿⌝ for the Gödel number of
a formula. One can think of it as the integer
whose binary representation is the string of
the formula. In particular, the Gödel number
of a standard formula is a standard integer.
Note that we work with Δ0

0-formulas with
first-order parameters, that is, in a language
enriched with symbol constants for each
first-order element. The constraint ⌜𝛿⌝ < 𝑏

prevents from using first-order parameters
larger than log 𝑏.

Let 𝐼 = {𝑥 ∈ ℕ : (∀𝑥′ < 𝑥)𝜑(𝑥′)}. By BΣ0
1, 𝐼 is Σ0

1-definable, and by
construction, 𝐼 is a proper cut. Such a cut 𝐼 is not necessarily closed under
other operations such as addition, multiplication or exponentiation. With some
extra work, one can prove that every model of IΔ0

0 + exp+¬IΣ0
1 contains

a proper Σ0
1-definable cut which is closed under exp (see [63, Lemma 9]).

Therefore, fix a Σ0
1(M) proper cut 𝐼 which is closed under exp.

Let 𝜓(𝑥, 𝑦) be a Δ0
0(M) formula such that 𝐼 = {𝑥 ∈ 𝑀 : M |= ∃𝑦𝜓(𝑥, 𝑦)}.

Let 𝑎0 ∈ 𝑀 \ 𝐼 and let 𝐵 be the set of all pairs ⟨𝑖 , 𝑎𝑖⟩ ∈ ℕ such that 𝑎𝑖+1
is the least element greater than 𝑎𝑖 satisfying (∀𝑥 ≤ 𝑖)(∃𝑦 ≤ 𝑎𝑖+1)𝜓(𝑥, 𝑦).
The set 𝐵 is Δ0

0(M)-definable, of cardinality 𝐼 and the sequence (𝑎𝑖)𝑖∈𝐼 is
enumerated in increasing order and cofinal in 𝑀. Note that 𝐵 belongs 𝑆0 ∩ 𝑆1
by Δ0

0-comprehension. By adding the set 𝐵 to the tuple ®𝐶, we ensure that the
relation 𝜃(𝑥, 𝑖) ≡ 𝑥 = 𝑎𝑖 is Δ0(®𝐶).
We build the isomorphism ℎ by a back-and-forth construction. Let ℙ be the
notion of forcing23 whose conditions are tuples (®𝑟, ®𝑠, ®𝑅, ®𝑆, 𝑏) such that

1. ®𝑟 and ®𝑠 are finite vectors of same standard length, of elements of 𝑀 ;
2. ®𝑅 and ®𝑆 are finite vectors of same standard length, of elements of 𝑆0

and 𝑆1, respectively ;
3. 𝑏 ∈ 𝑀 is such that 𝑏 > 𝐼 ;
4. for each 𝑖 ∈ 𝐼 and each Δ0

0-formula 𝛿 with ⌜𝛿⌝ < 𝑏, M0 |= 𝛿(𝑎𝑖 , ®𝑟, ®𝑅)
iff M1 |= 𝛿(𝑎𝑖 , ®𝑠, ®𝑆).24 25

25: Since we also consider non-standard
Δ0

0-formulas, the satisfaction relation |= is
replaced by a Σ0

1-formula Sat0 expressing
the truth definition for Δ0

0-formulas (see Há-
jek and Pudlák [50]).

Intuitively, a condition (®𝑟, ®𝑠, ®𝑅, ®𝑆, 𝑏) is a partial assignment of ℎ over the
domain ®𝑟 ∪ ®𝑅 and with range ®𝑠 ∪ ®𝑆. The initial condition is (®𝑐, ®𝑐, ®𝐶, ®𝐶, 𝑏) for
a fixed 𝑏 > 𝐼. A condition (®𝑟′, ®𝑠′, ®𝑅′, ®𝑆′, 𝑏′) extends (®𝑟, ®𝑠, ®𝑅, ®𝑆, 𝑏) if 𝑏′ ≤ 𝑏,
®𝑟 ⪯ ®𝑟′, ®𝑠 ⪯ ®𝑠′, ®𝑅 ⪯ ®𝑅′ and ®𝑆 ⪯ ®𝑆′.
Before proving our main density lemmas, we need to state a technical coding
lemma which generalizes Proposition 7.2.5.

Lemma 7.4.11 (Chong and Mourad [64]). Let M= (𝑀, 𝑆) |= RCA∗
0. Then

for every pair of bounded disjoint Σ0
1 sets 𝑋,𝑌 ⊆ 𝑀, there exists some 𝑠 ∈ 𝑀

such that Ack(𝑠) ∩ (𝑋 ∪ 𝑌) = 𝑋.26

26: Recall that given 𝑠 ∈ 𝑀, we write
Ack(𝑠) for the set 𝐹 ⊆ 𝑀 coded by 𝑠, that
is, such that 𝑠 =

∑
𝑥∈𝐹 2𝑥 .

★

Proof. Let 𝜑 and 𝜓 be two Δ0
0 formulas such that 𝑋 = {𝑥 ∈ 𝑀 : M |=

(∃𝑧)𝜑(𝑥, 𝑧)} and 𝑌 = {𝑥 ∈ 𝑀 : M |= (∃𝑧)𝜓(𝑥, 𝑧)}. Let 𝑎 ∈ 𝑀 be a
common bound for 𝑋 and𝑌 and let 𝑏 ∈ 𝑀 be such that Ack(𝑏) = {0, . . . , 𝑎−
1}. Suppose for the contradiction that for all 𝑠 ≤ 𝑏, Ack(𝑠) ∩ (𝑋 ∪ 𝑌) ≠ 𝑋.
Then

(∀𝑠 < 𝑏)(∃𝑥 < 𝑎)[(𝑥 ∈ Ack(𝑠) ∧ 𝑥 ∈ 𝑌) ∨ (𝑥 ∉ Ack(𝑠) ∧ 𝑥 ∈ 𝑋)]

By BΣ0
1, there is a uniform bound �̂� ∈ 𝑀 such that

(∀𝑠 < 𝑏)(∃𝑥 < 𝑎)
[

(𝑥 ∈ Ack(𝑠) ∧ (∃𝑧 < �̂�)𝜓(𝑥, 𝑧))
∨ (𝑥 ∉ Ack(𝑠) ∧ (∃𝑧 < �̂�)𝜑(𝑥, 𝑧))

]
Let 𝑆 = {𝑥 < 𝑎 : (∀𝑧 < �̂�)¬𝜓(𝑥, 𝑧)}. The set 𝑆 is Δ0

0, hence is 𝑀-coded by
some 𝑠 ≤ 𝑏. Moreover, 𝑆 ∩ (𝑋 ∪ 𝑌) = 𝑋, contradiction.

The following lemma shows that one can add any first-order element to the
domain of ℎ while preserving the invariant. Since the models (𝑀, 𝑆0) and
(𝑀, 𝑆1) play a symmetric role, it is also dense to add any first-order element
to the range of ℎ.

7.4 Isomorphism theorem 107

Lemma 7.4.12. Let (®𝑟, ®𝑠, ®𝑅, ®𝑆, 𝑏) be a condition and 𝑑 ∈ 𝑀. There is an
extension (®𝑟𝑑, ®𝑠𝑒 , ®𝑅, ®𝑆, 𝑏′) for some 𝑒 , 𝑏′ ∈ 𝑀. ★

Proof. Let 𝑏′ > 𝐼 be sufficiently small with respect to 𝑏. Let 𝐷 ⊆ 𝐼 × 𝑏′ be
the following set

{(𝑖 , ⌜𝛿⌝) ∈ 𝐼 × 𝑏′ : 𝛿 is Δ0
0 and M0 |= 𝛿(𝑎𝑖 , ®𝑟𝑑, ®𝑅)}

Both 𝐷 and (𝐼 × 𝑏′) \ 𝐷 are bounded and Σ0
1-definable, so by Lemma 7.4.11,

there is some 𝑡 ∈ 𝑀 such that Ack(𝑡) ∩ (𝐼 × 𝑏′) = 𝐷. Moreover, since
𝐷 ⊆ 𝐼 × 𝑏′ and 𝐼 < 𝑏′, we can assume 𝑡 < 2𝑏′×𝑏′ . Let 𝑖′ ∈ 𝐼 be such that
𝑑 ≤ 𝑎𝑖′ . By choice of 𝑡, for every 𝑖 ∈ 𝐼, the structure M0 satisfies

(∃𝑦 ≤ 𝑎𝑖′)(∀𝑗 ≤ 𝑖)
∧

⌜𝛿⌝<𝑏′
[𝛿(𝑎 𝑗 , ®𝑟𝑦, ®𝑅) ↔ (𝑗 , ⌜𝛿⌝) ∈ Ack(𝑡)]

as witnessed by taking 𝑦 = 𝑑. For every 𝑖 ∈ 𝐼 such that 𝑖 ≥ 𝑖′, M0 therefore
satisfies the Δ0

0-formula 𝛾(𝑎𝑖 , ®𝑟, ®𝑅) defined by

(∃𝑥, 𝑧 ≤ 𝑎𝑖)(∃𝑦 ≤ 𝑥)(𝑥 = 𝑎i′ ∧ 𝑧 = t ∧ (∀𝑗 ≤ 𝑖)(∀𝑣 ≤ 𝑎𝑖)
(𝑣 = 𝑎 𝑗 →

∧
⌜𝛿⌝<b′[𝛿(𝑣, ®𝑟𝑦, ®𝑅) ↔ (𝑗 , ⌜𝛿⌝) ∈ Ack(𝑧)]))

For each 𝑖 ∈ 𝐼, the formula 𝛾 is written in a language enriched with symbol
constants for 𝑖′, 𝑏′, 𝑡.27

27: The relation 𝜃(𝑥, 𝑖) ≡ 𝑥 = 𝑎𝑖 being
Δ0(®𝐶), the parameter 𝑖 can be obtained
from 𝑎𝑖 , and conversely, 𝑎𝑖′ can be obtained
from 𝑖′. Thus, 𝑖 and 𝑎𝑖′ are not considered
as parameters.

The big conjunction is not part of the lan-
guage, hence is a shorthand for a non-
standard conjunction with 𝑏′ many con-
juncts. Because of this and because of the
non-standard parameters 𝑖′, 𝑏′ and 𝑡, the
formula has a non-standard length.

The variable 𝑧 is introduced to move the
parameter 𝑡 outside of the big conjunction.
Therefore, 𝑡 is coded only once, instead of
𝑏′ many times.

The formula 𝛾 written in binary starts with a part
of length O(log(𝑖′) + log(𝑏′) + log(𝑡)). It is then followed by a conjunction
composed of 𝑏′ conjuncts, each of length O(𝑏′). Since 𝑖′ < 𝑏′ and log(𝑡) <
𝑏′ · 𝑏′, the formula 𝛾 has length O(𝑏′ × 𝑏′). Since 𝐼 is an exponential cut, we
can take 𝑏′ sufficiently small so that ⌜𝛾⌝ < 𝑏.

By definition of a condition, M1 |= 𝛾(𝑎𝑖 , ®𝑠, ®𝑆) for each 𝑖 ∈ 𝐼 such that 𝑖 ≥ 𝑖′.
Therefore M1 satisfies

(∃𝑦 ≤ 𝑎𝑖′)(∀𝑗 ≤ 𝑖)
∧

⌜𝛿⌝<𝑏′
[𝛿(𝑎 𝑗 , ®𝑠𝑦, ®𝑆) ↔ (𝑗 , ⌜𝛿⌝) ∈ Ack(𝑡)]

Since M1 |= BΣ0
1, there is some fixed 𝑒 ∈ 𝑀 that witnesses the first existential

above for every 𝑖 ∈ 𝐼 such that 𝑖 ≥ 𝑖′. Then (®𝑟𝑑, ®𝑠𝑒 , ®𝑅, ®𝑆, 𝑏′) is our desired
extension.

The following lemma shows that one can add any second-order element to the
domain of ℎ. Here again, by symmetry, any second-order element can also be
added to the range of ℎ.

Lemma 7.4.13. Let (®𝑟, ®𝑠, ®𝑅, ®𝑆, 𝑏) be a condition and 𝑋 ∈ 𝑆0. There is an
extension (®𝑟, ®𝑠, ®𝑅𝑋, ®𝑆𝑌, 𝑏′) for some 𝑏′ ∈ 𝑀 and 𝑌 ∈ 𝑆1. ★

Proof. Let 𝑏′ > 𝐼 be sufficiently small with respect to 𝑏 and 𝐷 ⊆ 𝐼 × 𝑏′ be
the following set

{(𝑖 , ⌜𝛿⌝) ∈ 𝐼 × 𝑏′ : 𝛿 is Δ0
0 and M0 |= 𝛿(𝑎𝑖 , ®𝑟, ®𝑅𝑋)}

Again, 𝐷 and (𝐼 × 𝑏′) \𝐷 are bounded and Σ0
1-definable, so by Lemma 7.4.11,

there is some 𝑡 < 2𝑏′×𝑏′ such that Ack(𝑡)∩ (𝐼 × 𝑏′) = 𝐷. By choice of 𝑡, there
is some 𝑖′ ∈ 𝐼 such that for every 𝑖 ∈ 𝐼 with 𝑖 ≥ 𝑖′, the structure M0 satisfies

108 7 Conservation theorems

the formula

(∃𝐹 ⊆ [0, log 𝑎𝑖))(∀𝑗 ≤ 𝑖)(∀𝑣 ≤ log log 𝑎𝑖)
(𝑣 = 𝑎 𝑗 →

∧
⌜𝛿⌝<𝑏′[𝛿(𝑎 𝑗 , ®𝑟, ®𝑅𝐹) ↔ (𝑗 , ⌜𝛿⌝) ∈ Ack(𝑡)]

as witnessed by taking 𝐹 = 𝑋 ∩ [0, log 𝑎𝑖).28

28: It is not clear at first sight that M0 sat-
isfies this formula, since 𝛿 is witnessed by
𝐹 = 𝑋 ∩ [0, log 𝑎𝑖) instead of 𝑋. However,
since the first-order parameters of 𝛿 are
smaller than max(log log 𝑎𝑖 , ®𝑟), then the
gödel number the formula 𝛿 evaluated on
its parameters is smaller than log 𝑎𝑖 , hence
its evaluation is left unchanged by replacing
𝑋 with 𝑋 ∩ [0, log 𝑎𝑖).

For every 𝑖 ∈ 𝐼 such that 𝑖 ≥ 𝑖′,
M0 therefore satisfies the Δ0

0-formula 𝛾(𝑎𝑖 , ®𝑟, ®𝑅) defined by

(∃𝐹 ⊆ [0, log 𝑎𝑖))(∃𝑧 ≤ 𝑎𝑖)(∀𝑗 ≤ 𝑖)(∀𝑣 ≤ log log 𝑎𝑖)
(𝑧 = t ∧ 𝑣 = 𝑎 𝑗 →

∧
⌜𝛿⌝<b′[𝛿(𝑎 𝑗 , ®𝑟, ®𝑅𝐹) ↔ (𝑗 , ⌜𝛿⌝) ∈ Ack(𝑧)]

For each 𝑖 ∈ 𝐼, the formula 𝛾 is written in a language enriched with symbol
constants for 𝑏′ and 𝑡. By a similar analysis to Lemma 7.4.12, if 𝑏′ is sufficiently
small with respect to 𝑏, then ⌜𝛾⌝ < 𝑏. Thus by definition of a condition, for
every 𝑖 ∈ 𝐼 such that 𝑖 ≥ 𝑖′, M1 satisfies

(∃𝐹 ⊆ [0, log 𝑎𝑖))(∀𝑗 ≤ 𝑖)(∀𝑣 ≤ log log 𝑎𝑖)
(𝑣 = 𝑎 𝑗 →

∧
⌜𝛿⌝<𝑏′[𝛿(𝑎 𝑗 , ®𝑠, ®𝑆𝐹) ↔ (𝑗 , ⌜𝛿⌝) ∈ Ack(𝑡)]

Let 𝑇 ⊆ 2<𝑀 be the Π0
1 tree of all 𝜎 such that for every 𝑖 ∈ 𝐼 with 𝑖′ ≤ 𝑖 ≤ |𝜎|,

the set 𝐹 = {𝑠 < log 𝑎𝑖 : 𝜎(𝑠) = 1} witnesses the first existential of the
previous formula. Since M1 |= WKL∗0, there is an infinite path 𝑌 through 𝑇
in M1. Then (®𝑟, ®𝑠, ®𝑅𝑋, ®𝑆𝑌, 𝑏′) is our desired extension.

We are now ready to prove Theorem 7.4.10. Let Fbe a sufficiently generic filter
for this notion of forcing. Let ℎ be the function induced by F. By Lemma 7.4.12
and Lemma 7.4.13, ℎ is a bijection from 𝑀 ∪ 𝑆0 to 𝑀 ∪ 𝑆1.

We claim that ℎ is an isomorphism. We only prove the case of addition. Let +0
and +1 be the interpretation of the addition symbol in (𝑀, 𝑆0) and (𝑀, 𝑆1),
respectively. Given 𝑢, 𝑣 ∈ 𝑀, consider the Δ0

0-formula

𝛿(𝑎, 𝑥, 𝑦, 𝑧) ≡ 𝑥 + 𝑦 = 𝑧

Let𝑤 = 𝑢+0𝑣, and let (®𝑟, ®𝑠, ®𝑅, ®𝑆, 𝑏) ∈ Fbe a condition such that 𝑢, 𝑣, 𝑤 ∈ ®𝑟.
Since the formula 𝛿 is standard, then ⌜𝛿⌝ ∈ 𝜔 < 𝑏, so by definition of a
condition, for each 𝑖 ∈ 𝐼,

M0 |= 𝛿(𝑎𝑖 , 𝑢, 𝑣, 𝑤) iff M1 |= 𝛿(𝑎𝑖 , ℎ(𝑢), ℎ(𝑣), ℎ(𝑤))

Since 𝑢+0𝑣 = 𝑤, thenM0 |= 𝛿(𝑎𝑖 , 𝑢, 𝑣, 𝑤), soM1 |= 𝛿(𝑎𝑖 , ℎ(𝑢), ℎ(𝑣), ℎ(𝑤)),
and therefore ℎ(𝑢) +1 ℎ(𝑣) = ℎ(𝑤) = ℎ(𝑢 +0 𝑣). This completes the proof of
Theorem 7.4.10.

As an immediate consequence of Theorem 7.4.10, weak König’s lemma is the
maximal Π1

2-problem which is Π1
1-conservative over RCA∗

0 + ¬IΣ0
1.

Theorem 7.4.14 (Fiori-Carones et al [62])
Let P be aΠ1

2-problem. Then RCA∗
0+P+¬IΣ0

1 isΠ1
1-conservative over RCA∗

0+
¬IΣ0

1 iff WKL∗0 + ¬IΣ0
1 ⊢ P.

Proof. First, by Theorem 7.4.7, WKL∗0+¬IΣ0
1 is Π1

1-conservative over RCA∗
0+

¬IΣ0
1, so if WKL∗0+¬IΣ0

1 ⊢ P, RCA∗
0+P+¬IΣ0

1 is Π1
1-conservative over RCA∗

0+
¬IΣ0

1. We prove the other direction.

7.5 Conservation over BΣ0
2 109

If RCA∗
0+P+¬IΣ0

1 isΠ1
1-conservative over RCA∗

0+¬IΣ0
1, then by Theorem 7.4.7

and a standard amalgamation argument (see Yokoyama [65]), WKL∗0 + P +
¬IΣ0

1 is Π1
1-conservative over RCA∗

0 + ¬IΣ0
1. Let M |= WKL∗0 + P + ¬IΣ0

1 be
a countable model. By Theorem 7.4.10, every coded 𝜔-model of WKL∗0 +
¬IΣ0

1 in M is elementarily equivalent to M, hence satisfies P, so by Gödel’s
completeness theorem, WKL∗0 + P + ¬IΣ0

1 proves that every coded 𝜔-model
of WKL∗0 + ¬IΣ0

1 satisfies P. By Π1
1-conservation, WKL∗0 + ¬IΣ0

1 proves the
same statement.

Let M be a countable model of WKL∗0 + ¬IΣ0
1 and 𝐴 ∈ Mwitness ¬IΣ0

1. By
Theorem 4.3.2, M contains a coded 𝜔-model N of WKL∗0 with 𝐴 ∈ N. In
particular, N |= WKL∗0 + ¬IΣ0

1, so N |= P. Again by Theorem 7.4.10, N is an
elementary submodel of M, so M |= P. By Gödel’s completeness theorem,
WKL∗0 + ¬IΣ0

1 ⊢ P.

7.5 Conservation over BΣ0
2

The system RCA0 + BΣ0
2 plays an important role in reverse mathematics for

two reasons. First, it characterizes the first-order part of some statements
related to Ramsey’s theorem for pairs [66]. Second, it is the highest level in
the hierarchy of induction which satisfies Hilbert’s program. Indeed, IΣ0

2 is
not finitistically reducible, as it proves the consistency of IΣ0

1, which is a Π1
statement not provable over IΣ0

1 (see Hájek and Pudlák [50, Theorem 4.33]).
On the other hand, by Parsons, Paris and Friedman (see [67]), RCA0 + BΣ0

2 is
∀Π0

3-conservative over RCA0.29

29: ∀Π0
𝑛 is the class of formulas starting

with a universal set quantifier, followed by a
Π0
𝑛 formula. Every Π1

1-formula is ∀Π0
𝑛 for

some 𝑛 ∈ ℕ.
In particular, RCA0+BΣ0

2 is a Π2-conservative
extension of PRA.

Exercise 7.5.1. Let P be a Π1
2 problem. Suppose that for every countable

topped model M = (𝑀, 𝑆) |= RCA0 + BΣ0
2, and every 𝑋 ∈ 𝑆 such that

M |= 𝑋 ∈ dom P, there is a set𝑌 ⊆ 𝑀 such that M[𝑌] |= RCA0+BΣ0
2+(𝑌 ∈

P(𝑋)). Adapt the proof of Proposition 7.3.2 to show that RCA0 + BΣ0
2 + P is

Π1
1-conservative over RCA0 + BΣ0

2. ★

Conservation over RCA0 involved first-jump control to build sets while preserv-
ing IΣ0

1. One would therefore expect conservation over RCA0 + BΣ0
2 to involve

second-jump control to preserve BΣ0
2. However, as mentioned in Section 4.1,

effectivization of first-jump control can often be used to obtain simple proofs
of jump preservations. First-jump control being usually significantly simpler
than second-jump control, one usually prefers to use the former technique.
Actually, as a consequence of the isomorphism theorem for WKL∗0 + ¬IΣ0

1, in
the context of Π1

1-conservation over RCA0 + BΣ0
2 + ¬IΣ0

2, effective first-jump
control can be used without loss of generality (see Fiori-Carones et al. [62]).

Exercise 7.5.2. Let M = (𝑀, 𝑆) |= RCA0 + BΣ0
2 be a countable model

topped by a set 𝑌 ⊆ 𝑀. Let 𝐺 ⊆ 𝑀 be such that (𝐺 ⊕ 𝑌)′ ≤𝑇 𝑌′.30

30: Q+IΣ0
1 is enough to prove the existence

of a universal Σ0
1-formula. From it, we can

define a robust notion of Turing jump 𝑋′ as
the set of all codes of true Σ0

1(𝑋) formulas.

Recall that the Turing reduction is robust
in models of RCA∗

0 (see Groszek and Sla-
man [49]). If M= (𝑀, 𝑆) |= 𝑅𝐶𝐴0 + BΣ0

2
then its jump model N= (𝑀,Δ0

2-Def(M))
satisfies RCA∗

0, so the Turing reduction is ro-
bust between Δ0

2 sets in models of RCA0 +
BΣ0

2.

Use
Exercise 7.4.3 and Exercise 7.4.5 to show that M[𝐺] |= RCA0 + BΣ0

2. ★

Effective constructions in the context of weak arithmetic raise an issue that
already occurs in higher computability theory. Many effectiveness constructions
are done inductively along the integers, satisfying a requirement at each step.

110 7 Conservation theorems

32: The “blocking” terminology might be
confusing. It should be understood as satis-
fying blocks of requirements simultaneously
instead of one by one.

In the case of a non-standard model of weak arithmetic, some steps are non-
standard, hence are preceded by infinitely many other steps.3131: Models of weak arithmetic have com-

mon similarities with ordinals. Indeed, one
can reason inductively among both, and a
non-standard integer, like an infinite ordi-
nal, is infinite from an external point of view,
but there is no infinite decreasing sequence
starting from it.

If induction fails,
it might be the case that the set of steps of the construction forms a proper
cut, and thus that some requirement at a non-standard step is never satisfied.
Even if the model is countable, since the construction is internal, one cannot
fix a countable enumeration of the integers.

Consider for example Cohen forcing over a non-standard model M= (𝑀, 𝑆).
Let (𝐷𝑎)𝑎∈𝑀 be a collection of dense sets. The naive approach to the con-
struction of a ®𝐷-generic set 𝐺 would consist in letting 𝜎0 = 𝜖, and 𝜎𝑎+1 be
the lexicographically least extension of 𝜎𝑎 belonging to 𝐷𝑎 . If the dense sets
are to complex with respect to the level of induction in M, the set 𝐼 = {𝑎 ∈
𝑀 : 𝜎𝑎 is defined } might be a proper cut, while the set {|𝜎𝑎| : 𝑎 ∈ 𝐼} will be
cofinal in 𝑀.

To circumvent this problem, one resorts to a technique from higher computabil-
ity theory called Shore blocking.32 Suppose one proves that the collection
(𝐷𝑎)𝑎∈𝑀 is dense in a strong sense: for every 𝑏 ∈ 𝑀 and every 𝜎 ∈ 2<𝑀 ,
there exists an extension 𝜏 ⪰ 𝜎 intersecting every (𝐷𝑎)𝑎<𝑏 simultaneously.
One can then build a ®𝐷-generic set 𝐺 by letting 𝜎0 = 𝜖, and 𝜎𝑎+1 be the
lexicographically least extension of 𝜎𝑎 intersecting (𝐷𝑐)𝑐<|𝜎𝑎 | simultaneously.
Then, even if the set 𝐼 = {𝑎 ∈ 𝑀 : 𝜎𝑎 is defined } is a proper cut, the resulting
set 𝐺 will be ®𝐷-generic, as for every 𝑐 ∈ 𝑀, there is a stage 𝑎 ∈ 𝐼 such
that |𝜎𝑎| > 𝑐, hence 𝜎𝑎+1 intersects 𝐷𝑐 . The main difficulty of conservation
theorems over RCA0 + BΣ0

2 consists of proving the blocking lemma.

Our first proof of Π1
1-conservation over RCA0+BΣ0

2 is based on a formalization
in weak arithmetic by Hájek [68] of the low basis theorem from Jockusch and
Soare [9].

Theorem 7.5.3 (Hájek [68])
Let M= (𝑀, 𝑆) |= RCA0 + BΣ0

2 be a countable model topped by a set 𝑌
and 𝑇 ⊆ 2<𝑀 be an infinite tree in 𝑆. There is a path 𝑃 ∈ [𝑇] such that
(𝑃 ⊕ 𝑌)′ ≤𝑇 𝑌′ and M[𝑃] |= RCA0 + BΣ0

2.3333: The proof of Theorem 7.5.3 is slightly
more verbose than necessary, but it is more
modular, in that it is easy to interleave
other blocking lemmas to satisfy more re-
quirements. This will be useful for Theo-
rem 7.6.16.

Proof. Consider the notion of forcing whose conditions are pairs (𝜎, 𝑇1)where

▶ 𝑇1 is a primitive 𝑌-recursive infinite subtree of 𝑇 ;
▶ 𝜎 ∈ 2<𝑀 is a stem of 𝑇1, that is, every element in 𝑇1 is comparable

with 𝜎.

The interpretation of a condition (𝜎, 𝑇1) is [𝜎, 𝑇1] = [𝑇1]. A condition (𝜏, 𝑇2)
extends (𝜎, 𝑇1) (written (𝜏, 𝑇2) ≤ (𝜎, 𝑇1)) if 𝜎 ⪯ 𝜏 and 𝑇2 ⊆ 𝑇1. A code of a
condition (𝜎, 𝑇1) is a pair ⟨𝜎, 𝑎⟩ such that 𝑎 is a primitive 𝑌-recursive code
for 𝑇1.

We need to satisfy the following requirements for every 𝑏 ∈ 𝑀:

▶ T𝑏 : 𝐺↾𝑏 is decided34
34: Technically, this requirement is not nec-
essary, as deciding (𝐺 ⊕ 𝑌)′ implies de-
ciding 𝐺. However, explicitly satisfying this
requirement will be convenient for the con-
struction.

▶ R𝑏 : (𝐺 ⊕ 𝑌)′↾𝑏 is decided

For this, we prove a blocking lemma to decide the jump, Lemma 7.5.4. Given
a condition (𝜎, 𝑇1) and 𝑒 ∈ 𝑀, let

▶ (𝜎, 𝑇1) ⊩ Φ𝐺⊕𝑌
𝑒 (𝑒)↓ if Φ𝜎⊕𝑌

𝑒 (𝑒)↓ ;
▶ (𝜎, 𝑇1) ⊩ Φ𝐺⊕𝑌

𝑒 (𝑒)↑ if for every 𝜏 ∈ 𝑇1, Φ𝜏⊕𝑌
𝑒 (𝑒)↑ ;

▶ (𝜎, 𝑇1) ⊩ 𝜌 ≺ (𝐺⊕𝑌)′ for some 𝜌 ∈ 2<𝑀 if for every 𝑒 < |𝜌|, if 𝜌(𝑒) = 1
then (𝜎, 𝑇1) ⊩ Φ𝐺⊕𝑌

𝑒 (𝑒)↓, and if 𝜌(𝑒) = 0 then (𝜎, 𝑇1) ⊩ Φ𝐺⊕𝑌
𝑒 (𝑒)↑.

7.5 Conservation over BΣ0
2 111

Note that the predicate (𝜎, 𝑇1) ⊩ 𝜌 ≺ (𝐺 ⊕ 𝑌)′ is Π0
1(𝑌) uniformly in 𝜎, 𝑇1

and 𝜌.

Lemma 7.5.4. For every condition (𝜎, 𝑇1) and 𝑏 ∈ 𝑀, there is an extension
(𝜏, 𝑇2) and some 𝑀-coded 𝜌 ∈ 2𝑏 such that (𝜏, 𝑇2) ⊩ 𝜌 ≺ (𝐺 ⊕ 𝑌)′. ★

Proof. Let 𝑈 be the set of all 𝜌 ∈ 2𝑏 such that the tree

𝑇𝜌 = {𝜏 ∈ 𝑇1 : (∀𝑒 < 𝑏)(𝜌(𝑒) = 0 → Φ
𝜌⊕𝑌
𝑒 (𝑒)↑)}

is infinite.𝑈 is Π1
0(𝑌) and hence 𝑀-finite, and it is non-empty as it contains

the string 1111

Let 𝜌 ∈ 𝑈 be its lexicographically smallest element. For every 𝑒 < 𝑏 such that
𝜌(𝑒) = 1, the minimality of 𝜌 implies that the set of 𝜏 ∈ 𝑇𝜌 such that Φ𝜏⊕𝑌

𝑒 (𝑒)↑
is 𝑀-finite, so there is a level ℓ𝑒 such that for every 𝜏 ∈ 𝑇𝜌 ∩ 2ℓ𝑒 , Φ𝜏⊕𝑌

𝑒 (𝑒)↓.
The set {𝑒 < 𝑏 : 𝜌(𝑒) = 1} is 𝑀-finite, so by BΣ0

1, there is an upper-bound ℓ
of all the ℓ𝑒 ’s. Finally, by Lemma 7.3.4, there is a node 𝜏 ∈ 𝑇𝜌 ∩ 2ℓ such that
𝑇2 = {𝜇 ∈ 𝑇𝜌 : 𝜇 is comparable with 𝜏} is 𝑀-infinite.

We claim that (𝜏, 𝑇2) ⊩ 𝜌 ≺ (𝐺 ⊕ 𝑌)′. Fix some 𝑒 < 𝑏. Suppose 𝜌(𝑒) = 0.
Then Φ

𝜇⊕𝑌
𝑒 (𝑒)↑ for every 𝜇 ∈ 𝑇2 since 𝑇2 ⊆ 𝑇𝜌. Hence, (𝜏, 𝑇2) ⊩ Φ𝐺⊕𝑌

𝑒 (𝑒)↑.
Suppose 𝜌(𝑒) = 1. The definition of 𝜏 ensure that Φ𝜏⊕𝑌

𝑒 (𝑒)↓, so (𝜏, 𝑇2) ⊩
Φ𝐺⊕𝑌
𝑒 (𝑒)↓.

We are now ready to prove Theorem 7.5.3.

Construction. We build a decreasing sequence (𝜎𝑠 , 𝑇𝑠) of conditions and
then take 𝐺 for the union of the 𝜎𝑠 . We also build an increasing sequence (𝜌𝑠)
such that (𝐺 ⊕ 𝑌)′ will be the union of the 𝜌𝑠 . Initially, let 𝜎0 = 𝜎′

0 = 𝜖 and
𝑇0 = 𝑇. During the construction, we will ensure that ⟨𝜎𝑠 , 𝑇𝑠⟩, |𝜌𝑠 | ≤ 𝑠. Each
stage will be either of type T, or of type R. The stage 0 is of type T.

Assume that (𝜎𝑠 , 𝑇𝑠) and 𝜌𝑠 are already defined. Let 𝑠0 < 𝑠 be the latest stage
at which we switched the stage type. We have two cases.

Case 1: 𝑠 is of type T. If there a code ⟨𝜏, �̂�⟩ ≤ 𝑠 such that (𝜏, �̂�) ≤ (𝜎𝑠 , 𝑇𝑠)
and |𝜏| ≥ 𝑠0, then let 𝜎𝑠+1 = 𝜏, 𝑇𝑠+1 = �̂�, 𝜌𝑠+1 = 𝜌𝑠 and let 𝑠 + 1 be of type
R. Otherwise, the elements are left unchanged and we go to the next stage.

Case 2: 𝑠 is of type R. If there a code ⟨𝜏, �̂�⟩ ≤ 𝑠 such that (𝜏, �̂�) ≤ (𝜎𝑠 , 𝑇𝑠)
and (𝜎𝑠 , �̂�) ⊩ 𝜌 ≺ (𝐺 ⊕ 𝑌)′ for some 𝜌 ∈ 2𝑠0 , then let 𝜎𝑠+1 = 𝜏, 𝑇𝑠+1 = �̂�,
𝜌𝑠+1 = 𝜌 and let 𝑠+1 be of type T. Otherwise, the elements are left unchanged
and we go to the next stage.

This completes the construction.

Verification. Since the size of 𝜎𝑠 , 𝜌𝑠 and the index of 𝑇𝑠 are bounded by 𝑠,
there is a Δ0

1(𝑌′)-formula 𝜙(𝑠) stating that the construction can be pursued up
to stage 𝑠. Our construction implies that the set {𝑠|𝜙(𝑠)} is Δ0

1(𝑌′) and forms
a cut, so by IΔ0

1(𝑌′), the construction can be pursued at every stage.

Let 𝐺 =
⋃
𝑠∈𝑀 𝜎𝑠 . By Lemma 7.3.4 and Lemma 7.5.4, each type of stage

changes 𝑀-infinitely often. Thus, {|𝜎𝑠 | : 𝑠 ∈ 𝑀} and {|𝜌𝑠 | : 𝑠 ∈ 𝑀} are
𝑀-infinite. In particular, 𝐺 is an 𝑀-regular path in 𝑇 and 𝑌′ ≥𝑇 (𝐺 ⊕ 𝑌)′. By
Exercise 7.5.2, M[𝐺] |= RCA0 + BΣ0

2.

This completes the proof of Theorem 7.5.3.

112 7 Conservation theorems

36: Contrary to Theorem 7.3.8, the set 𝐴⊕
𝑌′ is 𝑀-regular, so we can work with pairs
(𝑔, 𝑎) and lock a non-standard number of
columns simultaneously.

Corollary 7.5.5 (Hájek [68])
WKL0 + BΣ0

2 is a Π1
1-conservative extension of RCA0 + BΣ0

2.3535: Exercise 7.5.1 and Corollary 7.5.5 eas-
ily adapt to prove that for every 𝑛 ≥ 2
that WKL0 + IΣ0

𝑛 and WKL0 + BΣ0
𝑛 are Π1

1-
conservative extensions of RCA0 + IΣ0

𝑛 and
RCA0 + BΣ0

𝑛 , respectively.
Proof. Immediate by Theorem 7.5.3 and Exercise 7.5.1.

We have seen in Theorem 7.3.8 thatΔ0
2 sets are indistinguishable from arbitrary

sets from the viewpoint of models of RCA0, in that every countable model of
RCA0 can be 𝜔-extended into another model of RCA0 relative to which a
fixed set becomes Δ0

2. This is not true anymore when considering models
of RCA0 + BΣ0

2. Indeed, by Theorem 7.2.11and Exercise 7.2.12, given a
countable model M= (𝑀, 𝑆) |= RCA0 + BΣ0

2 and a non-𝑀-regular set 𝐴 ⊆
𝑀, there is no 𝜔-extension N |= RCA0 + BΣ0

2 of M relative to which 𝐴 is Δ0
2,

since it would imply 𝑀-regularity of 𝐴. On the other hand, Belanger [60] proved
a formalized Friedberg jump inversion theorem with some extra assumptions
on the set 𝐴.

Theorem 7.5.6 (Belanger [60])
Let M= (𝑀, 𝑆) |= RCA0 + BΣ0

2 be a countable model topped by a set 𝑌,
and 𝐴 ⊆ 𝑀 be a set such that M[𝐴 ⊕ 𝑌′] |= RCA∗

0. Then there is a
set 𝐺 ⊆ 𝑀 such that M[𝐺] |= RCA0 + BΣ0

2 and 𝐴 ⊕ 𝑌′ ≡𝑇 (𝐺 ⊕ 𝑌)′

Proof. Based on Shoenfield’s limit lemma [8], we will construct a function
𝑓 : ℕ2 → 2 such that for every 𝑥 ∈ ℕ, lim𝑦 𝑓 (𝑥, 𝑦) exists and equals 𝐴(𝑥).
We are therefore going to build directly the function 𝑓 by forcing, and let 𝐺 be
the graph of 𝑓 .

Consider the notion of forcing whose conditions is a pairs (𝑔, 𝑎)36, such that

▶ 𝑔 ⊆ 𝑀2 → {0, 1} is a partial function with two parameters whose
domain is 𝑀-finite, representing an initial segment of the function 𝑓 that
we are building.

▶ 𝑎 ∈ 𝑀 is the number of “locked” columns, meaning that from now
on, when we extend the domain of 𝑔 with a new pair (𝑥, 𝑦), if 𝑥 < 𝑎

then 𝑔(𝑥, 𝑦) = (𝐴 ⊕ 𝑌′)(𝑥).
The interpretation [𝑔, 𝑎] of a condition (𝑔, 𝑎) is the class of all partial or total
functions ℎ ⊆ 𝑀2 → 2 such that

(1) 𝑔 ⊆ ℎ, i.e. dom 𝑔 ⊆ dom ℎ and for all (𝑥, 𝑦) ∈ dom 𝑔, 𝑔(𝑥, 𝑦) =

ℎ(𝑥, 𝑦);
(2) for all (𝑥, 𝑦) ∈ dom ℎ \ dom 𝑔, if 𝑥 < 𝑎, then ℎ(𝑥, 𝑦) = (𝐴 ⊕ 𝑌′)(𝑥).

A condition (ℎ, 𝑏) extends (𝑔, 𝑎) (denoted (ℎ, 𝑏) ≤ (𝑔, 𝑎)) if 𝑏 ≥ 𝑎 and
ℎ ∈ [𝑔, 𝑎].
We will need to satisfy three kind of requirements for every 𝑏 ∈ 𝑀:

▶ T𝑏 : 𝑏2 ⊆ dom 𝑓

▶ R𝑏 : (𝑓 ⊕ 𝑌)′↾𝑏 is decided
▶ S𝑏 : (∀𝑎 < 𝑏) lim𝑦 𝑓 (𝑎, 𝑦) exists

For this, we prove two lemmas, Lemma 7.5.7 and Lemma 7.5.8, stating that
the set of conditions forcing T𝑏 and R𝑏 is dense for every 𝑏 ∈ 𝑀. Density
of the requirement S𝑏 simply consists, given a condition (𝑔, 𝑎), of taking the
extension (𝑔,max(𝑎, 𝑏)).

7.5 Conservation over BΣ0
2 113

Lemma 7.5.7. For every condition (𝑔, 𝑎) and 𝑏 ∈ 𝑀, there is an extension
(ℎ, 𝑎) ≤ (𝑔, 𝑎) such that 𝑏2 ⊆ dom ℎ. ★

Proof. Since 𝐴⊕𝑌′ is 𝑀-regular, the string 𝜎 = (𝐴⊕𝑌′)↾𝑎 is 𝑀-coded. By
Δ0

0-comprehension, the set ℎ = 𝑔 ∪{(𝑥, 𝑦, 𝜎(𝑥)) ∈ 𝑏2 × 2 : (𝑥, 𝑦) ∉ dom 𝑔}
is 𝑀-coded. By construction, ℎ ∈ [𝑔, 𝑎] and 𝑏2 ⊆ dom ℎ, so (ℎ, 𝑎) is the
desired extension.

Given a condition (𝑔, 𝑎) and 𝑒 ∈ 𝑀, let

▶ (𝑔, 𝑎) ⊩ Φ
𝑓⊕𝑌
𝑒 (𝑒)↓ if Φ𝑔⊕𝑌

𝑒 (𝑒)↓ ;
▶ (𝑔, 𝑎) ⊩ Φ

𝑓⊕𝑌
𝑒 (𝑒)↑ if for every finite ℎ ∈ [𝑔, 𝑎], Φℎ⊕𝑌

𝑒 (𝑒)↑ ;
▶ (𝑔, 𝑎) ⊩ 𝜌 ≺ (𝑓 ⊕𝑌)′ for some 𝜌 ∈ 2<𝑀 if for every 𝑒 < |𝜌|, if 𝜌(𝑒) = 1

then (𝑔, 𝑎) ⊩ Φ
𝑓⊕𝑌
𝑒 (𝑒)↓, and if 𝜌(𝑒) = 0 then (𝑔, 𝑎) ⊩ Φ

𝑓⊕𝑌
𝑒 (𝑒)↑.

Note that the predicate (𝑔, 𝑎) ⊩ 𝜌 ≺ (𝑓 ⊕𝑌)′ is Δ0
2(𝑌) uniformly in 𝑔, 𝑎 and 𝜌.

Lemma 7.5.8. For every condition (𝑔, 𝑎) and 𝑏 ∈ 𝑀, there is an extension
(ℎ, 𝑎) ≤ (𝑔, 𝑎) and some 𝑀-coded 𝜌 ∈ 2𝑏 such that (ℎ, 𝑎) ⊩ 𝜌 ≺ (𝑓 ⊕𝑌)′.★

Proof. Let 𝑈 be the set of all 𝜌 ∈ 2𝑏 such that

(∃ℎ ∈ [𝑔, 𝑎])(∃𝑡)(∀𝑒 < 𝑏)(𝜌(𝑒) = 1 → Φℎ⊕𝑌
𝑒 (𝑒)[𝑡] ↓)

Note that 𝑈 is Σ0
1(𝑌), hence is 𝑀-finite. Moreover, 𝑈 is non-empty, as it con-

tains the string 000 Let 𝜌 ∈ 𝑈 be the lexicographically maximal element,
and let ℎ ∈ [𝑔, 𝑎] witness that 𝜌 ∈ 𝑈 .

We claim that (ℎ, 𝑎) forces 𝜌 ≺ (𝐺 ⊕ 𝑌)′. Fix some 𝑒 < 𝑏. Suppose 𝜌(𝑒) = 1.
Then Φℎ⊕𝑌

𝑒 (𝑒)↓, hence (ℎ, 𝑎) ⊩ Φ
𝑓⊕𝑌
𝑒 (𝑒)↓. Suppose 𝜌(𝑒) = 0. The maximality

of 𝜌 ensures that for every ℎ̂ ∈ [ℎ, 𝑎], Φℎ̂⊕𝑌
𝑒 (𝑒) ↑. It follows that (ℎ, 𝑎) ⊩

Φ
𝑓⊕𝑌
𝑒 (𝑒)↑.

We are now ready to prove Theorem 7.5.6.

Construction. We will build a decreasing sequence (𝑔𝑠 , 𝑎𝑠) of conditions and
then take for 𝑓 the union of the 𝑔𝑠 . We will also build an increasing sequence
(𝜌𝑠) such that (𝑓 ⊕ 𝑌)′ will be the union of the 𝜌𝑠 . Initially, let 𝑔0 = 𝜌0 = 𝜖
and 𝑎0 = 0. Each stage will be either of type T, of type R or of type S. The
stage 0 is of type T.

Assume that (𝑔𝑠 , 𝑎𝑠) and 𝜌𝑠 are already defined. Let 𝑠0 < 𝑠 be the latest stage
at which we switched the stage type. We have three cases.

Case 1: 𝑠 is of type T. If there exists some ℎ ∈ 2≤𝑠×≤𝑠 such that (ℎ, 𝑎𝑠) ≤
(𝑔𝑠 , 𝑎𝑠) and 𝑠0 × 𝑠0 ⊆ dom ℎ, then let 𝑔𝑠+1 = ℎ, 𝑎𝑠+1 = 𝑎𝑠 , 𝜌𝑠+1 = 𝜌𝑠 , and
let 𝑠 + 1 be of type R. Otherwise, the elements are left unchanged and we go
to the next stage.

Case 2: 𝑠 is of type R. If there exists some ℎ ∈ 2≤𝑠×≤𝑠 and some 𝜇 ∈ 2𝑠0
such that (ℎ, 𝑎𝑠) ≤ (𝑔𝑠 , 𝑎𝑠), and (ℎ, 𝑎𝑠) ⊩ 𝜇 ≺ (𝑓 ⊕ 𝑌)′, then let 𝑔𝑠+1 = ℎ,
𝑎𝑠+1 = 𝑎𝑠 , 𝜌𝑠+1 = 𝜇, and let 𝑠 + 1 be of type S. Otherwise, the elements are
left unchanged and we go to the next stage.

Case 3: 𝑠 is of type S. Let 𝑔𝑠+1 = 𝑔𝑠 , 𝑎𝑠+1 = 𝑠, 𝜌𝑠+1 = 𝜌𝑠 , and let 𝑠 + 1 be of
type T. This completes the construction.

114 7 Conservation theorems

Verification. Since the size of 𝑔𝑠 , 𝑎𝑠 and 𝜌𝑠 are bounded by 𝑠, there is a
Δ0

1(𝐴 ⊕ 𝑌′)-formula 𝜙(𝑠) stating that the construction can be pursued up
to stage 𝑠. Our construction implies that the set {𝑠|𝜙(𝑠)} is a cut, so since
M[𝐴 ⊕ 𝑌′] |= IΔ0

1, the construction can be pursued at every stage.

Let 𝑓 =
⋃
𝑠∈𝑀 𝑔𝑠 . By Lemma 7.5.7 and Lemma 7.5.8, each type of stage

changes 𝑀-infinitely often. Thus, dom 𝑓 = 𝑀2, and {𝑎𝑠 : 𝑠 ∈ 𝑀} and
{|𝜌𝑠 | : 𝑠 ∈ 𝑀} are both cofinal in 𝑀. It follows that 𝑓 is stable and 𝐴⊕𝑌′ ≥𝑇
(𝑓 ⊕ 𝑌)′. Since M[𝐴 ⊕ 𝑌′] |= RCA∗

0, then M[(𝑓 ⊕ 𝑌)′] |= RCA0, so by
Exercise 7.4.3, M[𝑓] |= RCA0+BΣ0

2. Conversely, since lim𝑦 𝑓 (·, 𝑦) = 𝐴⊕𝑌′,
then 𝐴 ⊕ 𝑌′ ≡𝑇 (𝑓 ⊕ 𝑌)′. This completes the proof of Theorem 7.5.6.

We now prove that RCA0 + BΣ0
2 + COH is a Π1

1-conservative extension
of RCA0 + BΣ0

2. Recall that thanks to the characterization of COH in terms of
Δ0

2 approximations of paths through infinite Δ0
2 binary trees (Exercise 3.4.3),

there exist two main ways to build solutions to instances of COH: either pick-
ing a path, and constructing a Δ0

2 approximation of it, or directly building a
cohesive set through computable Mathias forcing. We shall start with the for-
mer approach. Belanger [60] proved that the above characterization holds
over RCA0 + BΣ0

2.

Exercise 7.5.9 (Belanger [60]). Let M= (𝑀, 𝑆) |= RCA0. Show that M |=
BΣ0

2 + COH iff (𝑀,Δ0
2-Def(M)) |= WKL∗0. ★

Theorem 7.5.10 (Chong, Slaman and Yang [66])
Let M = (𝑀, 𝑆) |= RCA0 + BΣ0

2 be a countable topped model and ®𝑅 =

𝑅0 , 𝑅1 , . . . be a uniform sequence in 𝑆. Then there is an infinite ®𝑅-cohesive
set 𝐶 ⊆ 𝑀 such that M[𝐶] |= RCA0 + BΣ0

2.

Proof. Say M is topped by a set 𝑌. Given 𝜎 ∈ 2<𝑀 , let

𝑅𝜎 =
⋂

𝜎(𝑛)=0
𝑅𝑛

⋂
𝜎(𝑛)=1

𝑅𝑛

Let 𝑇 = {𝜎 ∈ 2<𝑀 : (∃𝑥 > |𝜎|)𝑥 ∈ 𝑅𝜎}. The tree 𝑇 is infinite and Σ0
1(M).

Since (𝑀,Δ0
2-Def(M)) |= RCA∗

0, by Theorem 7.4.7, there is a path 𝑃 ∈ [𝑇]
such that M[𝑃 ⊕ 𝑌′] |= RCA∗

0. By Theorem 7.5.6, there is a set 𝐺 ⊆ 𝑀 such
that 𝑃 ⊕ 𝑌′ ≤𝑇 (𝐺 ⊕ 𝑌)′ and M[𝐺] |= RCA0 + BΣ0

2.

Let (𝑃𝑠)𝑠∈𝑀 be a Δ0
2 approximation of 𝑃 in M[𝐺]. Let (𝑥𝑎)𝑎∈𝑀 be inductively

defined as follows: First, 𝑥0 = 0. Given 𝑥𝑎 , let ⟨𝑠, 𝑥⟩ be the least tuple such
that 𝑠, 𝑥 > 𝑥𝑎 and 𝑥 ∈ 𝑅𝑃𝑠↾𝑥𝑎 . Such a tuple exists, since by BΣ0

2, there
is some 𝑠 > 𝑥𝑎 such that 𝑃𝑠↾𝑥𝑎 = 𝑃↾𝑥𝑎 , and that 𝑅𝑃↾𝑥𝑎 is infinite. Then
let 𝑥𝑎+1 = 𝑥. This completes the construction.

By Σ0
1-induction, 𝑥𝑎 is defined for every 𝑎 ∈ 𝑀. Let 𝐷 = {𝑥𝑎 : 𝑎 ∈ 𝑀}. We

claim that𝐷 is ®𝑅-cohesive. Indeed, given 𝑎 ∈ 𝑀, by BΣ0
2, there is some 𝑘 > 𝑎

such that for every 𝑡 > 𝑘, 𝑃𝑡↾𝑎 = 𝑃↾𝑎 . For every 𝑡 > 𝑘, 𝑥𝑡+1 ∈ 𝑅𝑃𝑠↾𝑥𝑡 for
some 𝑠 > 𝑥𝑡 . Since 𝑠 > 𝑥𝑡 > 𝑡 > 𝑘 > 𝑎, 𝑅𝑃𝑠↾𝑥𝑡 ⊆ 𝑅𝑃𝑠↾𝑎 = 𝑅𝑃↾𝑎 , so for all
but finitely many 𝑡 ∈ 𝑀, 𝑥𝑡 ∈ 𝑅𝑃↾𝑎 .

Since 𝐷 is Σ0
1, it contains an infinite Δ0

1 subset 𝐶 ⊆ 𝐷. In particular, 𝐶 ∈
M[𝐺] |= RCA0 + BΣ0

2, so M[𝐶] |= RCA0 + BΣ0
2.

7.6 Shore blocking and BME 115

37: Actually, SADS implies BΣ0
2 over RCA0,

but the proof is non-trivial and involved a
model-theoretic argument. See Hirschfeldt
and Shore [23] and Chong, Lempp and
Yang [70].

Corollary 7.5.11 (Chong, Slaman and Yang [66])
RCA0 + BΣ0

2 + COH is a Π1
1-conservative extension of RCA0 + BΣ0

2.

Proof. Immediate by Theorem 7.5.10 and Exercise 7.5.1.

There exists another more direct construction of an ®𝑅-cohesive set by Math-
ias forcing, which does not involve the formalized Friedberg jump inversion
theorem.

Exercise 7.5.12 (Le Houérou, Levy Patey and Yokoyama [69]). Let M =

(𝑀, 𝑆) |= RCA0 + BΣ0
2 be a countable model topped by a set 𝑌, and let

®𝑅 = 𝑅0 , 𝑅1 , . . . be a uniform sequence in 𝑆. Let 𝑃 be as in the proof of
Theorem 7.5.10. A condition is a pair (𝜎, 𝑎) where 𝜎 ∈ 2<𝑀 and 𝑎 ∈ 𝑀.
The interpretation [𝜎, 𝑎] of a condition (𝜎, 𝑎) is the class of all 𝐺 such that
𝜎 ≺ 𝐺 and 𝐺 ⊆ 𝜎 ∪ 𝑅𝑃↾𝑎 . In other words, the interpretation of (𝜎, 𝑎) is
the interpretation of the Mathias condition (𝜎, 𝑅𝑃↾𝑎 \ {0, . . . , |𝜎|}). Build a
Δ0

1(𝑃 ⊕𝑌′) infinite decreasing sequence of conditions while deciding the jump
as in the proof of Theorem 7.5.6. ★

Recall that by Theorem 4.5.2, if aΣ0
2 set𝐴 is co-hyperimmune, then it admits an

infinite low subset. This theorem was then used by Hirschfeldt and Shore [23]
to prove that every infinite computable stable linear order admits an infinite
ascending or descending sequence of low degree (see Exercise 4.5.4). The
proof of Theorem 4.5.2 does not seem to be formalizable in RCA0 + BΣ0

2
because of Shore blocking. However, Chong, Slaman and Yang [66] used
the transitive features of linear orders to prove that RCA0 + BΣ0

2 + SADS is a
Π1

1-conservative extension of RCA0 + BΣ0
2, where SADS is the Π1

2-problem
whose instances are stable linear orders, and solutions are infinite ascending
or descending sequences.37

Exercise 7.5.13 (Chong, Slaman and Yang [66]). LetM= (𝑀, 𝑆) |= RCA0+
BΣ0

2 be a countable model topped by a set 𝑌. Let L = (𝑀, <L) be a com-
putable stable linear order in M.

1. Show that M does not contain any infinite descending sequence, then
there is an 𝑀-regular infinite ascending sequence 𝐺 ⊆ 𝑀 such that
(𝐺 ⊕ 𝑌)′ ≤𝑇 𝑌′.

2. Deduce that RCA0 + BΣ0
2 + SADS is a Π1

1-conservative extension
of RCA0 + BΣ0

2. ★

7.6 Shore blocking and BME

The most naive way to prove a blocking lemma given a family (𝐷𝑎)𝑎<𝑏 of dense
sets would be to start from a condition 𝑝0, and then inductively letting 𝑝𝑎+1
be an extension of 𝑝𝑎 in 𝐷𝑎 for every 𝑎 < 𝑏. Then, 𝑝𝑏 would be an extension
simultaneously intersecting all the dense sets simultaneously. However, as
explained above, in models of weak arithmetic, the set 𝐼 = {𝑎 : 𝑝𝑎 is defined }
might be a proper cut bounded by 𝑏. We therefore used some combinatorial
features of each construction to prove conservation theorems over RCA0 +
BΣ0

2. As usual, these can often be formulated as properties of the forcing
questions.

116 7 Conservation theorems

38: Uniform Σ0
𝑛 -preservation has two lev-

els of uniformity: deciding a Σ0
𝑛 -formula is

Σ0
𝑛 uniformly in the conditions, and if the

forcing question holds, then one can find
an extension witnessing the positive answer
uniformly.

This assumes of course that there is a no-
tion of computability over forcing conditions,
which can be obtained by manipulating con-
ditions through their codes.

The main concern for Π1
1-conservation over RCA0 +BΣ0

2 is to prove a blocking
lemma to decide an initial segment of the jump. If an extension witnessing a
positive answer to the forcing question can be found uniformly in the condition,
then the naive sequential approach holds.

Definition 7.6.1. Let (ℙ,≤) be a notion of forcing and 𝑛 ≥ 1. A forcing
question is uniformly Σ0

𝑛-preserving if for every Σ0
𝑛 formula 𝜑(𝐺, 𝑥, 𝑦), there

is a Σ0
𝑛 set 𝑊 ⊆ ℙ × ℕ × ℙ × ℕ such that

▶ For every (𝑝, 𝑛, 𝑞, 𝑚) ∈𝑊 , 𝑞 ≤ 𝑝 and 𝑞 forces 𝜑(𝐺, 𝑚, 𝑛) ;
▶ For every condition 𝑝 ∈ ℙ and 𝑛 ∈ ℕ, 𝑝 ?⊢ ∃𝑥𝜑(𝐺, 𝑥, 𝑛) if and only

if (𝑝, 𝑛, 𝑞, 𝑚) ∈𝑊 for some 𝑞 ≤ 𝑝 and 𝑚 ∈ ℕ. ♦

Note that any uniformly Σ0
𝑛-preserving forcing question is Σ0

𝑛-preserving.38

Theorem 7.6.2
Let M= (𝑀, 𝑆) |= Q+IΣ0

1 be a countable model topped by𝑌 and let (ℙ,≤)
be a notion of forcing with a uniformly Σ0

1-preserving forcing question. For
every condition 𝑝 ∈ ℙ and 𝑏 ∈ 𝑀, there is an extension 𝑞 ≤ 𝑝 and
some 𝜌 ∈ 2<𝑀 of length 𝑏 such that 𝑞 forces 𝜌 ≺ (𝐺 ⊕ 𝑌)′.

Proof. Let 𝜑(𝐺, 𝐹, 𝑦) be the followingΣ0
1(M)-formula, where 𝐹 is a first-order

variable coding a set

(∃𝑡)(𝐹 ⊆ {0, . . . , 𝑏 − 1} ∧ card 𝐹 = 𝑦 ∧ (∀𝑒 ∈ 𝐹)Φ𝐺⊕𝑌
𝑒 (𝑒)[𝑡]↓)

Let𝑊 be theΣ0
1(M) set witnessing that the function is uniformlyΣ0

1-preserving.
Let𝑈 be theΣ0

1(M) set of all 𝐹 ⊆ {0, . . . , 𝑏−1} such that there is some 𝑘 ∈ 𝑀
and a sequence ⟨𝑝0 , 𝐹0 , . . . , 𝑝𝑘−1 , 𝐹𝑘−1 , 𝑝𝑘⟩ satisfying

▶ 𝑝0 = 𝑝 ; 𝐹 = 𝐹𝑘−1 ;
▶ (𝑝𝑠 , 𝑠 , 𝑝𝑠+1 , 𝐹𝑠) ∈𝑊 for every 𝑠 < 𝑘.

We claim that ∅ ∈ 𝑈 . Indeed, 𝑝 ?⊢(∃𝐹)𝜑(𝐺, 𝐹, 0), so there is some 𝐹 such
that card 𝐹 = 0 and some 𝑞 ≤ 𝑝 such that (𝑝, 0, 𝑞, 𝐹) ∈ 𝑊 . In particular,
𝐹 = ∅, and the sequence (𝑝, ∅, 𝑞) witnesses that ∅ ∈ 𝐹.

By Exercise 7.2.3, there is a maximal element 𝐹 ∈ 𝑈 for inclusion. Let 𝜌 ∈ 2𝑏
be such that {𝑒 < 𝑏 : 𝜌(𝑒) = 1} = 𝐹 and let ⟨𝑝0 , 𝐹0 , . . . , 𝑝𝑘−1 , 𝐹𝑘−1 , 𝑝𝑘⟩
witness that 𝐹 ∈ 𝑈 . By definition of 𝑊 , 𝑝𝑘 forces 𝜑(𝐺, 𝐹, 𝑘 − 1), and by
maximality of 𝐹, 𝑝𝑘 ?⊬(∃𝐹)𝜑(𝐺, 𝐹, 𝑘). By definition of the forcing question,
there is an extension 𝑞 ≤ 𝑝𝑘 forcing (∀𝐹)¬𝜑(𝐺, 𝐹, 𝑘).
We claim that 𝑞 forces 𝜌 ≺ (𝐺 ⊕ 𝑌)′. By definition of 𝜑, for every 𝑒 ∈ 𝐹,
𝑝𝑘 forces Φ𝐺⊕𝑌

𝑒 (𝑒)↓. Let 𝑒 < 𝑏 be such that 𝑒 ∉ 𝐹. There is no extension
of 𝑞 forcing Φ𝐺⊕𝑌

𝑒 (𝑒)↓, otherwise 𝐹 ∪ {𝑒} would contradict the fact that 𝑞
forces ¬𝜑(𝐺, 𝐹, 𝑘). Thus, 𝑞 forces Φ𝐺⊕𝑌

𝑒 (𝑒)↑. This completes the proof of
Theorem 7.6.2.

Exercise 7.6.3. Show that Cohen forcing admits a uniformly Σ0
1-preserving

forcing question. ★

Exercise 7.6.4. Let (ℙ,≤) be the notion of forcing of Theorem 7.5.6, and
given 𝑎 ∈ 𝑀, let ℙ𝑎 be the set of conditions of the form (𝑔, 𝑎).

1. Show that for every 𝑎 ∈ 𝑀, (ℙ𝑎 ,≤) admits a uniformly Σ0
1-preserving

forcing question.

7.6 Shore blocking and BME 117

2. Show that if a condition (𝑔, 𝑎) forces a Σ0
1 or a Π0

1 property over (ℙ𝑎 ,≤),
then so does it over (ℙ,≤).

3. Deduce the existence of a blocking lemma to decide the jump for (ℙ,≤).
★

Many forcing questions appearing in practice are not Σ0
1-uniform. Thankfully, it

often represents a dividing line at one of the extremes of Figure 7.2. In this
case again, one can prove a blocking lemma to decide an initial segment of a
the jump.

Definition 7.6.5. Given a notion of forcing (ℙ,≤) and a family of formulas
Γ, a forcing question is Γ-extremal if for every formula 𝜑 ∈ Γ and every
condition 𝑝 ∈ ℙ, if 𝑝 ?⊢𝜑(𝐺) then 𝑝 forces 𝜑(𝐺). ♦

By extension, we say that a forcing question for Σ0
𝑛-formulas is Π0

𝑛-extremal if
for every Σ0

𝑛-formula 𝜑 and every condition 𝑝 ∈ ℙ, if 𝑝 ?⊬𝜑(𝐺), then 𝑝 forces
¬𝜑(𝐺). Many notions of forcing considered in practice admit a Σ0

1-preserving
forcing question which is Π0

1-extremal. In this case, one can obtain an abstract
blocking lemma to decide the jump.

Theorem 7.6.6
Let M= (𝑀, 𝑆) |= Q+IΣ0

1 be a countable model topped by𝑌 and let (ℙ,≤)
be a notion of forcing with a Σ0

1-preserving Π0
1-extremal forcing question.

For every condition 𝑝 ∈ ℙ and 𝑏 ∈ 𝑀, there is an extension 𝑞 ≤ 𝑝 and
some 𝜌 ∈ 2<𝑀 of length 𝑏 such that 𝑞 forces 𝜌 ≺ (𝐺 ⊕ 𝑌)′.

Proof. Consider the following set

𝑈 = {𝜌 ∈ 2𝑏 : 𝑞 ?⊢(∃𝑡)(∀𝑒 < 𝑏)(𝜌(𝑒) = 1 → Φ𝐺⊕𝑌
𝑒 (𝑒)[𝑡]↓)}

The set 𝑈 is Σ0
1(M) since the forcing question is Σ0

1-preserving. Moreover, 𝑈
is non-empty, as it contains the string 000 By Exercise 7.2.3, there is a
lexicographically maximal element 𝜌 ∈ 𝑈 . By maximality, for every 𝑒′ < |𝜎|
such that 𝜎(𝑒′) = 0,

𝑝 ?⊬(∃𝑡)(∀𝑒 < 𝑏)((𝜌(𝑒) = 1 ∨ 𝑒 = 𝑒′) → Φ𝐺⊕𝑌
𝑒 (𝑒)[𝑡]↓)

so since the forcing question is Π0
1-extremal, 𝑝 forces

(∀𝑡)(∃𝑒 < 𝑏)((𝜌(𝑒) = 1 ∨ 𝑒 = 𝑒′) ∧Φ𝐺⊕𝑌
𝑒 (𝑒)[𝑡]↑)

Since 𝜌 ∈ 𝑈 , there is an extension 𝑞 ≤ 𝑝 and some 𝑡 ∈ ℕ such that 𝑞 forces
(∀𝑒 < 𝑏)(𝜌(𝑒) = 1 → Φ𝐺⊕𝑌

𝑒 (𝑒)[𝑡]↓). In particular, for every 𝑒′ < |𝜎| such
that 𝜎(𝑒′) = 0, 𝑞 forces Φ𝐺⊕𝑌

𝑒 (𝑒)↑. It follows that 𝑞 forces 𝜌 ≺ (𝐺 ⊕ 𝑌)′. This
completes the proof of Theorem 7.6.6.

Exercise 7.6.7. Show that Theorem 7.6.6 also holds with a Σ0
1-preserving

Σ0
1-extremal forcing question. ★

Recall that Ramsey’s theorem for pairs can be decomposed into the cohesive-
ness principle (COH) and the pigeonhole principle for Δ0

2 instances (RT1
2
′). By

Corollary 7.5.11 and an amalgamation theorem of Yokoyama [65], RCA0+RT2
2

is a Π1
1-conservative extension of RCA0 + BΣ0

2 iff so is RCA0 + RT1
2
′. One

would naturally want to adapt the proof that RT1
2
′ admits a weakly low basis

118 7 Conservation theorems

39: A Mathias pre-condition is a pair (𝜎, 𝑋),
where 𝑋 is not longer required to be infinite.
Given a Turing ideal M coded by a set 𝑀,
the set of all Mathias pre-conditions over M
is 𝑀-computable, while the set of Mathias
conditions over M is not.

42: Given a monotone enumera-
tion (𝑇𝑠)𝑠∈ℕ , a stage 𝑠 is expansionary
if 𝑇𝑠+1 ≠ 𝑇𝑠 . Over RCA∗

0, BME∗ is equiva-
lent to stating that the expansionary stages
of a bounded monotone enumeration are
bounded. Indeed, letting 𝑠 ∈ ℕ be such a
bound, then 𝑇𝑠 = 𝑇, but 𝑇𝑠 is finite, hence
so is 𝑇. On the other direction, if 𝑇 is finite,
then for every 𝜎 ∈ 𝑇, there is a stage
𝑠 such that 𝜎 ∈ 𝑇𝑠 . By BΣ0

1, there is a
uniform bound on such stages.

44: Recall that 𝜖0 is the least fixpoint of the
operation 𝛼 ↦→ 𝜔𝛼 . In particular,

𝜖0 = sup{𝜔, 𝜔𝜔 , 𝜔𝜔𝜔
, . . . }

(Theorem 4.7.5). However, the natural forcing question for the pigeonhole
principle is neither uniformly Σ0

1-preserving, nor extremal. It is therefore not
clear how to prove a blocking lemma deciding the jump.

Question 7.6.8. Is RCA0+RT2
2 aΠ1

1-conservative extension of RCA0+BΣ0
2?★

As mentioned, the forcing question for the pigeonhole principle is not uniformly
Σ0

1-preserving, but enjoys a weaker uniformity property: if the answer to a Σ0
1

question is positive, then one can effectively find a finite set of pre-conditions39,
one of each being a valid condition forcing the Σ0

1 property. Successive appli-
cations of the forcing question to prove a blocking lemma then yields a c.e.
tree of bounded depth, motivating the following definition.

Definition 7.6.9. Let 𝑇 ⊆ ℕ<ℕ be a c.e. tree.

▶ A monotone enumeration of 𝑇 is a uniformly computable sequence
of finite coded40

40: A monotone enumeration can be rep-
resented as a sequence of integers, each
of them being the canonical code of a finite
tree. Thus, the complete information about
each tree is known.

trees 𝑇0 , 𝑇1 , . . . such that 𝑇0 = {𝜖},
⋃
𝑠 𝑇𝑠 = 𝑇 and

for every stage 𝑠 such that 𝑇𝑠+1 ≠ 𝑇𝑠 , every node in 𝑇𝑠+1 \ 𝑇𝑠 is an
immediate extension of a leaf in 𝑇𝑠 .

▶ The tree 𝑇 is 𝑘-bounded if every node in 𝑇 has length at most 𝑘. A
tree is bounded if it is 𝑘-bounded for some 𝑘 ∈ ℕ.41

41: Technically, the tree beingΣ0
1, it may not

belong to the model. However, a Σ0
1 tree is

𝑘-bounded if at any stage, it contains nodes
of length at most 𝑘.

♦

A monotone enumeration of a tree is such that all the immediate successors
of a node are enumerated in one block at the same stage. Therefore, it is not
possible to add immediate children at a later stage. On the other hand, it is
not possible to decide ahead of time whether a node is a leaf or not. An easy
induction over 𝑘 shows that every 𝑘-bounded Σ0

1 tree with a monotone enumer-
ation is finite. Let BME∗ be the Π1

2-problem whose instances are enumerations
of 𝑘-bounded Σ0

1 trees for some 𝑘 ∈ ℕ, and whose solutions are canonical
codes for the tree.42

Exercise 7.6.10 (Chong, Slaman and Yang [29]). Show that Q ⊢ IΣ0
2 →

BME∗. ★

Over RCA0, the Bounded Monotone Enumeration principle and BΣ0
2 are in-

comparable, and their conjunction is strictly weaker than IΣ0
2. In fact, BME∗

happens to be equivalent to multiple existing principles, and therefore has an
arguably natural proof-theoretic strength.

Exercise 7.6.11 (Kreuzer and Yokoyama [71]). A formula 𝜙(𝑥, 𝑦) represents
a partial function if (∀𝑥, 𝑦, 𝑧)(𝜙(𝑥, 𝑦) ∧ 𝜙(𝑥, 𝑧) → 𝑦 = 𝑧). A string 𝜎 ∈ ℕ<ℕ

is an approximation4343: The notion was introduced by Paris and
Hájek [72], who proved that BΣ0

2 and PΣ0
1

are incomparable over Q + IΣ0
1.

of a partial function 𝜙(𝑥, 𝑦) if

(∀𝑖 < |𝜎| − 1)(∀𝑥, 𝑦)[(𝑥 < 𝜎(𝑖) ∧ 𝜙(𝑥, 𝑦)) → 𝑦 < 𝜎(𝑖 + 1)]

Given a collection of formulas Γ, let PΓ be the scheme “For every partial
function 𝜙 ∈ Γ and every length 𝑘 ∈ ℕ, there is an approximation of length 𝑘.”
Show that Q + IΣ0

1 ⊢ BME∗ ↔ PΣ0
1. ★

The Bounded Monotone Enumeration principle can also be understood in
terms of well-foundedness of ordinals. It requires first to fix a representation
of ordinals. By Cantor normal form, every ordinal 𝛼 can be uniquely written
as 𝜔𝛽0 𝑐0 + 𝜔𝛽1 𝑐1 + · · · + 𝜔𝛽𝑘−1 𝑐𝑘−1, where 𝑐0 , . . . , 𝑐𝑘−1 are non-zero natural
numbers, and and 𝛽0 > 𝛽1 > · · · > 𝛽𝑘−1 > 0 are ordinals. Based on this
normal form, every ordinal less than 𝜖0

44 can be represented by a finite tree of

7.6 Shore blocking and BME 119

46: Here, 𝜖 denotes the empty string, hence
the root of the tree. It should not be confused
with the ordinal 𝜖0.

48: Note that the natural product differs
from the natural sum. Indeed,

𝛼 × 𝜔 = 𝜔𝛾1+1𝑛1

coefficients. To simplify manipulation, it is more convenient to work with regular
trees, that is, finite trees such that the set of immediate successors of a node
is an initial segment of ℕ, together with an evaluation map which associates to
each node a coefficient. Using this representation, the map (®𝛽, ®𝑐) ↦→ ∑

𝜔𝛽𝑖 𝑐𝑖
and the order ≤ are provably Δ0

1 in Q + IΣ0
1. See Hájek and Pudlák [50, p. II.3]

for a formal development of ordinals over Q + IΣ0
1.

Given an ordinal 𝛼 ≤ 𝜖0, let WF(𝛼) be the statement “𝛼 is well-founded”, that
is, there is no infinite decreasing sequence of ordinals smaller than 𝛼. Proving
that 𝛼 is well-founded for some large ordinals requires some non-trivial amount
of induction.45

45: The statement

∀𝑎(WF(𝜔𝑎) → WF(𝜔𝑎+1))

is provable over Q + IΣ0
1. It follows that in

any model M = (𝑀, 𝑆) |= Q + IΣ0
1, the

set 𝐼 = {𝑎 ∈ 𝑀 : M |= WF(𝜔𝑎)} is a cut.
Actually, in such models, 𝐼 is an additive cut,
that is, if 𝑎 ∈ 𝐼, then 𝑎 + 𝑎 ∈ 𝐼, but there
exists non-standard models of Q + IΣ0

1 in
which 𝐼 = sup{𝑎 · 𝑛 : 𝑛 ∈ 𝜔} for some
non-standard integer 𝑎. In such models, 𝐼
does not have any better closure property
than additivity.

Actually, WF(𝜔𝜔) is equivalent to BME∗ over Q + IΣ0
1.

Theorem 7.6.12 (Kreuzer and Yokoyama [71])
Q + IΣ0

1 ⊢ WF(𝜔𝜔) → BME∗.

Proof. Given a 𝑘-bounded finite coded tree 𝑇 ⊆ ℕ<ℕ , we define an ranking
𝜁𝑇 : 𝑇 → 𝜔𝑘 inductively as follows:

𝜁𝑇(𝜎) =

0 if |𝜎| = 𝑘

𝜔𝑘−|𝜎| if 𝜎 is a leaf in 𝑇 and |𝜎| < 𝑘∑
𝜎·𝑎∈𝑇 𝜁𝑇(𝜎 · 𝑎) if 𝜎 is not a leaf.

Note that 𝜁𝑇(𝜖) < 𝜔𝜔 for any such tree 𝑇. Given a monotone enumeration of
a 𝑘-bounded Σ0

1 tree 𝑇 ⊆ ℕ<ℕ , if 𝑇𝑠+1 ≠ 𝑇𝑠 , then 𝜁𝑇𝑠+1(𝜖) < 𝜁𝑇𝑠 (𝜖)46, so by
WF(𝜔𝜔), there are only finitely such stages. Letting 𝑠 be larger than all such
stages. Then 𝑇𝑠 = 𝑇, so 𝑇 is finite coded.

Exercise 7.6.13 (Kreuzer and Yokoyama [71]). Fix 𝑘 ∈ ℕ. Given a 𝑘-bounded
finite coded tree 𝑇, let 𝜁𝑇 be the function of Theorem 7.6.12.

1. Prove that for every ordinal 𝛼 < 𝜔𝑘 , there is a 𝑘-bounded finite coded
tree 𝑇 such that 𝜁𝑇(𝜖) = 𝛼.

2. Prove that for every 𝑘-bounded finite coded tree 𝑇 and every 𝛼 < 𝜁𝑇(𝜖),
there is a a 𝑘-bounded finite coded tree 𝑆 ⊇ 𝑇 which extends only
leaves of 𝑇, and such that 𝜁𝑆(𝜖) = 𝛼.

3. Deduce that Q + IΣ0
1 ⊢ BME∗ → WF(𝜔𝜔). ★

Working with a stronger base theory, namely, RCA0 + BΣ0
2 + WF(𝛼) for some

ordinal 𝛼 ≤ 𝜖0, raises new complications, as one needs not only to prove a
blocking lemma to control the jump, but also a blocking lemma to preserve
WF(𝛼). For this, we shall use the natural (Hessenberg) sums and products
over ordinals:

Definition 7.6.14 (Natural sum and product). Let 𝛼 and 𝛽 be two ordinals
less than 𝜖0. Let 𝛼 = 𝜔𝛾1𝑛1+· · ·+𝜔𝛾𝑘𝑛𝑘 and 𝛽 = 𝜔𝛾1𝑚1+· · ·+𝜔𝛾𝑘𝑚𝑘

47 47: We allow the 𝑛𝑖 and 𝑚𝑖 to be equal to
0 in order to write 𝛼 and 𝛽 using the same
exponents 𝛾𝑖

.
The natural sum 𝛼 ∔ 𝛽 is defined as

𝜔𝛾1(𝑛1 + 𝑚1) + · · · + 𝜔𝛾𝑘 (𝑛𝑘 + 𝑚𝑘)

Then, let 𝛼 ¤×𝑘 to be equal to be the natural sum of 𝛼 with itself 𝑘 times and
𝛼 ¤×𝜔 = 𝜔𝛾1+1𝑛1 + · · · + 𝜔𝛾𝑘+1𝑛𝑘 .48

Thankfully, Shore blocking for preserving WF(𝛼) comes for free, in the sense
that for every 𝑘 ∈ ℕ, one can define a Turing functional Γ𝑘 such that if Φ𝑋

𝑒 is an

120 7 Conservation theorems

49: RCA0 proves that the product of two
well-orders is a well-order. Since 𝛼 ¤×𝑘 ≤
𝛼 × 𝜔 for every 𝑘 ∈ 𝑀, it follows that
RCA0 ⊢ WF(𝛼) → WF(𝛼 × 𝜔).

infinite, decreasing sequence of ordinals less than 𝛼 for some 𝑒 < 𝑘, then Γ𝑘 is
an infinite, decreasing sequence of ordinals less than 𝛼 ¤×𝑘. Since for any model
M = (𝑀, 𝑆) |= RCA0 + WF(𝛼) and any 𝑘 ∈ 𝑀, M |= RCA0 + WF(𝛼 ¤×𝑘),
then the natural product overhead is not a problem.49 In what follows, a code
⟨𝛼⟩ for an ordinal 𝛼 < 𝜖0 is any fixed representation of 𝛼 as an integer such
that the various operations on it are provably Δ0

1 over Q + IΣ0
1.

Lemma 7.6.15 (Le Houérou, Levy Patey and Yokoyama [69]). Fix a model
M= (𝑀, 𝑆) |= Q. For every 𝑘 ∈ 𝑀, there is a Turing functional Γ𝑘 such that,
letting 𝛼 < 𝜖0 be the largest ordinal with ⟨𝛼⟩ < 𝑘, for every 𝑋 ∈ 2𝑀 such
that M∪ {𝑋} |= IΣ0

1, if there is some 𝑒 < 𝑘 such that Φ𝑋
𝑒 is an 𝑀-infinite

decreasing sequence of elements smaller than 𝛼, then Γ𝑋
𝑘

is an 𝑀-infinite
decreasing sequence of elements smaller than 𝛼 ¤×𝑘.

Moreover, an index of Γ𝑘 can be found computably in 𝑘. ★

Proof. By twisting the Turing functionals, we can assume that for every 𝑒 , 𝑎 ∈
𝑀, if Φ𝜎

𝑒 (𝑎) ↓, then

(1) 𝑎 < |𝜎| ;
(2) Φ𝜎

𝑒 (𝑏) ↓ for every 𝑏 < 𝑎 ;
(3) Φ𝜎

𝑒 (0),Φ𝜎
𝑒 (1), . . . ,Φ𝜎

𝑒 (𝑎) is a strictly decreasing sequence of elements
smaller than 𝛼.

Given 𝜎 ∈ 2<𝑀 and 𝑒 < 𝑘, let 𝜁(𝜎, 𝑒) = Φ𝜎
𝑒 (𝑠) be the largest 𝑠 < |𝜎| such

that Φ𝜎
𝑒 (𝑠) ↓. If there is no such 𝑠, then 𝜁(𝜎, 𝑒) = 𝛼. Note that if 𝜎′ ⪰ 𝜎, then

𝜁(𝜎′, 𝑒) ≤ 𝜁(𝜎, 𝑒).

Let 𝜎−1 = 𝜖. Let Γ𝑘 be the Turing functional which, on oracle 𝑋 and input 𝑎,
searches for some 𝑥 > |𝜎𝑎−1| and some 𝜎𝑎 ≺ 𝑋 such that Φ𝜎𝑎

𝑒 (𝑥) ↓ for
some 𝑒 < 𝑘. If found, it outputs 𝜁(𝜎, 0)∔ . . .∔ 𝜁(𝜎, 𝑘−1). Note that if Γ𝑋

𝑘
(𝑎) ↓,

then by (3), Γ𝑋
𝑘
(𝑎) is an ordinal smaller than 𝛼 ¤×𝑘.

Suppose that 𝑋 is such that M∪{𝑋} |= IΣ0
1 and there is an 𝑒 < 𝑘 is such that

Φ𝑋
𝑒 is total. Since M∪{𝑋} |= Q+ IΣ0

1, then by Exercise 7.3.1, M[𝑋] |= RCA0,
so Γ𝑋

𝑘
is total.

Moreover, since 𝑥 > |𝜎𝑎−1|, then for 𝑒 < 𝑘 such that Φ𝜎𝑎
𝑒 (𝑥) ↓, by (1) we have

Φ
𝜎𝑎−1
𝑒 (𝑥) ↑. Thus, by (2) and (3), 𝜁(𝜎𝑎+1 , 𝑒) < 𝜁(𝜎𝑎 , 𝑒), hence Γ𝑋

𝑘
(𝑎 + 1) <

Γ𝑋
𝑘
(𝑎). It follows that Γ𝑋

𝑘
is an 𝑀-infinite decreasing sequence of ordinals

smaller than 𝛼 ¤×𝑘.

All the previous conservation theorems over RCA0 + BΣ0
2 also hold while pre-

serving WF(𝛼) for any fixed ordinal 𝛼 ≤ 𝜖0. We give the details for formalized
low basis theorem, and leave the other conservation theorems as exercises.

Theorem 7.6.16 (Le Houérou, Levy Patey and Yokoyama [69])
Fix 𝛼 ≤ 𝜖0. Let M = (𝑀, 𝑆) |= RCA0 + BΣ0

2 + WF(𝛼) be a countable
model topped by a set 𝑌 and 𝑇 ⊆ 2<𝑀 be an infinite tree in 𝑆. There is a
path 𝑃 ∈ [𝑇] such that (𝑃⊕𝑌)′ ≤𝑇 𝑌′ and M[𝑃] |= RCA0+BΣ0

2+WF(𝛼).

Proof. The proof is very similar to Theorem 7.5.3, with an extra requirement
for every 𝑏 ∈ ℕ:

▶ S𝑏 : Let 𝛽 < 𝛼 be the <𝜖0 -largest ordinal with ⟨𝛽⟩ < 𝑏. For every 𝑒 < 𝑏,
Φ𝐺⊕𝑌
𝑒 is not an infinite <𝜖0 -decreasing sequence of ordinals smaller

than 𝛽.

7.6 Shore blocking and BME 121

For this, we need to prove a blocking lemma:

Lemma 7.6.17. Let (𝜎, 𝑇1) be a condition. For every 𝑏 ∈ 𝑀, letting Γ𝑏 be the
functional of Lemma 7.6.15, there is an extension (𝜎, 𝑇2) ≤ (𝜎, 𝑇1) and an
𝑎 ∈ 𝑀 such that (𝜎, 𝑇2) ⊩ Γ𝐺⊕𝑌

𝑏
(𝑎)↑. ★

Proof. We have two cases.

Case 1: there exists some 𝑎 ∈ 𝑀 such that the tree 𝑇2 = {𝜏 ∈ 𝑇1 : Γ𝜏⊕𝑌
𝑏

(𝑎)↑}
is infinite. Note that the set 𝑇2 is a primitive 𝑌-recursive, as the set 𝑇1 and
the predicate Γ𝜏⊕𝑌

𝑘
(𝑛)↑ are primitive 𝑌-recursive. Then (𝜎, 𝑇2) ≤ (𝜎, 𝑇1) and

(𝜎, 𝑇2) ⊩ Γ𝐺⊕𝑌
𝑘

(𝑎)↓.

Case 2: for every 𝑎 ∈ 𝑀, there is some ℓ𝑎 ∈ 𝑀 such that for every 𝜏 ∈ 𝑇 of
length ℓ𝑎 , Γ𝜏𝑏(𝑎)↓. For every 𝑎 ∈ 𝑀, let

𝛼𝑎 = max {Γ𝜏
𝑏
(𝑎) : 𝜏 ∈ 𝑇1 ∧ |𝜏| = ℓ𝑎}

We claim that for every 𝑎 ∈ 𝑀, 𝛼𝑎+1 <𝜖0 𝛼𝑎 . Indeed, for every 𝜏 ∈ 𝑇1 such
that |𝜏| = ℓ𝑎+1, Γ𝜏

𝑏
(𝑎 + 1) <𝜖0 Γ

𝜏↾ℓ𝑎
𝑏

(𝑎), so

max {Γ𝜏
𝑏
(𝑎 + 1) : 𝜏 ∈ 𝑇1 ∧ |𝜏| = ℓ𝑎+1} <𝜖0 max {Γ𝜏

𝑏
(𝑎) : 𝜏 ∈ 𝑇1 ∧ |𝜏| = ℓ𝑎}

So M ̸|= WF(𝛼 ¤×𝑏). However, since M |= BΣ0
2+WF(𝛼), then M |= WF(𝛼 ¤×𝑏).

Contradiction.

The construction is the same as in Theorem 7.5.3, except that there is a third
type of stage, S. Suppose a stage 𝑠 is of type Sand 𝑠0 < 𝑠 is the latest stage
at which we switched the stage type. If there exists some ⟨𝜏, �̂�⟩, 𝑎 ≤ 𝑠 such
that (𝜏, �̂�) ≤ (𝜎𝑠 , 𝑇𝑠) and (𝜏, �̂�) ⊩ Γ𝐺⊕𝑌𝑠0 (𝑎) ↑, then let 𝜎𝑠+1 = 𝜏, 𝑇𝑠+1 = �̂�,
𝜌𝑠+1 = 𝜌𝑠 and let 𝑠 + 1 be of the next type. Otherwise, the elements are left
unchanged and we go to the next stage. By Lemma 7.6.17, the construction
eventually switches stage type.

The remainder of the proof is left unchanged. This completes the proof of
Theorem 7.6.16.

Exercise 7.6.18. Fix 𝛼 ≤ 𝜖0. Let M = (𝑀, 𝑆) |= RCA0 + BΣ0
2 + WF(𝛼)

be a countable model topped by a set 𝑌, and 𝐴 ⊆ 𝑀 be a set such that
M[𝐴 ⊕ 𝑌′] |= RCA∗

0. Adapt the proof of Theorem 7.5.6 to show the existence
of a set 𝐺 ⊆ 𝑀 such that M[𝐺] |= RCA0 + BΣ0

2 + WF(𝛼) and 𝐴 ⊕ 𝑌′ ≡𝑇
(𝐺 ⊕ 𝑌)′ ★

Exercise 7.6.19 (Le Houérou, Levy Patey and Yokoyama [69]). Fix 𝛼 ≤ 𝜖0.
Let M = (𝑀, 𝑆) |= RCA0 + BΣ0

2 + WF(𝛼) be a countable topped model,
and ®𝑅 = 𝑅0 , 𝑅1 , . . . be a uniform sequence in 𝑆. Adapt the proof of Theo-
rem 7.5.10 to show the existence of an infinite ®𝑅-cohesive set 𝐶 ⊆ 𝑀 such
that M[𝐶] |= RCA0 + BΣ0

2 + WF(𝛼). ★

With a similar technique, but a much more involved disjunctive construction, Le
Houérou, Levy Patey and Yokoyama [69] prove that RCA0 +WF(𝜖0)+RT2

2 is a
Π1

1-conservative extension of RCA0 + BΣ0
2 +WF(𝜖0).50

50: Based on the equivalence between
BME∗ and WF(𝜔𝜔), one would expect
to work with models of WF(𝜔𝜔) instead
of WF(𝜖0). However, in order to preserve
WF(𝜔𝜔

𝑘
) in the extended model, one seems

to need WF(𝜔𝜔
𝑘+1), where

𝜔𝛼
0 = 𝛼 and 𝜔𝛼

𝑘+1 = 𝜔𝜔𝛼

𝑘

The proof is based on
the decomposition of RT2

2 into COH and RT1
2
′. The proof of following theorem

goes beyond the scope of this book:

122 7 Conservation theorems

Theorem 7.6.20 (Le Houérou, Levy Patey and Yokoyama [69])
Let M= (𝑀, 𝑆) |= RCA0 + BΣ0

2 + WF(𝜖0) be a countable topped model.
For every Δ0

2 set 𝐴 ⊆ 𝑀, there is an infinite set 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝑀 \ 𝐴
such that M[𝐻] |= RCA0 + BΣ0

2 + WF(𝜖0).

1: The considerations in this section are
rather abstract, and might make sense only
after having considered a few examples.
The reader might choose to skip this sec-
tion, and directly learn by examples, with
the Erdős-Moser and free set theorems.

The takeway of this discussion is that there
is some tension between the structural prop-
erties imposed on the forcing conditions to
build a solution to the instance of a combi-
natorial problem, and the necessity to add
elements by block to the stem by satisfying
only a Σ0

1 predicate.

Forcing design 8
8.1 Core concepts 123
8.2 Erdős-Moser theorem . . . 124
8.3 Free set theorem 129

Prerequisites: Chapters 2 and 3

As emphasized throughout the previous chapters, the computability-theoretic
analysis of combinatorial theorems is closely related to the combinatorial fea-
tures of the corresponding forcing questions. This analysis therefore depends
on the choice of an appropriate notion of forcing to build solutions to the prob-
lem. So far, the preliminary step of designing a good notion of forcing was given
for granted. In this chapter, we fill in the gap by explaining the key ideas behind
the design of such notion of forcing. These core concepts will be exemplified
with the analysis of the Erdős-Moser theorem and the free set theorem.

8.1 Core concepts

We focus on theorems coming from Ramsey theory. Indeed, as explained in
Section 6.2, most theorems are equivalent in reverse mathematics to one of
five systems of axioms with a well-understood computability-theoretic strength.
The few exceptions to this empirical observation almost come exclusively from
Ramsey theory, and require the design of a specific machinery. Ramsey theory
deals with many kind of mathematical structures. Here, we consider statements
about sets, that is, with no additional structure than cardinality. Furthermore,
classical reverse mathematics being formulated in the language of second-
order arithmetic, we shall focus on statements about the existence of an infinite
subset of ℕ. 1

Stem. Turing functionals being continuous functions over Cantor space, compu-
tability-theoretic properties of the constructed object 𝐺 are naturally forced
by fixing initial segments of 𝐺. It follows that the forcing conditions usually
contain a stem, represented as a finite binary string. This stem is supposed
to grow over condition extension, and every sufficiently generic filter Fwill
contain conditions with stems of arbitrary length, yielding a binary sequence𝐺F

defined as the limit of these stems. The notion of focring with stems, partially
ordered by the prefix relation, is nothing but Cohen forcing.

Structural properties. Given an instance 𝐼 of a problem P, the goal is to build
a P-solution to 𝐼. One therefore needs to impose structural constraints on the
stem. The most basic such constraint is that the stem is a finite P-solution
to 𝐼. For instance, in the case of Ramsey’s theorem for pairs, one wants 𝜎 to
code a finite homogeneous set. Thus, for every filter F, the (finite or infinite)
sequence 𝐺F yields a homogeneous set.

Extendibility. One can think of a condition as an invariant property of the
construction. Usually, being a finite P-solution to 𝐼 is not a sufficiently strong
invariant, in that some finite solution might not be extendible into an infinite
solution. For instance, if P is Ramsey’s theorem for pairs and two colors,
given finite homogeneous set 𝐹 for color 0, there might be an element 𝑥 ∈ 𝐹
which, paired with cofinitely many other elements, has color 1. The extendibility
constraint is usually formulated in terms of an infinite reservoir satisfying
some additional structural properties. For instance, for Ramsey’s theorem
for pairs, one works with triples (𝜎0 , 𝜎1 , 𝑋), where 𝜎0 and 𝜎1 are two stems,
homogeneous for color 0 and 1, respectively, and 𝑋 ⊆ ℕ is an infinite reservoir

124 8 Forcing design

2: It is important to note that transitivity is
a property over [𝐷]3. Thus, if a tournament
is not transitive, then it is witnessed by a
3-tuple of elements of 𝐷.

3: Think of the stem as an initial segment
of the object being built.

with min𝑋 > |𝜎𝑖|, such that for every 𝑖 < 2, every 𝑥 ∈ 𝜎𝑖 and 𝑦 ∈ 𝑋, {𝑥, 𝑦}
has color 𝑖. To see that, given a condition (𝜎0 , 𝜎1 , 𝑋), at least one of the stems
is extendible into an infinite solution, apply Ramsey’s theorem for pairs within𝑋,
to obtain an infinite homogeneous subset 𝑌 ⊆ 𝑋 for some color 𝑖 < 2. Then,
by the structural properties of the reservoir, 𝜎𝑖 ∪ 𝑌 is again homogeneous for
color 𝑖.

Block extendibility. Extendibility yields a classical proof of the problem P, in
that for every sufficiently generic filter F, the set 𝐺F is an infinite P-solution to 𝐼.
However, in order to obtain a good forcing question for Σ0

1-formulas, yielding a
computationally weak solution, one must be able to add elements by block, and
not only one by one. Indeed, the natural forcing question for Σ0

1-formulas is of
the form “Is there a block of elements from the reservoir such that, if I add them
to the stem, it will satisfy the Σ0

1-formula?” Because being a finite P-solution
to 𝐼 is usually not a sufficiently strong invariant to ensure extendibility, one
must choose a block which will maintain the stronger extendibility property.
The extendibility property being usually Π0

1, the main difficulty lies in finding
a sufficient Σ0

1 property that must satisfy a block to preserve the extendibility
property.

Computational properties. Because of the use of a reservoir, a Mathias
condition is an infinite object. Given a Mathias-like condition (𝜎, 𝑋), the forcing
question will ask for a finite subset 𝜌 ⊆ 𝑋 with additional structural properties.
It follows that the complexity of the forcing question involves the one of the
reservoir. In order to obtain a diagonalization theorem such as Theorem 3.3.4,
one must therefore impose some computational weakness to the reservoir.
The usual requirement is that the reservoir satisfies the weakness property
being studied. For instance, in cone avoidance of a set 𝐶, one will usually work
with reservoirs 𝑋 ≱𝑇 𝐶.

8.2 Erdős-Moser theorem

The Erdős-Moser was introduced and studied in Section 6.4, with a notion
of forcing coming out of the blue. We recall the basic definitions, and give a
step-by-step explanation of the process yielding to the design of its notion of
forcing.

A tournament over an infinite domain 𝐷 ⊆ ℕ is an irreflexive binary relation
𝑇 ⊆ 𝐷2 such that for every 𝑎, 𝑏 ∈ 𝐷 with 𝑎 ≠ 𝑏, 𝑇(𝑎, 𝑏) iff ¬𝑇(𝑏, 𝑎). The
tournament 𝑇 is transitive if for all 𝑎, 𝑏, 𝑐 ∈ 𝐷, if 𝑇(𝑎, 𝑏) and 𝑇(𝑏, 𝑐) hold,
then 𝑇(𝑎, 𝑐) also holds.2 A sub-tournament of 𝑇 is the restriction of 𝑇 to a
subdomain 𝐷1 ⊆ 𝐷. Thus, given 𝑇, a sub-tournament is fully specified by
the sub-domain 𝐷1, and is therefore identified with it, and we say that 𝐷1 is
𝑇-transitive if 𝑇 is transitive on 𝐷1. The Erdős-Moser theorem states that every
infinite tournament admits an infinite transitive sub-tournament.

Fix a computable tournament 𝑇 over ℕ. In order to design a good notion of
forcing to build an infinite 𝑇-transitive subtournament, one starts with Mathias
forcing, that is, the notion of forcing whose conditions are pairs (𝜎, 𝑋), where
𝜎 ∈ 2<ℕ is the stem3 and and 𝑋 ⊆ ℕ is an infinite reservoir. A condition (𝜏, 𝑌)
extends (𝜎, 𝑋) if 𝜎 ⪯ 𝜏 (a longer initial segment of the solution is specified),
𝑌 ⊆ 𝑋 (the reservoir is restricted), and 𝜏 \ 𝜎 ⊆ 𝑋 (the new elements of the
stem come from the reservoir).

8.2 Erdős-Moser theorem 125

Step 1: Extendibility. Of course, pure Mathias forcing does not produce
infinite 𝑇-transitive sub-tournaments. One must therefore put a first restriction
by asking the stem 𝜎 to be a finite 𝑇-transitive sub-tournament. This restriction
structurally ensures that for every filter F, the set 𝐺F (defined as the limit of the
stems of conditions in F) is 𝑇-transitive. However, this restriction comes with
a price: even with sufficiently generic filters F, the set 𝐺F might not be infinite.
Indeed, there might be conditions (𝜎, 𝑋) where the stem is not extendible into
an infinite solution. For instance, there might be some 𝑥, 𝑦 ∈ [𝜎]2 such that
for all but finitely many 𝑧 ∈ 𝑋, {𝑥, 𝑦, 𝑧} forms a 3-cycle. There might be an
even more subtle situation: for almost every 𝑧 ∈ 𝑋, there is some 𝑥, 𝑦 ∈ [𝜔]2
(which depend on 𝑧) such that {𝑥, 𝑦, 𝑧} forms a 3-cycle.

One must therefore identify a stronger structural property which will ensure
extendibility of the stem, and play the role of an invariant. Thankfully, there is a
simple empirical criterion to identify this invariant: Given a condition (𝜎, 𝑋), by
the classical Erdős-Moser theorem, there is an infinite 𝑇-transitive subset 𝑌 ⊆
𝑋. The structural invariant is obtained by identifying sufficient hypothesis to
ensure that 𝜎 ∪ 𝑌 is again 𝑇-transitive.

As mentioned, if 𝜎∪𝑌 is not𝑇-transitive, then there exists a 3-cycle {𝑥, 𝑦, 𝑧} ∈
[𝜎∪𝑌]2. Say 𝑥 < 𝑦 < 𝑧. Because 𝜎 and 𝑌 are 𝑇-transitive, one cannot have
𝑥, 𝑦, 𝑧 ∈ 𝜎 or 𝑥, 𝑦, 𝑧 ∈ 𝑌. There are only two possibilities remaining.

▶ Case 1: 𝑥 ∈ 𝜎 and 𝑦, 𝑧 ∈ 𝑌. This can be avoided by ensuring that
each 𝑥 ∈ 𝜎 has the same behavior with respect to every element of 𝑋.
We say that 𝜎 is stabilized by 𝑋 if for every 𝑥 ∈ 𝜎, either ∀𝑦 ∈ 𝑋,
𝑇(𝑥, 𝑦), or ∀𝑦 ∈ 𝑋, 𝑇(𝑦, 𝑥). Given a condition (𝜎, 𝑋), one can always
find an infinite 𝑋-computable subset 𝑌 ⊆ 𝑋 such that 𝜎 is stabilized
by 𝑌, as follows: Given a condition (𝜎, 𝑋), let 𝑓 : 𝑋 → 2|𝜎| be defined
by 𝑓 (𝑦) = 𝜌, where 𝜌 is the binary string of length |𝜎| such that for
every 𝑥 < |𝜎|, 𝜌(𝑥) = 1 iff 𝑇(𝑥, 𝑦).4

4: Another way to see this is to consider
each element 𝑥 of 𝜎, and successively ap-
ply RT1

2 by considering the 2-partition {𝑦 ∈
𝑋 : 𝑇(𝑥, 𝑦)} and {𝑦 ∈ 𝑋 : 𝑇(𝑦, 𝑥)}. This
yields a finite decreasing sequence of infi-
nite sets, stabilizing the behavior of more
and more elements of 𝜎. The last set is the
desired reservoir.

Since the pigeonhole principle is
computably true, one can find an infinite 𝑋-computable 𝑓 -homogeneous
subset 𝑌 ⊆ 𝑋. One easily sees that 𝜎 is stabilized by 𝑌. Thus, the
condition (𝜎, 𝑌) avoids every 3-cycle with one element in 𝜎 and two
elements in 𝑌.

▶ Case 2: 𝑥, 𝑦 ∈ 𝜎, 𝑧 ∈ 𝑌. This cannot be avoided for free by restricting
the reservoir. One must therefore explicitely forbid this behavior. Because
𝜎 is 𝑇-transitive, one can equivalently ask that every element 𝑦 ∈ 𝑋 is
a one-point extension, that is, 𝜎 ∪ {𝑦} is 𝑇-transitive.

The previous analysis reveals two structural extendibility properties, the former
being optional. A condition is a Mathias pair (𝜎, 𝑋) such that 𝜎 is stabilized
by 𝑋, and every element of 𝑋 is a one-point extension. In other words,

(a) ∀𝑥 ∈ 𝜎, either (∀𝑦 ∈ 𝑋)𝑇(𝑥, 𝑦) or (∀𝑦 ∈ 𝑋)𝑇(𝑦, 𝑥)
(b) ∀𝑦 ∈ 𝑋, 𝜎 ∪ {𝑦} is 𝑇-transitive5 5: Note that this property encompasses the

fact that 𝜎 is 𝑇-transitive. Thus, there is no
need to add explicitly this constraint on the
stem.As mentioned, the first property is optional, as given a Mathias condition (𝜎, 𝑋),

one can always find an infinite 𝑋-computable subset 𝑌 ⊆ 𝑋 such that (𝜎, 𝑌)
satisfies (a). On the other hand, the second property truly imposes a constraint
on the stem 𝜎. Because of this, one must check that property (b) can be
preserved by adding new elements to the stem. The following extendibility
lemma states that it is the case.

Lemma 8.2.1. Let (𝜎, 𝑋) be a condition, and 𝑥 ∈ 𝑋. There is an𝑋-computable
infinite set 𝑌 ⊆ 𝑋 such that (𝜎 ∪ {𝑥}, 𝑌) is a valid extension.6 6: Note how in this proof, the optional prop-

erty (a) is useful to preserve property (b).
★

126 8 Forcing design

7: One can see a tournament 𝑇 ⊆ ℕ2 as
a function ℎ : [ℕ]2 → 2 defined for 𝑥 < 𝑦

by ℎ(𝑥, 𝑦) = 1 iff 𝑇(𝑥, 𝑦) and ℎ(𝑥, 𝑦) = 0
otherwise. The tournament is stable iff ℎ is
stable, and 𝑓 (𝑥) = lim𝑦 ℎ(𝑥, 𝑦). is the limit
function.

Proof. Fix 𝑥 ∈ 𝑋 and let𝑌 be either {𝑦 ∈ 𝑋 : 𝑇(𝑥, 𝑦)} or {𝑦 ∈ 𝑋 : 𝑇(𝑦, 𝑥)},
depending on which one is infinite. We claim that (𝜎 ∪ {𝑥}, 𝑌) is a valid
extension. It is by construction a Mathias extension of (𝜎, 𝑋), so one only needs
to check that properties (a) and (b) are satisfied. Property (a) of (𝜎 ∪ {𝑥}, 𝑌)
is satisfied by property (a) of (𝜎, 𝑋) and the choice of 𝑌. We now prove
(b). Suppose for the contradiction that 𝜎 ∪ {𝑥} ∪ {𝑦} is not 𝑇-transitive, for
some 𝑦 ∈ 𝑌. By definition, there is a 3-cycle {𝑎, 𝑏, 𝑐} ∈ [𝜎∪{𝑥}∪{𝑦}]3. Say
𝑎 < 𝑏 < 𝑐. Because of property (b) of (𝜎, 𝑋), one cannot have {𝑎, 𝑏, 𝑐} ∈
[𝜎∪{𝑥}]3 or {𝑎, 𝑏, 𝑐} ∈ [𝜎∪{𝑦}]3, so 𝑎 ∈ 𝜎, 𝑏 = 𝑥 and 𝑐 = 𝑦. In particular,
𝑎 does not have the same behavior with respect to 𝑏 and 𝑐, contradicting
property (a) of (𝜎, 𝑋).

Step 2: Block extendibility. We now have a notion of forcing to build solu-
tions to a given computable instance of the Erdős-Moser theorem. However,
additional work is required to design a good forcing question for Σ0

1-formulas.
Consider the forcing question for Mathias forcing:

Definition 8.2.2. Given a Mathias condition (𝜎, 𝑋) and a Σ0
1-formula 𝜑(𝐺),

let (𝜎, 𝑋) ?⊢𝜑(𝐺) iff there is some finite set 𝜌 ⊆ 𝑋 such that 𝜑(𝜎 ∪ 𝜌)
holds. ♦

An Erdős-Moser condition being a Mathias condition, one should expect to
have a similar forcing question, by replacing “finite set 𝜌 ⊆ 𝑋” with “finite
𝑇-transitive set 𝜌 ⊆ 𝑋”. This definition raises two difficulties. First, one wants
the forcing question for Σ0

1-formulas to be Σ0
1-preserving, but given a Mathias

condition (𝜎, 𝑋), the forcing question for a Σ0
1-formula is Σ0

1(𝑋). We shall
ignore this difficulty until Step 3. Second, the property (b) of a condition is not
preserved by adding blocks simultaneously.

Example 8.2.3. Let (𝜎, 𝑋) be a condition, and 𝜌 = {𝑥, 𝑦} ⊆ 𝑋 be a finite
set. The set 𝜌 is vacuously 𝑇-transitive. Moreover, by choice of properties
(a) and (b), 𝜎∪𝜌 is again 𝑇-transitive. However, suppose that 𝑇(𝑥, 𝑦) holds,
but for all but finitely many 𝑧 ∈ 𝑋, 𝑇(𝑦, 𝑧) and 𝑇(𝑧, 𝑥) both hold. Then there
is no infinite subset 𝑌 ⊆ 𝑋 such that (𝜎 ∪ 𝜌, 𝑌) satisfies property (b).

The previous example shows the importance of some “compatibility” property
between the elements of 𝜌. Suppose first for simplicity that 𝑇 is stable, that is,
for every 𝑥, either (∀∞𝑦)𝑇(𝑥, 𝑦), or (∀∞𝑦)𝑇(𝑦, 𝑥). Such tournament induces
a ∅′-computable coloring of singletons 𝑓 : ℕ → 2 defined by 𝑓 (𝑥) = 1 iff
(∀∞𝑦)𝑇(𝑥, 𝑦).7

Definition 8.2.4. A set 𝜌 is 𝑓 -compatible if for every 𝑥, 𝑦 ∈ 𝜌, if 𝑇(𝑥, 𝑦)
holds, then 𝑓 (𝑥) ≥ 𝑓 (𝑦). ♦

Note that every 𝑓 -homogeneous set is 𝑓 -compatible. We leave as an exercise
the fact that 𝑓 -compatibility is a sufficient notion to preserve property (b).

Exercise 8.2.5. Suppose 𝑇 is stable, with limit function 𝑓 : ℕ → 2. Let
(𝜎, 𝑋) be a condition, and 𝜌 ⊆ 𝑋 be a finite 𝑓 -compatible set. Show that
(𝜎 ∪ 𝜌, 𝑋 ∩ (max 𝜌,∞)) satisfies property (b). ★

Even among stable tournaments, the naive definition of the forcing question
is too complex definitionally. Indeed, given a condition (𝜎, 𝑋), the following
statement

8.2 Erdős-Moser theorem 127

9: A common denominator of many Ram-
seyan statements is the existence, given
multiple instances, of a singlet set which is
simultaneously a solution to each instances.
Consider Ramsey’s theorem for example.
Given two colorings 𝑓 : [ℕ]𝑛 → 𝑘 and
𝑔 : [ℕ]𝑚 → ℓ , apply Ramsey’s theo-
rem to obtain an infinite 𝑓 -homogeneous
set 𝑋 ⊆ ℕ. Then, within 𝑋, apply again
Ramsey’s theorem to obtain an infinite 𝑔-
homogeneous subset 𝑌 ⊆ 𝑋. The set 𝑌
is simultaneously 𝑔-homogeneous and 𝑓 -
homogeneous.

“There is some finite 𝑓 -compatible and 𝑇-transitive subset 𝜌 ⊆ 𝑋

such that 𝜑(𝜎 ∪ 𝜌) holds.”

is Σ0
1(𝑋 ⊕ ∅′), since the coloring 𝑓 is ∅′-computable. In order to decrease the

complexity of the statement, we use a standard trick of over-approximation
by considering all the candidate limit colorings over an effectively compact
space.

Definition 8.2.6. Given a condition (𝜎, 𝑋) and aΣ0
1-formula 𝜑(𝐺), let (𝜎, 𝑋)

?⊢𝜑(𝐺) iff for every coloring 𝑔 : ℕ → 2, there is some finite 𝑇-transitive
and 𝑔-compatible set 𝜌 ⊆ 𝑋 such that 𝜑(𝜎 ∪ 𝜌) holds. ♦

At first sight, this yields a statement of much stronger complexity, as it contains
a universal second-order quantification. However, thanks to compactness, the
statement is actually Σ0

1(𝑋).

Exercise 8.2.7. Let (𝜎, 𝑋) be a condition and 𝜑(𝐺) be a Σ0
1-formula. Show

that (𝜎, 𝑋) ?⊢𝜑(𝐺) iff there is some ℓ ∈ ℕ such that for every coloring 𝑔 :
ℓ → 2, there is some finite 𝑇-transitive and 𝑔-compatible8

8: One can actually replace “𝑔-compatible”
with “𝑔-homogeneous”, and obtain a valid
forcing question. Although less familiar, the
notion of 𝑔-compatibilty is more natural in
this context, as it contains the least neces-
sary hypothesis to preserve property (b).

set 𝜌 ⊆ 𝑋↾ℓ such
that 𝜑(𝜎 ∪ 𝜌) holds. ★

Because this forcing question is an over-approximation of the naive forcing
question, if it holds, then there is an extension forcing the Σ0

1-formula. On the
other hand, if the forcing question does not hold, the witness of failure might be
a function 𝑔 : ℕ → 2 which is not related to the true limit function 𝑓 : ℕ → 2.
We shall then exploit the Ramseyan nature of the statements9 by working with
sets which are simultaneously 𝑓 and 𝑔-compatible. With a little bit more work,
one can actually show that this forcing question works even for non-stable
tournaments, by stabilizing the set 𝜌 a posteriori.

Lemma 8.2.8. Let 𝑝 = (𝜎, 𝑋) be a condition and 𝜑(𝐺) be a Σ0
1-formula.

1. If 𝑝 ?⊢𝜑(𝐺), then there is an extension (𝜏, 𝑌) ≤ 𝑝 forcing 𝜑(𝐺).
2. If 𝑝 ?⊬𝜑(𝐺), then there is an extension (𝜏, 𝑌) ≤ 𝑝 forcing ¬𝜑(𝐺).

Moreover, every set 𝑃 of PA degree over 𝑋 computes such a set 𝑌. ★

Proof. Suppose first 𝑝 ?⊢𝜑(𝐺). Then, by Exercise 8.2.7, there is some thresh-
old ℓ ∈ ℕ such that for every coloring 𝑔 : ℓ → 2, there is finite 𝑇-transitive
and 𝑔-compatible set 𝜌 ⊆ 𝑋↾ℓ such that 𝜑(𝜎 ∪ 𝜌) holds. Let 𝑌 ⊆ 𝑋 be
an 𝑋-computable subset stabilizing [0, ℓ). This induces an 𝑋-computable
coloring 𝑔 : ℓ → 2 defined by 𝑔(𝑥) = 1 iff (∀𝑦 ∈ 𝑌)𝑇(𝑥, 𝑦). Let 𝜌 ⊆ 𝑋↾ℓ be
a finite 𝑇-transitive and 𝑔-compatible set such that 𝜑(𝜎 ∪ 𝜌) holds. We claim
that (𝜎 ∪ 𝜌, 𝑌) is the desired extension. First, it is a Mathias condition, and by
choice of 𝑌, it satisfies property (a). By Exercise 8.2.5, it satisfies property (b).
By choice of 𝜌, it forces 𝜑(𝐺).

Suppose now 𝑝 ?⊬𝜑(𝐺). Let Cbe the Π0
1(𝑋) class of all 𝑔 : ℕ → 2 such that

for every finite 𝑇-transitive and 𝑔-compatible set 𝜌 ⊆ 𝑋, 𝜑(𝜎 ∪ 𝜌) does not
hold. By assumption, the class C is non-empty. Pick any 𝑔 ∈ Cand let𝑌 ⊆ 𝑋

be an infinite 𝑔-homogeneous subset. As mentioned, every 𝑔-homogeneous
set is 𝑔-compatible, and the pigeonhole principle is computably true, so 𝑌
can be chosen 𝑋 ⊕ 𝑔-computably. The condition (𝜎, 𝑌) is an extension of 𝑝
forcing ¬𝜑(𝐺). Note that any PA degree over 𝑋 computes member of C,
hence computes such a set 𝑌.

128 8 Forcing design

Step 3: Computational property.

As mentioned, given a condition (𝜎, 𝑋), the forcing question for a Σ0
1-formula

is Σ0
1(𝑋). In order to obtain a diagonalization theorem such as Theorem 3.3.4,

one must impose some computational constraint on the reservoir 𝑋. In the
most general case, one will add the following property to the definition of a
condition (𝜎, 𝑋):

(c) 𝑋 ∈ W

where W is a weakness property10

10: Recall from Section 6.1 that a weak-
ness property is a class of sets downward-
closed under the Turing reduction. The
reader might be more familiar with the no-
tion of Turing ideal, which is closed under
effective join. However, most natural weak-
ness properties, such as being low, avoiding
a cone, or preserving hyperimmunies, are
not closed under effective join.

whose additional closure properties are
identified by looking at the operations on the reservoir that appear in the use
of the forcing question.

In our case, all the operations on the reservoir are computable transformations
(finite truncation, stabilization of the stem), except in the case where the forcing
question does not hold. One then obtain a Π0

1 class of 2-partitions, and take any
infinite homogeneous set for any of these partitions as the new reservoir. Thus,
the previous lemmas hold for any weakness property Wpreserved11

11: Recall that a problem P preserves a
weakness property W if for every 𝑍 ∈ W

and every 𝑍-computable instance 𝑋, there
is a solution 𝑌 to 𝑋 such that 𝑍 ⊕ 𝑌 ∈ W.

by RT1
2

and WKL.1212: One can actually be even more cau-
tious, and only ask Wto be closed under the
Rasmey-type weak König’s lemma (RWKL).
However, over-optimization is not always de-
sirable, and it sometimes yields unneces-
sary additional complexity.

The pigeonhole principle being computably true, it preserves every
weakness property, so one can simply require W to be preserved by WKL,
that is, for every 𝑋 ∈ W, there is some set 𝑃 ∈ Wof PA degree over 𝑋. In
most cases, the weakness property W is nothing but the property that one
wants the resulting set 𝐺 to satisfy.

Example 8.2.9. Suppose one wants to prove that EM admits cone avoid-
ance. Any non-computable set 𝐶 induces a weakness property W𝐶 = {𝑍 :
𝐶 ≰𝑇 𝑍}. By the cone avoidance basis theorem (Theorem 3.2.6), W𝐶 is
closed under PA degrees, so one can impose 𝑋 ∈ W𝐶 , in other words,
𝐶 ≰𝑇 𝑋.

Exercise 8.2.10 (Wang ; Patey [73]). Recall that a problem P admits strong
cone avoidance1313: The difference between cone avoid-

ance and strong cone avoidance is that
the instance 𝑋 of P is not asked to be 𝑍-
computable in the latter case.

if for every set 𝑍 and every non-𝑍-computable set 𝐶, every
instance 𝑋 of P admits a solution 𝑌 such that 𝐶 is not 𝑍 ⊕ 𝑌-computable. Fix
a non-computable set 𝐶 and an arbitrary tournament 𝑇 ⊆ ℕ2. Consider the
same notion of condition above, that is, pairs (𝜎, 𝑋) satisfying properties (a),
(b) and (c).

1. Use strong cone avoidance of RT1
2 (Theorem 3.4.6) to prove that for

every condition (𝜎, 𝑋) and 𝑥 ∈ 𝑋, there is an infinite set 𝑌 ⊆ 𝑋 such
that (𝜎 ∪ {𝑥}, 𝑌) is a valid extension.

Given a condition (𝜎, 𝑋) and a Σ0
1-formula 𝜑(𝐺), let (𝜎, 𝑋) ?⊢𝜑(𝐺) if for

every tournament 𝑆 ⊆ ℕ2 and every coloring 𝑔 : ℕ → 2, there is some finite
𝑆-transitive and 𝑔-compatible set 𝜌 ⊆ 𝑋 such that 𝜑(𝜎 ∪ 𝜌) holds.

2. Show that the relation (𝜎, 𝑋) ?⊢𝜑(𝐺) is Σ0
1(𝑋).

3. Use strong cone avoidance of RT1
2 to prove that if (𝜎, 𝑋) ?⊢𝜑(𝐺), then

there is an extension forcing 𝜑(𝐺).
4. Use cone avoidance of EM and the cone avoidance basis theorem to

prove that if (𝜎, 𝑋) ?⊬𝜑(𝐺), then there is an extension forcing ¬𝜑(𝐺).
5. Deduce that EM admits strong cone avoidance. ★

8.3 Free set theorem 129

14: Another way to think of the free set the-
orem is that any 𝑛-tuple 𝜎 ∈ [ℕ]𝑛 can op-
tionally “choose” a forbidden element 𝑓 (𝜎),
so that if 𝜎 belongs so the solution, then
𝑓 (𝜎) must be excluded. Setting 𝑓 (𝜎) ∈ 𝜎
is a way to refuse to choose.

8.3 Free set theorem

The free set theorem is a combinatorial statement introduced by Friedman [74]
which provides another good illustration of the forcing design process. Given a
coloring 𝑓 : [ℕ]𝑛 → ℕ, an infinite set 𝐻 ⊆ ℕ is 𝑓 -free if for every 𝜎 ∈ [ℕ]𝑛 ,
if 𝑓 (𝜎) ∈ 𝐻, then 𝑓 (𝜎) ∈ 𝜎. The free set theorem for 𝑛-tuples (FS𝑛) is the
problem whose instances are colorings 𝑓 : [ℕ]𝑛 → ℕ, and whose solutions
are infinite 𝑓 -free sets. This problem might seem artificial at first sight, but it
can be reformulated as a strong version of the thin set theorem.14 An infinite
set 𝐻 ⊆ ℕ is 𝑓 -thin if 𝑓 [𝐻]𝑛 ≠ ℕ, that is, at least one color does not appear
on [𝐻]𝑛 .

Exercise 8.3.1. Let 𝑓 : [ℕ]𝑛 → ℕ be a coloring. Show that an infinite
set 𝐻 ⊆ ℕ is 𝑓 -free iff for every 𝑥 ∈ ℕ, 𝐻 \ {𝑥} is 𝑓 -thin with witness
color 𝑥. ★

Similar to Ramsey’s theorem, the free set theorem induces a hierarchy of
statements based on the size of the colored tuples. However, while Ramsey’s
theorem hierarchy collapses and is equivalent to ACA0 for 𝑛 ≥ 3, Wang [15]
surprisingly proved that the free set theorem admits strong cone avoidance for
any size of tuples. The proof goes by induction over 𝑛.

In this section, we shall design a notion of forcing for computable instances
of FS3 with a Σ0

1-preserving forcing question for Σ0
1-formulas. This provides

a good example of a statement which is not about colorings of pairs, but still
admits a good first-jump control. For this, we follow the same steps as for the
Erdős-Moser theorem. Fix a computable coloring 𝑓 : [ℕ]3 → ℕ, and start
with Mathias forcing.

Step 1: Extendibility. As before, we refine Mathias forcing by asking the
stem to be a finite solution, that is, we work with Mathias conditions (𝜎, 𝑋)
such that 𝜎 is a finite 𝑓 -free set. Of course, there might be conditions (𝜎, 𝑋)
such that the set 𝜎 is 𝑓 -free, but not extendible into an infinite 𝑓 -free set. For
instance, it might be that for almost every {𝑥, 𝑦, 𝑧} ∈ [𝑋]3, 𝑓 (𝑥, 𝑦, 𝑧) ∈ 𝜎.
There might also also be some 𝑥 ∈ 𝜎 such that for almost every {𝑦, 𝑧} ∈ [𝑋]2,
𝑓 (𝑥, 𝑦, 𝑧) ∈ 𝜎 \ {𝑥}. These are only a few examples of the possible issues.

In order to identify the stronger structural property ensuring extendibility, we
apply the same criterion as before: Given a condition (𝜎, 𝑋), let 𝑌 ⊆ 𝑋 be
an infinite 𝑓 -free set. Suppose that 𝜎 ∪ 𝑌 is not 𝑓 -free. There is therefore
some {𝑥, 𝑦, 𝑧} ∈ [𝜎 ∪ 𝑌]3 such that 𝑓 (𝑥, 𝑦, 𝑧) ∈ (𝜎 ∪ 𝑌) \ {𝑥, 𝑦, 𝑧}. Say
𝑥 < 𝑦 < 𝑧. Because 𝜎 and 𝑌 are both 𝑓 -free, one cannot have 𝑥, 𝑦, 𝑧, and
𝑓 (𝑥, 𝑦, 𝑧) in 𝜎 or 𝑌. There are multiple possibilities remaining:

▶ Case 1: 𝑥, 𝑦, 𝑧 ∈ 𝜎; 𝑓 (𝑥, 𝑦, 𝑧) ∈ 𝑌. This case can be simply avoided
by removing the range of 𝑓 ↾[𝜎]3 from the reservoir. This range is finite,
so this can be obtained for free by finite truncation of the reservoir.

▶ Case 2: 𝑥, 𝑦 ∈ 𝜎; 𝑧, 𝑓 (𝑥, 𝑦, 𝑧) ∈ 𝑌. Fixing {𝑥, 𝑦} ∈ 𝜎 induces a color-
ing 𝑓𝑥,𝑦 : ℕ → ℕ defined by 𝑓𝑥,𝑦(𝑧) = 𝑓 (𝑥, 𝑦, 𝑧). This coloring can be
seen as an instance of FS1. Given a condition (𝜎, 𝑋), one can use the
induction hypothesis, and apply FS1 on 𝑓𝑥,𝑦 for every {𝑥, 𝑦} ∈ [𝜎]2 to
obtain an infinite sub-reservoir 𝑌 ⊆ 𝑋 which is 𝑓𝑥,𝑦-free simultaneously.
Case 2 cannot happen with (𝜎, 𝑌). It follows that Case 2 can be avoided
without putting constraints to the stem 𝜎.

130 8 Forcing design

16: This problem admits many names
in the reverse mathematics literature. In
Wang [15], it is called the achromatic Ram-
sey theorem and is written ART𝑛<∞,ℓ . In Do-
rais et al. [75] or Patey [14], it is considered
as a strong version of the thin set theorem,
and is written TS𝑛

ℓ+1. In Patey [76], it is seen
as a generalization of Ramsey’s theorem,
and is written RT𝑛<∞,ℓ .

▶ Case 3: 𝑥, 𝑦, 𝑓 (𝑥, 𝑦, 𝑧) ∈ 𝜎; 𝑧 ∈ 𝑌. This cannot be avoided for free
by restricting the reservoir. One must therefore explicitely forbid this
behavior.

▶ Case 4: 𝑥 ∈ 𝜎; 𝑦, 𝑧, 𝑓 (𝑥, 𝑦, 𝑧) ∈ 𝑌. This case is similar to Case 2.
Fixing some 𝑥 ∈ 𝜎 induces a coloring 𝑓𝑥 : [ℕ]2 → ℕ defined by
𝑓𝑥(𝑦, 𝑧) = 𝑓 (𝑥, 𝑦, 𝑧). One can again use the induction hypothesis, and
apply FS2 finitely many times to avoid this case.

▶ Case 5: 𝑥, 𝑓 (𝑥, 𝑦, 𝑧) ∈ 𝜎; 𝑦, 𝑧 ∈ 𝑌. This case is similar to Case 3. In
particular, it cannot be avoided simply by restricting the reservoir, so this
must be explicitly ruled out.

▶ Case 6: 𝑓 (𝑥, 𝑦, 𝑧) ∈ 𝜎; 𝑥, 𝑦, 𝑧 ∈ 𝑌. This case is once again similar to
Case 3 and Case 5.

These 6 cases can therefore be divided into two categories: the optional
structural properties, which can be ensured by restricting the reservoir, with
no constraint on the stem, and the required structural properties, which are
really necessary to ensure extendibility. A condition is a Mathias pair (𝜎, 𝑋)
satisfying the following two properties:

(a) ∀{𝑥, 𝑦, 𝑧} ∈ [𝜎 ∪ 𝑋]3 with 𝑥 ∈ 𝜎, 𝑓 (𝑥, 𝑦, 𝑧) ∉ 𝑋 \ {𝑦, 𝑧}
(b) ∀{𝑥, 𝑦, 𝑧} ∈ [𝜎 ∪ 𝑋]3, 𝑓 (𝑥, 𝑦, 𝑧) ∉ 𝜎 \ {𝑥, 𝑦, 𝑧}.15

15: As for the Erdős-Moser theorem, prop-
erty (a) could be technically removed from
the definition of a condition, and one would
still obtain a structural invariant. However,
property (a) is very convenient to preserve
property (b), and can be added for free by re-
stricting further the reservoir, so we include
it in the definition.

Property (a) encompasses 𝑓 -freeness of 𝜎 together with the optional properties,
namely, Case 1, Case 2 and Case 4, while property (b) covers Case 3, Case
5 and Case 6. We must now show that these structural properties provide a
good invariant by proving an extendibility lemma. More precisely, the difficulty
is to add new elements to the stem while preserving property (b). Given a
condition (𝜎, 𝑋) and 𝑥 ∈ 𝑋, property (b) on (𝜎 ∪ {𝑥}, 𝑋 \ [0, 𝑥]) is almost
inherited from properties (a) and (b) on (𝜎, 𝑋), except one case: there might
be some {𝑎, 𝑏, 𝑐} ∈ [𝑋 \ [0, 𝑥]]3 such that 𝑓 (𝑎, 𝑏, 𝑐) = 𝑥. This corresponds
to Case 6, which must receive some special attention.

Given 𝑥0 ∈ 𝑋, by Ramsey’s theorem for triples, there is an infinite sub-
set𝑌 ⊆ 𝑋 such that either (∀{𝑎, 𝑏, 𝑐} ∈ [𝑌]3) 𝑓 (𝑎, 𝑏, 𝑐) ≠ 𝑥0 or (∀{𝑎, 𝑏, 𝑐} ∈
[𝑌]3) 𝑓 (𝑎, 𝑏, 𝑐) = 𝑥0. In the former case, (𝜎 ∪ {𝑥0}, 𝑌) satisfies property (b),
while in the latter case, for any 𝑥1 ∈ 𝑋 with 𝑥0 ≠ 𝑥1, (𝜎 ∪ {𝑥1}, 𝑌) satisfies
property (b). Thus, combinatorially, it suffices to pick two elements in 𝑋, and
at least one of them can be added to the stem while preserving the structural
invariant. From a computational viewpoint however, Ramsey’s theorem for
triples is very strong, and is even applied of an 𝑓 -computable coloring, which
is of arbitrary complexity. Thankfully, one does not need the full power of Ram-
sey’s theorem, and can weaken the statement by considering more than two
elements in the reservoir.

Given 𝑛, ℓ ≥ 1, let RT𝑛<∞,ℓ be the problem16 whose instances are colorings
𝑓 : [ℕ]𝑛 → 𝑘 for some 𝑘 ∈ ℕ, and whose solutions are infinite sets 𝐻 ⊆ ℕ

such that card 𝑓 [𝐻]𝑛 ≤ ℓ . In particular, RT𝑛<∞,1 is nothing but Ramsey’s
theorem for 𝑛-tuples. Wang [15] proved that when ℓ is sufficiently large with
respect to 𝑛, then RT𝑛<∞,ℓ looses all its coding power and admits strong cone
avoidance. In our case, fix some sufficiently large bound ℓ𝑛 with respect to 𝑛
so that RT𝑛<∞,ℓ𝑛 preserves our desired computational property.17

17: For 𝑛 = 1, we can take ℓ1 = 1, as
the pigeonhole principle is computably true,
hence preserves any weakness property.

Lemma 8.3.2. Let (𝜎, 𝑋) be a condition, and 𝑥0 , . . . , 𝑥ℓ3 be distinct elements
of 𝑋. There is some 𝑖 ≤ ℓ3 and some infinite subset 𝑌 ⊆ 𝑋 such that
(𝜎 ∪ {𝑥𝑖}, 𝑌) is a valid extension. ★

8.3 Free set theorem 131

Proof. Let 𝑔 : [𝑋 \ {𝑥0 , . . . , 𝑥ℓ3}]3 → {𝑥0 , . . . , 𝑥ℓ3} be defined by

𝑔(𝑎, 𝑏, 𝑐) =
{
𝑓 (𝑎, 𝑏, 𝑐) if 𝑓 (𝑎, 𝑏, 𝑐) ∈ {𝑥0 , . . . , 𝑥ℓ3}
𝑥0 otherwise.

By RT3
<∞,ℓ3 , there is some 𝑖 ≤ ℓ3 and an infinite subset 𝑍 ⊆ 𝑋 such that

𝑥𝑖 ∉ 𝑔[𝑍]3. We claim that (𝜎 ∪ {𝑥𝑖}, 𝑍) satisfies property (b). Indeed, let
{𝑎, 𝑏, 𝑐} ∈ [𝜎 ∪ {𝑥𝑖} ∪ 𝑍]3 be such that 𝑓 (𝑎, 𝑏, 𝑐) ∈ (𝜎 ∪ {𝑥𝑖}) \ {𝑎, 𝑏, 𝑐}.
By property (b) of (𝜎, 𝑋), 𝑓 (𝑎, 𝑏, 𝑐) ∉ 𝜎 \ {𝑎, 𝑏, 𝑐}, hence 𝑓 (𝑎, 𝑏, 𝑐) = 𝑥𝑖
and 𝑥𝑖 ∉ {𝑎, 𝑏, 𝑐}. By property (a) of (𝜎, 𝑋), if 𝑎 ∈ 𝜎, 𝑓 (𝑎, 𝑏, 𝑐) ∉ 𝑋 \ {𝑏, 𝑐},
so 𝑎 ∉ 𝜎, hence 𝑎, 𝑏, 𝑐 ∈ 𝑌 \ {𝑥𝑖}. But then, 𝑔(𝑎, 𝑏, 𝑐) = 𝑓 (𝑎, 𝑏, 𝑐) = 𝑥𝑖 ,
contradicting the choice of 𝑍 and 𝑥𝑖 . Let 𝑌 ⊆ 𝑍 be an infinite subset such
that (𝜎 ∪ {𝑥𝑖}, 𝑌) satisfies property (a). Then (𝜎 ∪ {𝑥𝑖}, 𝑌) is the desired
extension.

Step 2: Block extendibility. We now want to design a good forcing question
for this notion of forcing. For this, we restart with the standard forcing question
for Mathias forcing.

Definition 8.3.3. Given a Mathias condition (𝜎, 𝑋) and a Σ0
1-formula 𝜑(𝐺),

let (𝜎, 𝑋) ?⊢𝜑(𝐺) iff there is some finite set 𝜌 ⊆ 𝑋 such that 𝜑(𝜎 ∪ 𝜌)
holds. ♦

As for the Erdős-Moser theorem, one wants to modify this definition by asking
for a finite 𝑓 -free set 𝜌 ⊆ 𝑋 such that 𝜑(𝜎 ∪ 𝜌) holds. Because of the
combinatorics of the extendibility lemma, one needs to ask for ℓ3 + 1 many
pairwise disjoint 𝑓 -free sets 𝜌0 , . . . , 𝜌ℓ3 ⊆ 𝑋 such that for every 𝑖 ≤ ℓ3,
𝜑(𝜎 ∪ 𝜌𝑖) holds. However, even with this modification, property (b) might not
hold over (𝜎 ∪ 𝜌𝑖 , 𝑌) for any 𝑖 ≤ ℓ3 and any infinite set 𝑌 ⊆ 𝑋.

Example 8.3.4. Let (𝜎, 𝑋) be a condition, and 𝜌 = {𝑥, 𝑦, 𝑧} ⊆ 𝑋 be
a finite set. The set 𝜌 is vacuously 𝑓 -free. Even putting aside Case 6, it
might be that for all but finitely many 𝑤 ∈ 𝑋, 𝑓 (𝑥, 𝑦, 𝑤) = 𝑧, or for all
but finitely many {𝑢, 𝑤} ∈ [𝑋]2, 𝑓 (𝑥, 𝑢, 𝑤) = 𝑦. Then there is no infinite
subset 𝑌 ⊆ 𝑋 such that (𝜎 ∪ 𝜌, 𝑌) satisfies property (b).

One needs to find the appropriate notion of compatibility so that property
(b) is preserved when adding blocks of elements. The issue usually comes
from some hidden non-computable constraint between the elements of the
block 𝜌 and the limit behavior of the coloring. In order to reveal this constraint,
one must first consider the appropriate notion of stability. In the case of the
Erdős-Moser theorem, stability was obtained by multiple applications of the
pigeonhole principle. In the case of the free set theorem, we shall use RT1

<∞,ℓ1 ,
RT2

<∞,ℓ2 and RT3
<∞,ℓ3 .

Definition 8.3.5. An infinite set 𝑋 stabilizes a finite set 𝜎 if there are finite
sets 𝐼 ∈ [𝜎]≤ℓ3 , ⟨𝐼𝑥 ∈ [𝜎]≤ℓ2 : 𝑥 ∈ 𝜎⟩ and ⟨𝐼𝑥,𝑦 ∈ [𝜎]≤ℓ1 : {𝑥, 𝑦} ∈ [𝜎]2⟩
such that18

18: Given a finite or infinite set 𝑍 and
some 𝑘 ∈ ℕ, we write [𝑍]≤𝑘 for the col-
lection of all subsets of 𝑍 of size at most 𝑘.
In particular, [𝑍]≤𝑘 contains the empty set.

(i) 𝑓 [𝑋]3 ∩ 𝜎 ⊆ 𝐼;
(ii) for every 𝑥 ∈ 𝜎, 𝑓𝑥[𝑋]2 ∩ 𝜎 ⊆ 𝐼𝑥 ;
(iii) for every {𝑥, 𝑦} ∈ [𝜎]2, 𝑓𝑥,𝑦[𝑋]1 ∩ 𝜎 ⊆ 𝐼𝑥,𝑦 .19

19: Recall that 𝑓𝑥 : [ℕ]2 → ℕ and 𝑓𝑥,𝑦 :
ℕ → ℕ are the functions obtained by fixing
the parameters 𝑥 and 𝑦.♦

132 8 Forcing design

We leave as an exercise the proof that every finite set can be stabilized by
restricting the reservoir.

Exercise 8.3.6. Let 𝜎 be a finite set and 𝑋 ⊆ ℕ an infinite set. Use RT1
<∞,ℓ1 ,

RT2
<∞,ℓ2 and RT3

<∞,ℓ3 to show that there exists an infinite subset 𝑌 ⊆ 𝑋

stabilizing 𝜎. ★

Suppose 𝑋 stabilizes an initial segment [0, 𝑘] for some 𝑘 ∈ ℕ. Then this
induces a coloring 𝑔 : [𝑘]≤2 → [𝑘]<ℕ defined by 𝑔(∅) = 𝐼, 𝑔({𝑥}) = 𝐼𝑥 and
𝑔({𝑥, 𝑦}) = 𝐼𝑥,𝑦 . Note that for every 𝜈 ∈ [𝑘]≤2, card 𝑔(𝜈) ≤ ℓ3−|𝜈|. A set
𝐻 ⊆ 𝑘 is 𝑔-free if for every 𝜈 ∈ [𝐻]≤3, 𝑔(𝜈) ∩ 𝐻 ⊆ 𝜈.

Exercise 8.3.7. Let (𝜎, 𝑋) be a condition, and 𝑌 ⊆ 𝑋 be an infinite subset
stabilizing some initial segment [0, 𝑘]. Let 𝑔 : [𝑘]≤2 → [𝑘]<ℕ be the corre-
sponding limit function. Show that if 𝜌 ⊆ 𝑋 is 𝑓 -free and 𝑔-free, then (𝜎∪𝜌, 𝑌)
satisfies property (b). ★

The previous exercise motivates the following definition of the forcing ques-
tion.

Definition 8.3.8. Given a condition (𝜎, 𝑋) and aΣ0
1-formula 𝜑(𝐺), let (𝜎, 𝑋)

?⊢𝜑(𝐺) iff there is some 𝑘 ∈ ℕ such that for every coloring 𝑔 : [𝑘]≤2 →
[𝑘]<ℕ such that for every 𝜈 ∈ [𝑘]≤2, card 𝑔(𝜈) ≤ ℓ3−|𝜈|, there is some finite
𝑓 -free and 𝑔-free set 𝜌 ⊆ 𝑋↾𝑘 such that 𝜑(𝜎 ∪ 𝜌) holds. ♦

Note that the previous definition is in explicit Σ0
1 form. In order to handle the

case where the forcing question does not hold, one would like to also state the
same forcing question in the form of a second-order quantification. Let Fbe
the class of all functions 𝑔 : [ℕ]≤2 → [ℕ]<ℕ such that for every 𝜈 ∈ [ℕ]≤2,
card 𝑔(𝜈) ≤ ℓ3−|𝜈|. Contrary to the class of all tournaments, the class F is not
compact. Thankfully, given a function 𝑔 ∈ Fand finite set 𝜌, the predicate
“𝜌 is 𝑔-free” does not require to have a complete information about 𝑔↾[𝜌]≤2,
but only to decide {(𝜈, 𝑧) : 𝜈 ∈ [𝜌]≤2 , 𝑧 ∈ 𝑔(𝜈)}. It follows that one can
represent 𝑔 by the relation 𝑅𝑔 = {(𝜈, 𝑧) : 𝜈 ∈ [ℕ]≤2 , 𝑧 ∈ 𝑔(𝜈)}. Given
such a set 𝑅𝑔 and some 𝜈, 𝑔-freeness is decidable, but one cannot know for
example the cardinality of 𝑔(𝜈) in general. Let R be the class of all relations 𝑅
over [ℕ]≤2 × ℕ such that for every 𝜈 ∈ [ℕ]≤2, card{𝑧 : (𝜈, 𝑧) ∈ 𝑅} ≤ ℓ3−|𝜈|.
The class R forms an effectively compact set, and there is a one-to-one
correspondence between Fand R. Given a relation 𝑅 ∈ R, we write 𝑔𝑅 for
the corresponding function in F.

Exercise 8.3.9. Let (𝜎, 𝑋) be a condition, and 𝜑(𝐺) be a Σ0
1-formula. Show

that (𝜎, 𝑋) ?⊢𝜑(𝐺) iff for every 𝑅 ∈ R, there is some finite 𝑓 -free and 𝑔𝑅-free
set 𝜌 ⊆ 𝑋 such that 𝜑(𝜎 ∪ 𝜌) holds. ★

We are now ready to prove that the forcing question meets its specification.

Lemma 8.3.10. Let 𝑝 = (𝜎, 𝑋) be a condition and 𝜑(𝐺) be a Σ0
1-formula.

1. If 𝑝 ?⊢𝜑(𝐺), then there is an extension (𝜏, 𝑌) ≤ 𝑝 forcing 𝜑(𝐺).
2. If 𝑝 ?⊬𝜑(𝐺), then there is an extension (𝜏, 𝑌) ≤ 𝑝 forcing ¬𝜑(𝐺). ★

Proof. Suppose first 𝑝 ?⊢𝜑(𝐺). Let 𝑘 ∈ ℕ witness the definition of the forcing
question. By Exercise 8.3.6, there is an infinite subset𝑌0 ⊆ 𝑋 stabilizing [0, 𝑘].
Let 𝑔 : [𝑘]≤2 → [𝑘]<ℕ be the corresponding function, and let 𝜌 ⊆ 𝑋↾𝑘 be a

8.3 Free set theorem 133

finite 𝑓 -free and 𝑔-free subset such that 𝜑(𝜎 ∪ 𝜌) holds. By Exercise 8.3.7,
(𝜎 ∪ 𝜌, 𝑌0) satisfies property (b). Let 𝑌 ⊆ 𝑌0 be an infinite subset such that
(𝜎 ∪ 𝜌, 𝑌) satisfies property (a). Then (𝜎 ∪ 𝜌, 𝑌) is a valid extension forcing
𝜑(𝐺).
Suppose now 𝑝 ?⊬𝜑(𝐺). Let C be the Π0

1(𝑋) class of all 𝑅 ∈ R such that
for every finite 𝑓 -free and 𝑔𝑅-free set 𝜌 ⊆ 𝑋, 𝜑(𝜎 ∪ 𝜌) does not hold. By
Exercise 8.3.9, the class C is non-empty. Pick any 𝑔 ∈ C. By finitely many
applications of FS1 and FS2, there is an infinite 𝑔-free subset 𝑌 ⊆ 𝑋. The
condition (𝜎, 𝑌) is an extension of 𝑝 forcing ¬𝜑(𝐺).

Step 3: Computational property. As before, given a condition (𝜎, 𝑋) and
a Σ0

1-formula 𝜑(𝐺), the forcing question (𝜎, 𝑋) ?⊢𝜑(𝐺) is Σ0
1(𝑋). One must

therefore impose some computability-theoretic constraints to the set 𝑋 to
obtain diagonalization theorems. A condition (𝜎, 𝑋) must therefore also satisfy
the following property

(c) 𝑋 ∈ W

where W is a weakness property. Looking at the various lemmas, many
preservation assumptions are used on W: in the extendibility lemma, one
used 𝑋-computable instances of FS1 and FS2 to satisfy property (a), and
RT3

<∞,ℓ3 to satisfy property (b). In the forcing question, one used𝑋-computable
instances of RT1

<∞,ℓ1 , RT2
<∞,ℓ2 and RT3

<∞,ℓ3 for stabilizing initial segments if the
forcing question holds, and 𝑋-computable instances of WKL to pick a coloring
𝑔 : [ℕ]≤2 → [ℕ]<ℕ and 𝑋 ⊕ 𝑔-computable instances of FS1 and FS2 to
thin out the reservoir and obtain an infinite 𝑔-free subset. Thus, overall, we
required W to be preserved by FS1, FS2, RT1

<∞,ℓ1 , RT2
<∞,ℓ2 and RT3

<∞,ℓ3 .

Note that there is some degree of freedom in the choice of ℓ1, ℓ2 and ℓ3. These
integers can be chosen to be arbitrarily large, depending on the property one
wants to preserve.

Example 8.3.11. If one wants to prove cone avoidance, we shall use ℓ1 = 1,
ℓ2 = 1 and ℓ3 = 2, as Wang [15] proved that these statements admit cone
avoidance. If one wants to preserve 𝑘 hyperimmunities simultaneously, we
shall use larger values depending on 𝑘, based on Patey [45].

Exercise 8.3.12 (Wang [15]). Assume that for every 𝑛 ∈ ℕ, there is some ℓ𝑛 ∈
ℕ such that RT𝑛<∞,ℓ𝑛 admits cone avoidance.

1. Design a notion of forcing for FS𝑛 .
2. Prove by induction on 𝑛 that FS𝑛 admits cone avoidance. ★

Exercise 8.3.13 (Wang [15]). A coloring 𝑓 : [ℕ]𝑛 → ℕ is 𝑘-bounded if for
every 𝑐 ∈ ℕ, 𝑓 −1(𝑐) has size at most 𝑘. A set 𝐻 ⊆ ℕ is an 𝑓 -rainbow if 𝑓 is
injective on [𝐻]𝑛 . The rainbow Ramsey theorem for 𝑛-tuples and 𝑘-bounded
functions RRT𝑛

𝑘
is the problem whose instances are 𝑘-bounded colorings

𝑓 : [ℕ]𝑛 → ℕ, and whose solutions are infinite 𝑓 -rainbows.

1. Design a notion of forcing for RRT3
2.

2. Prove that RRT3
2 admits cone avoidance.20

20: Actually, Wang proved that RRT𝑛
𝑘

is
strongly computably reducible to FS𝑛 ,
hence RRT𝑛

𝑘
admits strong cone avoidance

for every 𝑛, 𝑘 ≥ 2.★

134 8 Forcing design

Exercise 8.3.14 (Patey [45]). A coloring 𝑓 : [ℕ]𝑛 → ℕ is left (right) trapped
if for every 𝜈 ∈ [ℕ]𝑛 , 𝑓 (𝜈) < max 𝜈 (𝑓 (𝜈) ≥ max 𝜈). Fix a weakness
property W.

1. Show that if FS𝑛 for left trapped and right trapped functions preserve W,
then so does FS𝑛 .

2. Use Proposition 5.7.1 to show that for every right trapped function 𝑓 :
[ℕ]𝑛 → ℕ, every DNC function21

21: Recall that a function 𝑓 : ℕ →
ℕ is DNC relative to 𝑋 if for every 𝑒,
𝑓 (𝑒) ≠ Φ𝑋𝑒 (𝑒). This notion admits many
computability-theoretic characterizations, in
terms of effective 𝑋-immunity, and escap-
ing bounded 𝑋-c.e. sets. See Sections 5.7
and 6.2.

relative to 𝑓 computes an infinite
𝑓 -free set.

2. Given a set 𝑋, construct a left trapped coloring 𝑓 : ℕ → ℕ such that
every infinite 𝑓 -free set is effectively 𝑋-immune.

3. Deduce that if FS𝑛 for left trapped functions preserves W, then so does
FS𝑛 . ★

Exercise 8.3.15. Given a coloring 𝑓 : [ℕ]𝑛 → [ℕ]<ℕ , a set 𝐻 ⊆ ℕ if 𝑓 -free
if for every 𝜈 ∈ [𝐻]𝑛 , 𝑓 (𝜈) ∩ 𝐻 ⊆ 𝜈. The coloring 𝑓 is ℎ-constrained for a
function ℎ : ℕ → ℕ if for every 𝜈 ∈ [ℕ]𝑛 , card 𝑓 (𝜈) ≤ ℎ(min 𝜈). If ℎ is the
constant function 𝑘, we say that 𝑓 is 𝑘-constrained.

1. Show that there exists an (𝑥 ↦→ 𝑥)-constrained coloring 𝑓 : ℕ → [ℕ]<ℕ
with no infinite 𝑓 -free set.

2. Use FS𝑛 to show that for every 𝑘-constrained coloring 𝑓 : [ℕ]𝑛 →
[ℕ]<ℕ , there is an infinite 𝑓 -free set.

A coloring 𝑓 : [ℕ]𝑛 → [ℕ]<ℕ is progressive if for every 𝜈 ∈ [ℕ]𝑛 , min 𝑓 (𝜈) ≥
min 𝜈.

3. Design a notion of forcing to build infinite 𝑓 -free sets for (𝑥 ↦→ 𝑥)-
constrained progressive colorings 𝑓 : [ℕ]𝑛 → [ℕ]<ℕ . ★

Higher jump control

1: Jockusch and Stephan [13] actually
proved that the sequence of all primitive re-
cursive sets is maximally difficult for COH,
and the degrees of its cohesive sets are ex-
actly those whose jump is PA over ∅′. Brat-
tka, Hendtlass and Kreuzer [77] refined it to
obtain an instance-wise correspondence.

Jump cone avoidance 9
9.1 Context and motivation . . 137
9.2 Use first-jump control . . . 138
9.3 Forcing and density 139
9.4 Weak König’s lemma . . . 141
9.5 Cohesiveness principle . . 143
9.6 Partition regularity 146
9.7 Pigeonhole principle . . . 153

Prerequisites: Chapters 2 to 4

From many perspectives, second-jump control is the same as first-jump control,
mutatis mutandis: it consists of constructing a set 𝐺 while controlling its Σ0

2(𝐺)
properties. To achieve this, one defines again a forcing question for the class
of Σ0

2 formulas, with the same abstract theorems. In practice, however, there
is a strong technical gap from first-jump control to second-jump control. This is
merely due to the fact that, unlike Turing functionals, jump functionals are not
continuous functions in Cantor space. The forcing question therefore becomes
a density statement, which often does not yield the appropriate definitional
complexity. The main task of the design of a good second-jump control consists
in finding the most effective notion of forcing to build solutions to a given
problem. As a byproduct, this often yields insights about the structural nature
of the problem.

9.1 Context and motivation

Second-jump control received much less attention than first-jump control in
computability theory, and reverse mathematics in particular. One of the reasons
is that the vast majority of statements studied in reverse mathematics could
be separated using first-jump properties. Moreover, as we shall see in the next
section, many second-jump properties can be obtained from effectivization
of first-jump properties. Besides reverse mathematics, second-jump control
can be used in computability theory to construct sets of low2 degree. Such
sets occur naturally in computability theory, but often using the following char-
acterization, rather than directly using a second-jump control: a set 𝑋 is of
low2 degree iff ∅′ is of high degree over 𝑋. There are however a few examples
where second-jump control naturally occurs in reverse mathematics.

In the study of Ramsey’s theorem and more generally combinatorial hierarchies,
the cohesiveness principle quickly became an unavoidable tool, as a bridge
between computable instances for (𝑛 + 1)-tuples and arbitrary instances of 𝑛-
tuples. For example, COH reduces computable instances of Ramsey’s theorem
for pairs to arbitrary instances of the pigeonhole principle (see Theorem 3.4.1).
Recall from Section 3.4 that an infinite set 𝐶 ⊆ ℕ is cohesive for a sequence
of sets ®𝑅 = 𝑅0 , 𝑅1 , . . . if for every 𝑛 ∈ ℕ, 𝐶 ⊆∗ 𝑅𝑛 or 𝐶 ⊆∗ 𝑅𝑛 , where
⊆∗ means “included up to finite changes”. The cohesiveness principle is the
problem COH whose instances are infinite sequences of sets, and whose
solutions are infinite cohesive sets. Jockusch and Stephan [13] 1 proved that
COH is equivalent to the problem “For every Δ0

2 infinite binary tree 𝑇 ⊆ 2<ℕ ,
there is a Δ0

2-approximation of an infinite path.” The cohesiveness principle is
therefore a statement about jump computation and separating principles from
COH over reverse mathematics requires to use second-jump control [78].

Ramsey’s theorem for 𝑛-tuples induces a hierarchy of statements based on 𝑛.
From a reverse mathematical perspective, this hierarchy is known to collapse
at level 3 and RT𝑛2 is equivalent to ACA0 for every 𝑛 ≥ 3. [5, 16]. On the
other hand, some consequences of Ramsey’s theorem, such as the free set
(FS𝑛) [79] and the rainbow Ramsey (RRT𝑛2) [80] theorems are not known to

138 9 Jump cone avoidance

2: Recall that a problem P admits a weakly
low basis if for every set 𝑍 every PA de-
gree 𝑃 over 𝑍′, every 𝑍-computable in-
stance 𝑋 of P admits a solution 𝑌 such that
(𝑌⊕𝑍)′ ≤𝑇 𝑃. For example, Ramsey’s the-
orem for pairs admits a weakly low basis.

collapse [15]. The most promising approach to prove the strictness of these
hierarchies is using iterated jump control [81].

In this section, we shall focus on the unability, for a given problem, to code a
fixed set in the jump of its solutions. This is the notion of jump cone avoidance.
This is one of the simplest applications of second-jump control, and already
illustrates the core problematics of the techniques.

Definition 9.1.1. A problem P admits jump cone avoidance if for every set 𝑍
and every non-Δ0

2(𝑍) set 𝐶, every 𝑍-computable instance 𝑋 of P admits a
solution 𝑌 such that 𝐶 is not Δ0

2(𝑍 ⊕ 𝑌). ♦

Here again, one can drop the 𝑍-computability restriction of the P-instance, to
yield strong jump cone avoidance. By letting 𝑍 = ∅ and 𝐶 = ∅′′, if a problem P
admits jump cone avoidance, then even computable instance admits a solution
of non-high degree.

9.2 Use first-jump control

Second-jump control aims at proving theorems about the jump of solutions
to mathematical problems. However, an effectivization of first-jump control is
sometimes sufficient to obtain the same results. Indeed, if a problem admits a
low basis, or a weakly low basis2, it admits jump cone avoidance, a low2 basis,
and many other properties.

Proposition 9.2.1. If a problem P admits a weakly low basis, then it admits
jump cone avoidance. ★

Proof. Fix a set 𝑍, a non-Δ0
2(𝑍) set 𝐶 and a 𝑍-computable instance 𝑋 of P.

By the cone avoidance basis theorem relativized to 𝑍′ (see Theorem 3.2.6),
there is a set 𝑄 of PA degree over 𝑍′ such that 𝐶 ≰𝑇 𝑄. Since P admits
a weakly low basis, then there is a solution 𝑌 such that (𝑌 ⊕ 𝑍)′ ≤𝑇 𝑄. In
particular, 𝐶 is not Δ0

2(𝑍 ⊕ 𝑌).

The strong technical gap between first-jump and second-jump control gives
a strong incentive to use first-jump control to prove second-jump properties
when possible. This should be the first consideration is the decisional process
of the choice of jump-control techniques.

Exercise 9.2.2. A problem P admits preservation of 1 jump hyperimmunity if
for every set 𝑍 and every 𝑍′-hyperimmune function 𝑓 , every 𝑍-computable
instance 𝑋 of P admits a solution𝑌 such that 𝑓 is (𝑌⊕𝑍)′-hyperimmune. Use
the computably dominated basis theorem to prove that if P admits a weakly
low basis, then it admits preservation of 1 jump hyperimmunity. ★

Exercise 9.2.3. A problem P admits jump DNC avoidance if for every set 𝑍
and every set𝐷 such that𝑍′ is not of DNC degree over𝐷, every𝑍-computable
instance 𝑋 of P admits a solution 𝑌 such that (𝑌 ⊕ 𝑍)′ is not of DNC degree
over 𝐷.

1. Show that if P admits a low basis, then it admits jump DNC avoidance.
2. Give an example of a problem which admits a weakly low basis, but not

jump DNC avoidance. ★

9.3 Forcing and density 139

4: Here, we distinguish the length |𝜎| of a
string 𝜎, and the cardinality card 𝜎 which
is the cardinality of the finite set {𝑥 < |𝜎| :
𝜎(𝑥) = 1}.

9.3 Forcing and density

First-jump control using forcing constructions can be really thought of as a
straightforward generalization of the finite extension method. On the other hand,
the full power of the forcing framework is unleashed when deciding properties
at higher levels on the arithmetic hierarchy, and it is already witnessed with
Π0

2 properties. Consider Cohen forcing for the sake of simplicity, that is, the
set of finite binary strings 2<ℕ partially ordered by the prefix relation ⪯. 3

3: Traditionally, the order relation is re-
versed in forcing, that is, a condition 𝑞 ex-
tends 𝑝 if 𝑞 ≤ 𝑝. This order is justified by
the fact that the condition 𝑞 seen as an ap-
proximation the constructed set 𝐺 is more
precise than 𝑝, hence the class [𝑞] of can-
didate sets satisfying the approximation 𝑞
is a subclass of [𝑝].

In the case of Cohen forcing, the relation
“𝜎 is a prefix of 𝜏” is denoted 𝜎 ⪯ 𝜏, which
might cause some confusion with the usual
forcing notation. In particular, an infinite de-
scending sequence of Cohen conditions is
an infinite ascending sequence of strings
𝜎0 ⪯ 𝜎1 ⪯ . . .

The
interpretation of a Cohen condition 𝜎 is the class [𝜎] = {𝑋 ∈ 2ℕ : 𝜎 ≺ 𝑋},
that is, the class of all infinite binary sequences starting with 𝜎.

Intuitively, a condition 𝑝 forces a property 𝜑(𝐺) if 𝑝, seen as an approximation
of the constructed set 𝐺, already contains the information that 𝜑(𝐺) will hold.
One would be therefore tempted to use the following definition:

Definition 9.3.1. A condition 𝑝 strongly forces a property 𝜑(𝐺) if 𝜑(𝐺)
holds for every 𝐺 ∈ [𝑝]. ♦

In the case of Cohen forcing, 𝜎 strongly forces 𝜑(𝐺) if 𝜑(𝐺) holds for every
infinite binary sequence starting with 𝜎. The strong forcing relation ensures
that whatever the remainder of the construction, even if the construction is
very degenerate, then the property will hold. For example, if 𝜎 strongly forces
𝜑(𝐺), then 𝜑(𝐺) will hold even for𝐺 = 𝜎00000 · · · or𝐺 = 𝜎11111 · · · , which
can both be considered as very degenerate constructions since at any stage,
one could decide to include any arbitrary finite binary sequence. This strong
forcing relation is suitable for Σ0

1 and Π0
1 properties, and therefore sufficient

for first-jump control.

Lemma 9.3.2. For every Σ0
1 formula 𝜑(𝐺), the set of all Cohen conditions

strongly forcing either 𝜑(𝐺) or ¬𝜑(𝐺) is dense. ★

Proof. Say 𝜑(𝐺) ≡ (∃𝑥)𝜓(𝐺↾𝑥) for some Δ0
0-formula 𝜓. Let 𝜎 be a Co-

hen condition. If there is some 𝜏 ⪰ 𝜎 and some 𝑥 < |𝜏| such that 𝜓(𝜏↾𝑥)
holds, then for every 𝐺 ∈ [𝜏], 𝜓(𝐺↾𝑥) holds, hence 𝜏 strongly forces 𝜑(𝐺).
Otherwise, for every 𝜏 ⪰ 𝜎 and every 𝑥 < |𝜏|, ¬𝜓(𝜏↾𝑥) holds, hence for
every 𝐺 ∈ [𝜎] and every 𝑥, ¬𝜓(𝐺↾𝑥) holds, so 𝜎 strongly forces ¬𝜑(𝐺).

The previous lemma can be thought of as stating the completeness of the
strong forcing relation for Σ0

1 and Π0
1 formulas in Cohen forcing. In particular, it

follows that every such property about the constructed set can be decided at a
finite stage of the construction. We loose completeness of the strong forcing
relation when dealing with Σ0

2 and Π0
2 formulas. Consider for example the Π0

2
formula 𝜑(𝐺) ≡ “𝐺 is infinite”, which can be written as ∀𝑥∃𝑦(𝑦 > 𝑥 ∧ 𝑦 ∈ 𝐺).
Then no Cohen condition 𝜎 strongly forces either 𝜑(𝐺) or ¬𝜑(𝐺) since [𝜎]
contains the finite set 𝐺 = 𝜎00000 · · · and the infinite set 𝐺 = 𝜎11111 · · · .
On the other hand, there is an asymmetry between the two cases, as there
are many ways to construct an infinite set, while any construction of a finite set
must be degenerate. For every condition 𝜎, there is an extension 𝜏 ⪰ 𝜎 such
that card 𝜏 > card 𝜎4, hence every sufficiently generic filter yields an infinite
set.

Let us now consider an arbitrary Σ0
2 formula 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥), where 𝜓 is a

Π0
1 formula. Given a Cohen condition 𝜎, either there exists an extension 𝜏 ⪰ 𝜎

strongly forcing 𝜓(𝐺, 𝑥) for some 𝑥, in which case 𝜏 forces 𝜑(𝐺), or for

140 9 Jump cone avoidance

7: By Post’s theorem, the property
Φ𝐺

′
𝑒 (𝑥)↓= 𝑣 is Σ0

2, although the translation
is not straightforward. It can be written as

∃𝜌∃𝑡[Φ𝜌
𝑒 (𝑥)↓= 𝑣 ∧ ∀𝑠 𝜌 ⪯ 𝐺′

𝑡+𝑠]

where {𝐺′
𝑠}𝑠∈ℕ is a fixed 𝐺-c.e. enumera-

tion of 𝐺′.

every 𝑥 and every extension 𝜏 ⪰ 𝜎, 𝜏 does not strongly force 𝜓(𝐺, 𝑥). In
the latter case, by Lemma 9.3.2, for every 𝑥 and every 𝜏 ⪰ 𝜎, there is an
extension 𝜌 strongly forcing ¬𝜓(𝐺, 𝑥). In other words, for every 𝑥, the set
of conditions strongly forcing ¬𝜓(𝐺, 𝑥) is dense below 𝜎. Then, if F is a
sufficiently generic filter containing 𝜎, it will contain for every 𝑥 a condition
strongly forcing ¬𝜓(𝐺, 𝑥), hence (∀𝑥)¬𝜓(𝐺F, 𝑥) will hold. This motivates the
following definition of the forcing relation.

Definition 9.3.3. A condition 𝑝 forces a property 𝜑(𝐺) if 𝜑(𝐺F) holds for
every sufficiently generic filter Fcontaining 𝑝. ♦

With this definition, every Cohen condition forces 𝐺 to be infinite. For any rea-
sonable notion of forcing, one can prove that for every arithmetic formula 𝜑(𝐺),
the set of conditions forcing either 𝜑(𝐺) or ¬𝜑(𝐺) is dense.

The previous explanation induced a forcing question for Σ0
2 formulas in Cohen

forcing.

Definition 9.3.4. Let 𝜎 be a Cohen condition, and 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥) be a
Σ0

2 formula. Define 𝜎 ?⊢𝜑(𝐺) to hold if there exists some 𝑥 ∈ ℕ and some
𝜏 ⪰ 𝜎 such that 𝜏 strongly forces 𝜓(𝐺, 𝑥), that is, for every 𝜌 ⪰ 𝜏, 𝜓(𝜌, 𝑥)
holds.5

5: Recall that Cohen forcing admits a Σ0
1-

preserving forcing question for Σ0
1 formulas

defined as 𝜎 ?⊢𝜑(𝐺) if there is some 𝜏 ⪰ 𝜎
such that 𝜑(𝜏) holds. It induces a forcing
question for Π0

1 formulas by taking its nega-
tion. In the following of this chapter, it might
be better to think of the forcing question
for a Σ0

2 formula 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥) as
𝜎 ?⊢𝜑(𝐺) if there is some 𝑥 ∈ ℕ and
some 𝜏 ⪰ 𝜎 such that 𝜏 ?⊢𝜓(𝐺, 𝑥).

6

6: Note that with this forcing question, ei-
ther there exists an extension strongly forc-
ing 𝜑(𝐺), or an extension forcing ¬𝜑(𝐺).
In general, the forcing relation for Σ0

2 formu-
las can be chosen to be the strong version,
while the general definition is needed for Π0

2
formulas.

♦

A simple analysis on the definition of the forcing question shows that it is Σ0
2-

preserving. The existence of a Σ0
2-preserving forcing question for Σ0

2 formulas
yields jump cone avoidance, with the same proof of Theorem 3.3.4, mutatis
mutandis

Theorem 9.3.5
Let (ℙ,≤) be a notion of forcing with a Σ0

2-preserving forcing question. For
every non-Δ0

2 set 𝐶 and every sufficiently generic filter F, 𝐶 is not Δ0
2(𝐺F).

Proof. It suffices to prove the following lemma:

Lemma 9.3.6. For every condition 𝑝 ∈ ℙ and every Turing index 𝑒 ∈ ℕ, there
is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺′

𝑒 ≠ 𝐶. ★

Proof. Consider the following set7

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : 𝑝 ?⊢Φ𝐺′
𝑒 (𝑥)↓= 𝑣}

Since the forcing question is Σ0
2-preserving, the set 𝑈 is Σ0

2. There are three
cases:

▶ Case 1: (𝑥, 1−𝐶(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ. By Property (1) of the forcing
question, there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺′

𝑒 (𝑥)↓= 1 − 𝐶(𝑥).
▶ Case 2: (𝑥, 𝐶(𝑥)) ∉ 𝑈 for some 𝑥 ∈ ℕ. By Property (2) of the forcing

question, there is an extension 𝑞 ≤ 𝑝 forcing Φ𝐺′
𝑒 (𝑥)↑ or Φ𝐺′

𝑒 (𝑥)↓≠
𝐶(𝑥).

▶ Case 3: None of Case 1 and Case 2 holds. Then 𝑈 is a Σ0
2 graph of

the characteristic function of 𝐶, hence 𝐶 is Δ0
2. This contradicts our

hypothesis.

We are now ready to prove Theorem 9.3.5. Given 𝑒 ∈ ℕ, let D𝑒 be the set of
all conditions 𝑞 ∈ ℙ forcing Φ𝐺′

𝑒 ≠ 𝐶. It follows from Lemma 9.3.6 that every
D𝑒 is dense, hence every sufficiently generic filter F is {D𝑒 : 𝑒 ∈ ℕ}-generic,
so 𝐶 ≰𝑇 𝐺′

F
. This completes the proof of Theorem 9.3.5.

9.4 Weak König’s lemma 141

In particular, since Cohen forcing admits a Σ0
2-preserving forcing question for

Σ0
2 formulas, we obtain our first jump cone avoidance theorem using a direct

second-jump control.

Theorem 9.3.7
Let 𝐶 be a non-Δ0

2 set. For every sufficiently Cohen generic filter F, 𝐶 is
not Δ0

2(𝐺F).

Exercise 9.3.8. Consider Cohen forcing. Recall from Section 3.6 that a forcing
question is Σ0

𝑛-compact if for every 𝑝 ∈ ℙ and every Σ0
𝑛 formula 𝜑(𝐺, 𝑥), if

𝑝 ?⊢ ∃𝑥𝜑(𝐺, 𝑥) holds, then there is a finite set 𝐹 ⊆ ℕ such that 𝑝 ?⊢ ∃𝑥 ∈
𝐹 𝜑(𝐺, 𝑥).

1. Show that the forcing question for Σ0
2 formulas is Σ0

2-compact
2. Adapt Theorem 3.6.4 to prove that for every ∅′-hyperimmune function 𝑓 :

ℕ → ℕ and every sufficiently Cohen generic filter F, the function 𝑓 is
𝐺′

F
-hyperimmune. ★

9.4 Weak König’s lemma

As explained in the previous section, the forcing relation for a Π0
2 formula

∀𝑥𝜓(𝐺, 𝑥) is a density statement for a countable family ofΣ0
1 formulas {𝜓(𝐺, 𝑥) :

𝑥 ∈ ℕ}. Density statements require to quantify over the partial order, which is
not an issue when dealing with Cohen forcing, but can be very complicated if
the partial order is not computable as it is often the case. One will then need
to define a custom forcing question with the desired properties.

Our first non-trivial example concerns weak König’s lemma, for which we prove
it admits simultaneously cone and jump cone avoidance.8

8: By the cone avoidance basis theorem
(Theorem 3.2.6), given a non-computable
set 𝐶, every non-empty Π0

1 class admits
a member 𝐺 such that 𝐶 ≰𝑇 𝐺. By the
low basis theorem (Theorem 4.4.6), given
a non-Δ0

2 set 𝐷, every non-empty Π0
1 class

admits a member 𝐺 of low degree, in which
case 𝐷 is not Δ0

2(𝐺). One cannot however
abstractly deduce from these theorems that
WKL admits simultaneously cone and jump
cone avoidance.

Lawton (see [47]) proved that one can ac-
tually combine the low and the cone avoid-
ance basis theorem, by showing that if 𝐶 is
Δ0

2 and non-computable, then every non-
empty Π0

1 class admits a member 𝐺 of
low degree such that 𝐶 ≰𝑇 𝐺. The case
where 𝐶 is non-Δ0

2 follows directly from the
low basis theorem. Thus, as stated, Theo-
rem 9.4.1 follows from Lawton’s theorem,
but its proof generalizes to countable cones
avoidance, while Lawton’s proof does not.

Theorem 9.4.1 (Wang [82])
Let 𝐶 be a non-computable set and𝐷 be a non-Δ0

2 set. For every non-empty
Π0

1 class P ⊆ 2ℕ , there exists a member 𝐺 ∈ P such that 𝐶 ≰𝑇 𝐺 and
𝐷 ≰𝑇 𝐺′.

Proof. Recall that Jockusch-Soare forcing is the notion of forcing whose
conditions are infinite computable binary trees 𝑇 ⊆ 2<ℕ , partially ordered by
the subset relation. In this proof, we shall actually restrict the partial order
to infinite primitive recursive binary trees. Indeed, as mentioned before, the
complexity of the partial order is relevant in second-jump control. The index
set of all total computable sets is Π0

2-complete, while all primitive recursive
sets can be computably listed. The restriction to primitive recursive trees is
without loss of generality, as shows the following lemma:

Lemma 9.4.2. Let 𝑇 ⊆ 2<ℕ be an infinite co-c.e. tree. There is a primitive
recursive tree 𝑆 ⊇ 𝑇 such that [𝑆] = [𝑇]. ★

Proof. Say 𝑇 = {𝜎 ∈ 2<ℕ : Φ𝑒(𝜎)↑} for some partial computable func-
tion Φ𝑒 . Let 𝑆 = {𝜎 ∈ 2<ℕ : ∀𝑠 < |𝜎| Φ𝑒(𝜎↾𝑠)[𝑠]↑}. Note that the predi-
cate Φ𝑒(𝑥)[𝑠]↑ is primitive recursive, and primitive recursion is closed under
bounded quantification. We first show that 𝑆 ⊇ 𝑇. If 𝜎 ∈ 𝑇, then 𝑇 being a
tree, for every 𝑠 < |𝜎|, 𝜎↾𝑠 ∈ 𝑇, so by definition of 𝑇, Φ𝑒(𝜎↾𝑠)[𝑠]↑, hence
𝜎 ∈ 𝑆. Thus 𝑆 ⊇ 𝑇, and in particular [𝑆] ⊇ [𝑇]. We now prove that [𝑆] ⊆ [𝑇].

142 9 Jump cone avoidance

Let 𝑃 ∈ [𝑆] and 𝜎 ≺ 𝑃. Suppose for the contradiction that Φ𝑒(𝜎)↓. Then,
letting 𝑡 > |𝜎| be such that Φ𝑒(𝜎)[𝑡]↓, 𝑃↾𝑡 ∉ 𝑆, contradicting 𝑃 ∈ [𝑆]. It
follows that Φ𝑒(𝜎)↑, and this for every 𝜎 ≺ 𝑃, so 𝑃 ∈ [𝑇].

In particular, there exists a primitive recursive tree 𝑇 such that [𝑇] = P. The
interpretation [𝑇] of a tree 𝑇 is the class of its paths. Every sufficiently generic
filter Ffor this notion of forcing induces a path 𝐺F which is the unique element
of
⋂{[𝑇] : 𝑇 ∈ F}. The forcing question for Σ0

1 formulas of Exercise 3.3.7
also holds when working with primitive recursive trees.

Definition 9.4.3. Given a condition 𝑇 ⊆ 2<ℕ and a Σ0
1 formula 𝜑(𝐺), define

𝑇 ?⊢𝜑(𝐺) to hold if there is some level ℓ ∈ ℕ such that 𝜑(𝜎) holds for every
node 𝜎 at level ℓ in 𝑇. ♦

One easily sees that this forcing question is Σ0
1-preserving.

Lemma 9.4.4. Let 𝑇 ⊆ 2<ℕ be a condition and 𝜑(𝐺) be a Σ0
1 formula.

1. If 𝑇 ?⊢𝜑(𝐺), then 𝑇 forces 𝜑(𝐺)
2. If 𝑇 ?⊬𝜑(𝐺), then there is an extension 𝑆 ≤ 𝑇 forcing ¬𝜑(𝐺). ★

Proof. Suppose first 𝑇 ?⊢𝜑(𝐺). Let ℓ ∈ ℕ be the level witnessing it. For
every 𝑃 ∈ [𝑇], 𝑃↾ℓ ∈ 𝑇, so 𝜑(𝑃↾ℓ) holds, hence 𝜑(𝑃) holds. Thus 𝑇
forces 𝜑(𝐺). Suppose now 𝑇 ?⊬𝜑(𝐺). Say 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥) for some Δ0

0
formula 𝜓. Then 𝑆 = {𝜎 ∈ 𝑇 : ∀𝑥 < |𝜎|¬𝜓(𝜎, 𝑥)} is an infinite primitive
recursive9

9: Every Δ0
0 formula is primitive recursive.

On this other hand, there exist primitive re-
cursive predicates which are not Δ0

0.

subtree of 𝑇 forcing ¬𝜑(𝐺).

Since this notion of forcing admits a Σ0
1-preserving forcing question for Σ0

1 for-
mulas, by Theorem 3.3.4 for every sufficiently generic filter F, 𝐶 ≰𝑇 𝐺F. Until
now, the proof was only a rewriting of Theorem 3.2.6 with primitive recursive
trees, using the more abstract framework of the forcing question. We now turn
to second jump control.

Definition 9.4.5. Given a condition 𝑇 ⊆ 2<ℕ and a Σ0
2 formula 𝜑(𝐺) ≡

∃𝑥𝜓(𝐺, 𝑥), define 𝑇 ?⊢𝜑(𝐺) to hold if there is some 𝑥 ∈ ℕ and an exten-
sion 𝑆 ≤ 𝑇 such that 𝑆 ?⊢𝜓(𝐺, 𝑥).10

10: In this definition, 𝜓 is a Π0
1 formula, so

the relation 𝑆 ?⊢𝜓(𝐺, 𝑥) is the forcing ques-
tion for Π0

1 formulas induced by the forcing
question for Σ0

1 formulas by taking the nega-
tion. Note the similarity with the forcing ques-
tion for Σ0

2 formulas in Cohen forcing.

11

11: Although the partial order is not com-
putable, the complexity of finding an exten-
sion is “absorbed” in the overall complex-
ity of the forcing question for Σ0

2 formulas,
yielding a Σ0

2-preserving forcing question.
Because of this, the forcing questions at
higher levels of the arithmetic hierarchy will
be similar to the ones for Cohen forcing.

♦

Looking at the complexity of the forcing question for Σ0
2 formulas, the relation

𝑆 ?⊢𝜓(𝐺, 𝑥) is Π0
1 since it is the negation of theΣ0

1-preserving forcing question
for Σ0

1 formulas. Being an infinite primitive recursive tree and being a subset of
another primitive recursive tree is a Π0

1 predicate, so the overall formula is Σ0
2.

We now show that this relation satisfies the specifications of a forcing question.

Lemma 9.4.6. Let 𝑇 ⊆ 2<ℕ be a condition and 𝜑(𝐺) be a Σ0
2 formula.

1. If 𝑇 ?⊢𝜑(𝐺), then there is an extension 𝑆 ≤ 𝑇 forcing 𝜑(𝐺)
2. If 𝑇 ?⊬𝜑(𝐺), then 𝑇 forces ¬𝜑(𝐺). ★

Proof. Say 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥). Suppose first 𝑇 ?⊢𝜑(𝐺). Let 𝑥 ∈ ℕ and
𝑆 ≤ 𝑇 be such that 𝑆 ?⊢𝜓(𝐺, 𝑥). By Lemma 9.4.4, there is an extension
𝑆1 ≤ 𝑆 forcing 𝜓(𝐺, 𝑥). In particular, 𝑆1 ≤ 𝑇 and 𝑆1 forces 𝜑(𝐺). Suppose
now 𝑇 ?⊬𝜑(𝐺). Let 𝑥 ∈ ℕ. We claim that the set of all conditions forcing
¬𝜓(𝐺, 𝑥) is dense below 𝑇. Indeed, given a condition 𝑆 ≤ 𝑇, 𝑆 ?⊬𝜓(𝐺, 𝑥),
so by Lemma 9.4.4, there is an extension 𝑆1 ≤ 𝑆 forcing ¬𝜓(𝐺, 𝑥). Thus, for
every sufficiently generic filter F containing 𝑇 and every 𝑥 ∈ ℕ, there is a
condition 𝑆1 ∈ F forcing ¬𝜓(𝐺, 𝑥), thus ¬𝜑(𝐺F) holds.

9.5 Cohesiveness principle 143

Since this notion of forcing admits a Σ0
2-preserving forcing question for Σ0

2
formulas, by Theorem 9.3.5 for every sufficiently generic filter F, 𝐷 ≰𝑇 𝐺′

F
.

To conclude the theorem, by Lemma 9.4.2, there is a condition 𝑇 such that
[𝑇] = P, so for every sufficiently generic filter Fcontaining 𝑇, 𝐺F ∈ P. This
completes the proof of Theorem 9.4.1.

Exercise 9.4.7 (Le Houérou, Levy Patey and Mimouni [83]). Recall the no-
tion of Σ0

𝑛-compactness from Section 3.6. Consider the Jockusch-Soare notion
of forcing restricted to primitive recursive trees (Theorem 9.4.1).

1. Show that the forcing questions for Σ0
1 and Σ0

2 formulas are Σ0
1-compact

and Σ0
2-compact, respectively.

2. Fix a hyperimmune function 𝑓 : ℕ → ℕ and a ∅′-hyperimmune function
𝑔 : ℕ → ℕ. Prove that every non-empty Π0

1 class P ⊆ 2ℕ has a
member 𝐺 such that 𝑓 is 𝐺-hyperimmune and 𝑔 is 𝐺′-hyperimmune. ★

9.5 Cohesiveness principle

As mentioned before, because of its equivalence with the statement “every
Δ0

2 infinite binary tree admits a Δ0
2-approximation of a path”, the cohesiveness

principle is a statement about jump computation. By Toswner’s theorem (The-
orem 7.3.8) Δ0

2-approximations of a path can be added to a model of RCA0
without affecting its first-jump properties. Thus, one should expect from a
natural notion of forcing for COH to have a trivial first-jump control, and a
second-jump control resembling the one of weak König’s lemma. This is actu-
ally the case.

Consider a uniformly computable sequence of sets 𝑅0 , 𝑅1 , . . . The usual
notion of forcing to build ®𝑅-cohesive sets with a good first-jump control is
computable Mathias forcing, that is, Mathias forcing whose reservoirs are
computable. The first-jump control of such a notion of forcing is very similar
to Cohen forcing, and preserves the same first-jump properties. On the other
hand, even when working with computable reservoirs, Mathias forcing does
not admit a good second-jump control. In particular, every sufficiently generic
filter for computable Mathias forcing yields a set of high degree. Recall that
a function 𝑓 : ℕ → ℕ is dominating if it eventually dominates every total
computable function. By Martin’s domination theorem [84], a set 𝑋 is of high
degree iff it computes a dominating function.

Proposition 9.5.1. Let Fbe a sufficiently generic filter for computable Mathias
forcing. Then the principal function of 𝐺F is dominating, hence 𝐺F is of high
degree. ★

Proof. Let 𝑓 be a total computable function. We can assume without loss
of generality that 𝑓 is strictly increasing. Let us shows that the class D𝑓 of
all computable Mathias conditions (𝜏, 𝑌) forcing the principal function of 𝐺 to
eventually dominate 𝑓 is dense. Fix a computable Mathias condition (𝜎, 𝑋),
and say 𝑋 = {𝑥0 < 𝑥1 < . . . }. Let 𝑎 = card{𝑥 < |𝜎| : 𝜎(𝑥) = 1}. Then the
set 𝑌 = {𝑥 𝑓 (𝑎+𝑠) : 𝑠 ∈ ℕ} is a computable subset of 𝑋 and (𝜎, 𝑌) forces the
principal function of 𝐺 to eventually dominate 𝑓 .

There are multiple ways to explain why computable Mathias forcing does not
admit a good second-jump control, each of them yielding the same conclusion:

144 9 Jump cone avoidance

12: The general takeway of this discussion
is that when trying to design a notion of forc-
ing with a good second-jump control, con-
sider a notion of forcing with a good first-
jump control, then restrict the partial order
to be the less permissive possible, allowing
only the conditions produced by the first-
jump control. This usually yields a partial
order with better complexity, and hopefully
enables to define a Σ0

2-preserving forcing
question.

13: Note the similarity with the notion of forc-
ing in Theorem 3.2.4. In both cases, we
build a cone avoiding set 𝐺 whose jump
computes a fixed degree. Indeed, if 𝐺 is ®𝑅-
cohesive, then for every 𝑛, there is exactly
one 𝜌 of length 𝑛 such that 𝐺 ⊆∗ 𝑅𝜌, and
such a 𝜌 can be found 𝐺′-computably. By
construction, 𝜌 ≺ 𝑃, so 𝐺′ ≥𝑇 𝑃.

the problem comes from the permissiveness of the reservoirs, which can be
arbitrary computable sets.12

1. Sparsity of the reservoirs. Proposition 9.5.1 shows that computable
Mathias forcing allows to take extensions with sparse reservoirs and
then produce dominant functions. However, the only operations needed
to produce cohesive sets is to split the reservoir according to computable
partitions and pick any infinite part. The first condition is (𝜖,ℕ) with a
non-sparse reservoir. Then, intuitively, if a reservoir 𝑋 is not too sparse,
then for every 2-partition 𝑋0⊔𝑋1 = 𝑋, at least one of the parts is not too
sparse either. One could therefore maintain non-sparsity as an invariant
by asking the reservoirs to be boolean combinations of 𝑅0 , 𝑅1 , . . .

2. Complexity of the partial order. When trying to design a forcing question
for Σ0

2 formulas in computable Mathias forcing, one needs to quantify
over the partial order, and therefore quantify over infinite computable
subsets of the reservoir. This quantification is too complex and cannot
be “absorbed” in the complexity of the general formula to produce a
Σ0

2-preserving question. One must therefore adopt a more efficient way
to represent forcing conditions, such as only keeping track of the boolean
choices of partitions induced by the sets 𝑅0 , 𝑅1 , . . .

In the following theorem, we restrict computable Mathias forcing to conditions
obtained from boolean combinations of computable partitions, and take ad-
vantage of this additional structure to design a forcing question with a good
second-jump control. This yields that COH admits simultaneously cone and
jump cone avoidance.

Theorem 9.5.2
Let 𝐶 be a non-computable set and 𝐷 be a non-Δ0

2 set. For every uniformly
computable sequence of sets 𝑅0 , 𝑅1 , . . . , there exists an infinite cohesive
set 𝐺 such that 𝐶 ≰𝑇 𝐺 and 𝐷 ≰𝑇 𝐺′.

Proof. Given 𝜌 ∈ 2<ℕ , let

𝑅𝜌 =
⋂

𝜌(𝑛)=0
𝑅𝑛

⋂
𝜌(𝑛)=1

𝑅𝑛

and let 𝑇 = {𝜌 ∈ 2<ℕ : ∃𝑥 > |𝜌| 𝑥 ∈ 𝑅𝜌}. Note that 𝑇 is a Σ0
1 tree, and

for every extendible node 𝜌 ∈ 𝑇, 𝑅𝜌 is infinite. By the cone avoidance basis
theorem (Theorem 3.2.6) relativized to ∅′, there is a path 𝑃 ∈ [𝑇] such that
𝐷 ≰𝑇 𝑃 ⊕ ∅′.

Consider the notion of forcing whose conditions13 are pairs (𝜎, 𝑛). One can
think of such a condition as computable Mathias condition (𝜎, 𝑅𝑃↾𝑛). Note
that since 𝑃 ∈ [𝑇], 𝑅𝑃↾𝑛 is infinite. The interpretation of a condition (𝜎, 𝑛) is
the interpretation of the associated computable Mathias condition, that is

[𝜎, 𝑛] = {𝐺 : 𝜎 ⪯ 𝐺 ⊆ 𝜎 ∪ 𝑅𝑃↾𝑛}

A condition (𝜏, 𝑚) extends (𝜎, 𝑛) if 𝜎 ⪯ 𝜏, 𝑚 ≥ 𝑛, and 𝜏 \ 𝜎 ⊆ 𝑅𝑃↾𝑛 .
Every sufficiently generic filter F for this notion of forcing induces a path 𝐺F

defined as
⋃{𝜎 : (𝜎, 𝑛) ∈ F}. Alternatively, 𝐺F is the unique element

of
⋂

(𝜎,𝑛)∈F[𝜎, 𝑛]. The forcing question for Σ0
1 formulas is induced from the

forcing question in computable Mathias forcing:

9.5 Cohesiveness principle 145

Definition 9.5.3. Given a condition (𝜎, 𝑛) and a Σ0
1 formula 𝜑(𝐺), define

(𝜎, 𝑛) ?⊢𝜑(𝐺) to hold if there is some 𝜏 ∈ [𝜎, 𝑛] such that 𝜑(𝜏) holds. ♦

One easily sees that this forcing question is Σ0
1-preserving, although not uni-

formly in the condition, since one needs to hard-code the initial segment of 𝑃
of length 𝑛.

Lemma 9.5.4. Let (𝜎, 𝑛) be a condition and 𝜑(𝐺) be a Σ0
1 formula.

1. If (𝜎, 𝑛) ?⊢𝜑(𝐺), then there is an extension (𝜏, 𝑛) ≤ (𝜎, 𝑛) forcing
𝜑(𝐺) ;

2. If (𝜎, 𝑛) ?⊬𝜑(𝐺), then (𝜎, 𝑛) forces ¬𝜑(𝐺). ★

Proof. Suppose first (𝜎, 𝑛) ?⊢𝜑(𝐺). Let 𝜏 ∈ [𝜎, 𝑛] be such that 𝜑(𝜏) holds.
Then (𝜏, 𝑛) is a valid extension and for every 𝐺 ∈ [𝜏, 𝑛], 𝜏 ⪯ 𝐺, so 𝜑(𝐺)
holds. It follows that (𝜏, 𝑛) forces 𝜑(𝐺). Suppose now (𝜎, 𝑛) ?⊬𝜑(𝐺). Then
for every extension (𝜏, 𝑚) ≤ (𝜎, 𝑛), 𝜏 ∈ [𝜎, 𝑛], so ¬𝜑(𝜏) holds. It follows
that (𝜎, 𝑛) forces ¬𝜑(𝐺).

Since this notion of forcing admits a Σ0
1-preserving forcing question for Σ0

1
formulas, by Theorem 3.3.4 for every sufficiently generic filter F, 𝐶 ≰𝑇 𝐺F.
We now turn to second jump control.

Definition 9.5.5. Given a condition (𝜎, 𝑛) and aΣ0
2 formula 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺,

𝑥), define (𝜎, 𝑛) ?⊢𝜑(𝐺) to hold if there is some 𝑥 ∈ ℕ and an extension
(𝜏, 𝑚) ≤ (𝜎, 𝑛) such that (𝜏, 𝑚) ?⊢𝜓(𝐺, 𝑥).14 14: As before, 𝜓 is a Π0

1 formula, so we
consider the forcing question forΠ0

1 induced
by the forcing question for Σ0

1 formulas by
taking the negation.

♦

The extension relation (𝜏, 𝑚) ≤ (𝜎, 𝑛) is computable uniformly in 𝑃. Moreover,
the relation (𝜏, 𝑚) ?⊢𝜓(𝐺, 𝑥) isΠ0

1 since the forcing question forΣ0
1 formulas is

Σ0
1-preserving. It follows that the forcing question for Σ0

2 formulas is Σ0
1(𝑃⊕∅′).

Lemma 9.5.6. Let (𝜎, 𝑛) be a condition and 𝜑(𝐺) be a Σ0
2 formula.

1. If (𝜎, 𝑛) ?⊢𝜑(𝐺), then there is an extension (𝜏, 𝑚) ≤ (𝜎, 𝑛) forcing
𝜑(𝐺) ;

2. If (𝜎, 𝑛) ?⊬𝜑(𝐺), then (𝜎, 𝑛) forces ¬𝜑(𝐺). ★

Proof. Say 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥). Suppose first (𝜎, 𝑛) ?⊢𝜑(𝐺). Then there ex-
ists some 𝑥 ∈ ℕ and an extension (𝜏, 𝑚) ≤ (𝜎, 𝑛) such that (𝜏, 𝑚) ?⊢𝜓(𝐺, 𝑥).
By Lemma 9.5.4, (𝜏, 𝑚) forces 𝜓(𝐺, 𝑥), hence forces 𝜑(𝐺). Suppose now
(𝜎, 𝑛) ?⊬𝜑(𝐺). Fix some 𝑥 ∈ ℕ. We claim that the set of all conditions forcing
¬𝜓(𝐺, 𝑥) is dense below (𝜎, 𝑛). Indeed, given a condition (𝜏, 𝑚) ≤ (𝜎, 𝑛),
(𝜏, 𝑚) ?⊬𝜓(𝐺, 𝑥), so by Lemma 9.5.4, there is an extension for (𝜏, 𝑚) forcing
¬𝜓(𝐺, 𝑥). Thus, for every sufficiently generic filter Fcontaining (𝜎, 𝑛) and
every 𝑥 ∈ ℕ, there is a condition in F forcing ¬𝜓(𝐺, 𝑥), so ¬𝜑(𝐺F) holds.

Exercise 9.5.7. Using the fact that the forcing question for Σ0
2 formulas is

Σ0
1(𝑃 ⊕ ∅′) and that 𝐷 ≰𝑇 𝑃 ⊕ ∅′, adapt Theorem 3.3.4 to show that for every

sufficiently generic filter F, 𝐷 ≰𝑇 𝐺′
F

. ★

Thus, for every sufficiently generic filter F, 𝐶 ≰𝑇 𝐺F and 𝐷 ≰𝑇 𝐺′
F

. Since
𝑃 ∈ [𝑇], then for every 𝑛, 𝑅𝑃↾𝑛 is infinite, hence for every sufficiently generic
filter F, 𝐺F is infinite. Last, for every condition (𝜎, 𝑛), the condition (𝜎, 𝑛 + 1)
is a valid extension, so for every sufficiently generic filter F, 𝐺F is cohesive
for 𝑅0 , 𝑅1 , . . . This completes the proof of Theorem 9.5.2.

146 9 Jump cone avoidance

19: Note that a non-trivial partition regular
class does not contain any principal partition
regular subclass.

The second-jump control in the proof of Theorem 9.5.2 was in two steps: first,
one picked the sequence of boolean decisions 𝑃 ∈ [𝑇] by a relativized first-
jump control for WKL, then one built an infinite cohesive set𝐺 with aΣ0

1(𝑃⊕∅′)
forcing question for Σ0

2 formulas. One can actually define a notion of forcing
doing both at once, as shows the following exercise.

Exercise 9.5.8 (Patey [85]). Fix a uniformly computable sequence of sets
𝑅0 , 𝑅1 , . . . and define 𝑅𝜌 and 𝑇 as in Theorem 9.5.2. Consider the notion of
forcing whose conditions are tuples (𝜎, 𝜌, 𝑆), where 𝜎 is a finite string, 𝑆 is
an infinite ∅′-primitive recursive subtree of 𝑇15

15: Note that by restricting the tree 𝑇, one
restricts the possible reservoirs 𝑅𝜌 with
𝜌 ∈ 𝑇, so one restricts the forced nega-
tive information. Thus, the third component
of a condition forces positive information.
This shall be explained in the next section
in further details.

, and 𝜌 is an extendible node
in 𝑆. One can think of a condition as a computable Mathias condition (𝜎, 𝑅𝜌),
together with a ∅′-primitive recursive Jockusch-Soare forcing condition 𝑆. A
condition (𝜏, 𝜇, 𝑉) extends a condition (𝜎, 𝜌, 𝑆) if 𝜎 ⪯ 𝜏, 𝜌 ⪯ 𝜇, 𝑉 ⊆ 𝑆 and
𝜏 \ 𝜎 ⊆ 𝑅𝜌.

1. Define a Σ0
1-preserving forcing question for Σ0

1 formulas.16

16: Note that given a condition (𝜎, 𝜌, 𝑆),
the forcing question does not involve 𝑆, and
the answers leave 𝜌 and 𝑆 unchanged. First-
jump control can therefore “ignore” the com-
ponents responsible of higher jump control. 2. Define a Σ0

2-preserving forcing question for Σ0
2 formulas.17

17: Hint: combine the forcing question for
Σ0

2 formulas in Definition 9.5.5 and the
forcing question for Σ0

1 formulas in Defini-
tion 9.4.3.

★

9.6 Partition regularity

Most theorems from Ramsey theory are proven using variants of Mathias
forcing. However, as shows Proposition 9.5.1, generic Mathias filters tend to
produce sets of high degree, even when working with computable reservoirs.
In order to construct solutions to theorems from Ramsey theory with a good
second-jump control, one must therefore refine this notion of forcing to be less
permissive about reservoirs. In the case of the cohesiveness principle, the
solution was restricting the reservoirs to boolean combinations of a uniformly
computable sequence of sets. In this section, we generalize the approach by
allowing to split the reservoirs based on any finite partition of the integers. This
yields the notion of partition regularity.

Definition 9.6.1. A class P⊆ 2ℕ is partition regular1818: By the upward-closure of a partition
regular class, P is non-empty iff ℕ ∈ P,
and the last property can be restricted to
2-partitions of 𝑋, that is, where 𝑌0 ∩𝑌1 = ∅
and 𝑌0 ∪ 𝑌1 = 𝑋. By iterating the split-
ting, if P is partition regular, then for ev-
ery 𝑘, for every 𝑋 ∈ P and every 𝑘-cover
𝑌0 ∪ · · · ∪ 𝑌𝑘−1 ⊇ 𝑋, there is some 𝑖 < 𝑘

such that 𝑌𝑖 ∈ P.

if

1. P is non-empty ;
2. For all 𝑋 ∈ P and 𝑌 ⊇ 𝑋, 𝑌 ∈ P ;
3. For every 𝑋 ∈ P and every 2-cover 𝑌0 ∪𝑌1 ⊇ 𝑋, there is some 𝑖 < 2

such that 𝑌𝑖 ∈ P. ♦

There exist many examples of partition regularity statements in combina-
torics.

Example 9.6.2. The following classes are partition regular:

1. {𝑋 : 𝑋 is infinite } by the infinite pigeonhole principle ;
2. {𝑋 : 𝑛 ∈ 𝑋} for a fixed 𝑛 ∈ ℕ ;
3. {𝑋 : lim sup𝑛→∞

|{1,2,...,𝑛}∩𝑋|
𝑛 > 0} ;

4. {𝑋 :
∑
𝑛∈𝑋

1
𝑛 = ∞}.

Among these examples, the second is considered as degenerate, as it contains
finite sets. A partition regular class is principal if it is of the form {𝑋 : 𝑛 ∈ 𝑋}
for a fixed 𝑛 ∈ ℕ. We shall work only with partition regular classes containing
only infinite sets. A class A⊆ 2ℕ is non-trivial if it contains only sets with at
least two elements. If A is partition regular, then it is non-trivial iff it contains
only infinite sets.19 The following operator is an easy way to define non-trivial

9.6 Partition regularity 147

20: Partition regular classes contain every
“typical set”. In particular, if P is partition
regular and measurable, then its measure
is 1 (see Monin and Patey [86]). Moreover,
if P satisfies the Baire property, then it is
co-meager.

partition regular classes:

Definition 9.6.3. Given an infinite set 𝑋, let L𝑋 = {𝑌 : 𝑋∩𝑌 is infinite }.♦

In the computability-theoretic realm, many statements of the form “Every set 𝐴
has an infinite subset 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴 satisfying some weakness property”
can be rephrased in terms of partition regularity.

Example 9.6.4. The following classes are partition regular:

1. {𝑋 : ∃𝑌 ∈ [𝑋]𝜔 𝑌 ≱𝑇 𝐶} for any 𝐶 ≰𝑇 ∅ (Theorem 3.4.6);
2. {𝑋 : ∃𝑌 ∈ [𝑋]𝜔 𝑌 is not of PA degree } (Theorem 5.4.3);

One can think of non-trivial partition regular classes as generalizations of the
notion of infinity, satisfying some basic operations that one expects of infinite
sets, that is, if a set is infinite, then any superset is again infinite, and when
splitting an infinite set in two parts, at least one of the parts is infinite.20 Looking
at the proof of strong cone avoidance of RT1

2 (Theorem 3.4.6), splitting and
finite truncation are the only operations on the reservoir to obtain a good first-
jump control. One can therefore fix a partition regular class P and work with
conditions whose reservoir belongs to P.

Exercise 9.6.5 (Flood [87]). Adapt the proof of Theorem 3.4.6 to show that
for every non-computable set 𝐶 and every set 𝐴, there is a set 𝐻 ⊆ 𝐴 or
𝐻 ⊆ 𝐴 such that 𝐶 ≰𝑇 𝐻 and lim sup𝑛→∞

|{1,2,...,𝑛}∩𝑋|
𝑛 > 0. ★

Exercise 9.6.6. Let P be a non-trivial partition regular class. Show that if
𝑋 ∈ P and 𝑌 =∗ 𝑋, then 𝑌 ∈ P. In other words, P is closed under finite
changes. ★

Exercise 9.6.7 (Monin and Patey [86]). Let {P𝑖}𝑖∈𝐼 be an arbitrary union of
partition regular classes. Show that

⋃
𝑖∈𝐼 P𝑖 is partition regular. ★

Exercise 9.6.8. Given an infinite set 𝑋, let L𝑋 = {𝑍 : 𝑍 ∩ 𝑋 is infinite }.
Prove that for every partition regular class P, the following class is partition
regular:

{𝑋 : L𝑋 ∩P is partition regular }

Positive and negative information. One can understand the restriction of
the reservoirs to partition regular classes in terms of positive and negative
information. In a Mathias condition (𝜎, 𝑋), the stem 𝜎 fixes an initial segment
of the constructed set 𝐺. It specifies that 𝐺 must contain {𝑛 : 𝜎(𝑛) = 1}
and must avoid {𝑛 : 𝜎(𝑛) = 0}. Thus, 𝜎 forces a finite amount of positive
and negative information. On the other hand, the reservoir 𝑋 forces an infinite
amount of negative information since 𝐺 must avoid any new element outside
the reservoir, but does not force any positive information, as for every 𝑛 ∈ 𝑋,
one can construct a set 𝐺 such that 𝑛 ∉ 𝐺.

It is useful to think as a Σ0
1 property as a positive information and therefore

a Π0
1 property as a negative one. When constructing a set using a variant of

Mathias forcing with the first-jump control, one usually increases the stem to
force Σ0

1 properties, and decrease the reservoir to force Π0
1 properties. The

situation becomes more complicated when forcing Π0
2 properties ∀𝑥𝜓(𝐺, 𝑥),

148 9 Jump cone avoidance

as it becomes a density statement about a countable collection ofΣ0
1 properties

{𝜓(𝐺, 𝑥) : 𝑥 ∈ ℕ}. It therefore requires to maintain some positive information
over all future conditions. A partition regular class is therefore a “reservoir of
reservoirs”, as it restricts the possible choices of reservoirs, hence restricts the
future negative information, which is a way of forcing positive information.

9.6.1 Largeness

One should expect from a notion of largeness that it is upward-closed under
inclusion, that is, if A⊆ 2ℕ is a largeness notion and B ⊇ A, then so is B.
The collection of all partition regular classes is not closed upward. For instance,
pick any non-trivial partition regular class P which does not contain some
infinite set 𝑋. Then the P∪ {𝑍 : 𝑍 ⊇ 𝑋} is an upward-closed superset of P,
but is not partition regular. The following notion of largeness is more convenient
to work with:

Definition 9.6.9. A class A⊆ 2ℕ is large2121: Note that a large class is necessarily
non-empty, as ℕ ∈ A.

if

1. For all 𝑋 ∈ Aand 𝑌 ⊇ 𝑋, 𝑌 ∈ A ;
2. For every 𝑘 ∈ ℕ and every 𝑘-cover 𝑌0 ∪ · · · ∪ 𝑌𝑘−1 = ℕ, there is

some 𝑖 < 𝑘 such that 𝑌𝑖 ∈ A. ♦

There exists a formal relationship between largeness and partition regularity:
a class is large iff it contains a partition regular subclass. The union of a family
of partition regular classes being again partition regular, every large class
contains a maximal partition regular subclass for inclusion. This subclass
admits the following explicit syntactic definition.

Proposition 9.6.10 (Monin and Patey [31]). Given a large class A ⊆ 2ℕ ,
the class

L(A) = {𝑋 ∈ 2ℕ : ∀𝑘∀𝑋0 ∪ · · · ∪ 𝑋𝑘−1 ⊇ 𝑋 ∃𝑖 < 𝑘 𝑋𝑖 ∈ A}

is the maximal partition regular subclass of A. ★

Proof. We first prove that L(A) is a partition regular subclass of A. First,
note that L(A) is upward-closed. Moreover, by definition of A being large,
ℕ ∈ L(A), so L(A) is non-empty. Let 𝑋 ∈ L(A) and 𝑋0 ∪ · · · ∪ 𝑋𝑘−1 ⊇ 𝑋.
Suppose for the contradiction that 𝑋𝑖 ∉ L(A) for every 𝑖 < 𝑘. Then, for
every 𝑖 < 𝑘, there is some 𝑘𝑖 ∈ ℕ and some 𝑘𝑖-cover 𝑌0

𝑖
∪ · · · ∪ 𝑌𝑘𝑖−1

𝑖
⊇ 𝑋𝑖

such that 𝑌 𝑗
𝑖
∉ A for every 𝑗 < 𝑘𝑖 . Then {𝑌 𝑗

𝑖
: 𝑖 < 𝑘, 𝑗 < 𝑘𝑖} is a cover

of 𝑋 contradicting 𝑋 ∈ L(A). Therefore, L(A) is partition regular. Moreover,
L(A) ⊆ Aas witnessed by taking the trivial cover of 𝑋 by itself.

We now prove that L(A) is the maximal partition regular subclass of A. Let B
be a partition regular subclass of A. Then for every 𝑋 ∈ B, every 𝑋0 ∪ · · · ∪
𝑋𝑘−1 ⊇ 𝑋, there is some 𝑖 < 𝑘 such that 𝑋𝑖 ∈ B⊆ A. Thus 𝑋 ∈ L(A), so
B⊆ L(A).

Recall that a class A⊆ 2ℕ is non-trivial if it contains only sets with at least
two elements. Note that contrary to partition regular classes, a non-trivial large
class may contain finite sets, but its maximal partition regular subclass L(A)
contains only infinite sets.

9.6 Partition regularity 149

23: We write boldface Σ0
n for the levels of

the Borel hierarchy, and lightface Σ0
𝑛 for the

levels of its effective hierarchy.

24: Recall that a Scott ideal is a Turing ideal
which satisfies weak König’s lemma, that is,
for every infinite binary tree 𝑇 ∈ M, then
[𝑇] ∩ M ≠ ∅. A Scott code for a Turing
ideal M = {𝑍0 , 𝑍1 , . . . } is a set 𝑀 =⊕
𝑖 𝑍𝑖 such that the basic operations on

the 𝑀-indices are computable.

Exercise 9.6.11 (Monin and Patey [86] ; Mimouni).

1. Show that if P⊆ 2ℕ is a non-trivial partition regular class and 𝑋 ∈ P,
then P∩L𝑋 is large.

2. Construct a non-trivial partition regular class P and a set 𝑋 ∈ P such
that P∩L𝑋 is not partition regular. ★

Exercise 9.6.12 (Monin and Patey [86]). Let A⊆ 2ℕ be a non-trivial large
class. Show that L(A) = {𝑋 : A∩L𝑋 is large }. ★

Exercise 9.6.13 (Monin and Patey [31]). Show that if A0 ⊇ A1 ⊇ . . . is a
decreasing sequence of large classes, then

⋂
𝑛 A𝑛 is large. ★

Exercise 9.6.14. Consider the following relations22 22: Monin and Patey [86] defined another
relation, called partition genericity. Although
arguably less natural, it can be appropriate
when considering non-effective construc-
tions.

between a set 𝑋 ⊆ ℕ

and a non-trivial large class A⊆ 2ℕ .

(1) 𝑋 ∈ A

(2) 𝑋 ∈ L(A)
(3) A∩L𝑋 is large

(4) L(A) ⊆ L𝑋

(5) 𝑋 ∉ A

1. What are the implications between these relations? Which ones are
strict?

2. When fixing A, these relations induces classes of sets. Which ones are
large? partition regular? ★

9.6.2 Effective classes

The class of all infinite sets is Π0
2. Actually, this is the first level of the effective

Borel hierarchy containing a non-trivial partition regular class, as there is no
non-trivial Σ0

2 partition regular class [86].23 Moreover, Π0
2 classes is the first

level satisfying some stability, in the sense that if a Σ0
1 class A⊆ 2ℕ is large,

then L(A) is Π0
2, while if A is Π0

2, then so is L(A). Actually, we shall work with
a slightly more general family of partition regular classes: arbitrary intersections
of Σ0

1 classes over a Scott ideal.

In what follows, fix a uniform sequence of all c.e. sets of strings𝑊0 ,𝑊1 , · · · ⊆
2<ℕ . It induces an enumeration of all upward-closed Σ0

1 classes U0 , U1 , . . .

defined by U𝑒 = {𝑋 ∈ 2ℕ : ∃𝜌 ∈ 𝑊𝑒 𝜌 ⊆ 𝑋}. These enumerations
admit immediate relativizations to oracles. We therefore let U𝑍

0 , U
𝑍
1 , . . . be

an enumeration of all upward-closed Σ0
1(𝑍) classes. From now on, fix a Scott

ideal M= {𝑍0 , 𝑍1 , . . . } with Scott code 𝑀.24 Given a set 𝐶 ⊆ ℕ2, we let

UM
𝐶 =

⋂
(𝑒 ,𝑖)∈𝐶

U
𝑍𝑖
𝑒

From now on, we shall work exclusively with classes of the form UM
𝐶

, and
give a particular focus on the complexity of the set 𝐶 of indices. Thanks to
Exercise 9.6.13, if UM

𝐶
is not large, then there is a finite set 𝐹 ⊆ 𝐶 such

that UM
𝐹

is not large either. Note that the latter class is Σ0
1(M). This pseudo-

compactness phenomenon plays a key role in the computability-theoretic
features of large classes.

150 9 Jump cone avoidance

Lemma 9.6.15 (Monin and Patey [81]). Let 𝐶 ⊆ ℕ2 be a set. The statement
“UM

𝐶
is large” is Π0

1(𝐶 ⊕ 𝑀′) uniformly in 𝐶 and 𝑀. ★

Proof. Let us first show that the statement “U𝑍
𝑒 is large” is Π0

2(𝑍) uniformly
in 𝑒 and 𝑍. Indeed, by compactness, U𝑍

𝑒 is large iff for every 𝑘 ∈ ℕ, there is
some ℓ ∈ ℕ such that for every 𝑘-partition 𝑌0 ∪ · · · ∪𝑌𝑘−1 = {0, . . . , ℓ}, there
is some 𝑖 < 𝑘 and some 𝜌 ∈𝑊𝑒 such that 𝜌 ⊆ 𝑌𝑖 . This statement is Π0

2(𝑍)
uniformly in 𝑒 and 𝑍. Then, by Exercise 9.6.13, UM

𝐶
is large iff for every finite

set 𝐹 ⊆ 𝐶, UM
𝐹

is large. The resulting statement is therefore Π0
1(𝐶 ⊕ 𝑀′).

The following lemma shows that classes of the form UM
𝐶

are robust, in the
sense that if a large class is of this form, then so is its maximum partition
regular subclass. Moreover, the translation of the index sets is computable.

Lemma 9.6.16 (Monin and Patey [81]). Let 𝐶 ⊆ ℕ2 be a set. Then there
exists a set 𝐷 ⊆ ℕ2 computable uniformly in 𝐶 such that UM

𝐷
= L(UM

𝐶
). ★

Proof. We first claim that L(UM
𝐶
) ⊆ ⋂

𝐹⊆fin𝐶 L(UM
𝐹
). Indeed, for some

finite 𝐹 ⊆ 𝐶, L(UM
𝐶
) ⊆ UM

𝐶
⊆ UM

𝐹
, so L(UM

𝐶
) is a partition regular

subclass of UM
𝐹

. By maximality of L(UM
𝐹
), we have L(UM

𝐶
) ⊆ L(UM

𝐹
).

Since it is the case for every 𝐹 ⊆fin 𝐶, we have L(UM
𝐶
) ⊆ ⋂

𝐹⊆fin𝐶 L(UM
𝐹
).

We next claim that
⋂
𝐹⊆fin𝐶 L(UM

𝐹
) ⊆ L(UM

𝐶
). Suppose that 𝑋 ∉ L(UM

𝐶
).

Then there is some 𝑘 and some 𝑘-cover𝑌0∪· · ·∪𝑌𝑘−1 = 𝑋 such that for every
𝑖 < 𝑘, 𝑌𝑖 ∉ UM

𝐶
. Then there is a finite set 𝐹 ⊆fin 𝐶 such that for every 𝑖 < 𝑘,

𝑌𝑖 ∉ UM
𝐹

, so 𝑋 ∉ L(UM
𝐹
). This proves our claim.

For every 𝐹 ⊆fin 𝐶, let ℎ(𝐹) be an 𝑀-index of the set
⊕

(𝑒 ,𝑖)∈𝐹 𝑍𝑖 . For
every 𝐹 ⊆fin 𝐶 and 𝑘 ∈ ℕ, let 𝑔(𝐹, 𝑘) be an index of the 𝑍ℎ(𝐹)-c.e. set
of all 𝜌 ∈ 2<ℕ such that for every 𝑘-partition 𝜌0 ∪ · · · ∪ 𝜌𝑘−1 = 𝜌, there is
some 𝑖 < 𝑘 such that for each (𝑒 , 𝑖) ∈ 𝐹, 𝑊𝑍𝑖

𝑒 enumerates a subset of 𝜌𝑖 . In
other words,

U
𝑍ℎ(𝐹)
𝑔(𝐹,𝑘) = {𝑋 : ∀𝑌0 ∪ · · · ∪ 𝑌𝑘−1 = 𝑋 ∃𝑖 < 𝑘 𝑌𝑖 ∈ UM

𝐹 }

Then, letting 𝐷 = {(𝑔(𝐹, 𝑘), ℎ(𝐹)) : 𝑘 ∈ ℕ, 𝐹 ⊆fin 𝐶}, the class UM
𝐷

equals⋂
𝐹⊆fin𝐶 L(UM

𝐹
), which is nothing but L(UM

𝐶
).

Exercise 9.6.17 (Monin and Patey [86]). Let P be a Π0
2 large class and 𝑋

be co-hyperimmune. Show that 𝑋 ∈ P. ★

9.6.3 M-minimal classes

As mentioned above, to obtain a variant of Mathias forcing with a good second-
jump control, one needs to maintain some positive information over all the
reservoirs. This is achieved by restricting the reservoirs to a fixed partition
regular class. Given the computability-theoretic nature of theΣ0

2(𝐺) and Π0
2(𝐺)

statements needed to be forced, the appropriate partition regular class does
not admit a nice explicit combinatorial definition. Seeing a partition regular
class as a “reservoir of reservoirs”, if Q ⊆ P are two partition regular classes,
Q will impose more restrictions on the possible choices of reservoirs than P.
Considering a reservoir forces negative information about the set 𝐺, Q will

9.6 Partition regularity 151

force more positive information than P. With this intuition, minimal partition
regular classes will ensure as much positive information as possible, while
allowing the reservoirs to be split.

Definition 9.6.18. A large class A is M-minimal25 25: This notion of minimality is effective and
not combinatorial, in the sense that there
might exist large subclasses B ⊊ A, but
not of the form UM

𝐶
.

if for every set 𝑋 ∈ M

and 𝑒 ∈ ℕ, either A⊆ U𝑋
𝑒 , or A∩ U𝑋

𝑒 is not large. ♦

Every large class containing a partition regular subclass, every M-minimal
large class of the form UM

𝐶
is also partition regular. There exists a natural

greedy algorithm to build a set 𝐶 ⊆ ℕ2 such that UM
𝐶

is non-trivial and
M-minimal.

Proposition 9.6.19 (Le Houérou, Levy Patey and Mimouni [83]). Let𝐷 ⊆
ℕ2 be a set such that UM

𝐷
is large. Then (𝐷 ⊕ 𝑀′)′ computes a set 𝐶 ⊇ 𝐷

such that UM
𝐶

is M-minimal. ★

Proof. By the padding lemma, there is a total computable function 𝑔 : ℕ2 →
ℕ such that for every 𝑒 , 𝑠 ∈ ℕ and every set𝑋, U𝑋

𝑔(𝑒 ,𝑠) = U𝑋
𝑒 and 𝑔(𝑒 , 𝑠) > 𝑠.

By uniformity of the properties of a Scott code, there is another total computable
function ℎ : ℕ2 → ℕ such that for every 𝑒 , 𝑠 ∈ ℕ and every Scott code 𝑀,
ℎ(𝑒 , 𝑠) and 𝑒 are both 𝑀-indices of the same set, and ℎ(𝑒 , 𝑠) > 𝑠.

We build a (𝐷 ⊕ 𝑀′)′-computable sequence of 𝐷-computable sets 𝐶0 ⊆
𝐶1 ⊆ . . . such that, letting 𝐶 =

⋃
𝑠 𝐶𝑠 , U𝑀

𝐶
is M-minimal and for every 𝑠,

𝐶↾𝑠 = 𝐶𝑠↾𝑠. Start with 𝐶0 = 𝐷. Then, given a set 𝐶𝑠 ⊆ ℕ2 such that UM
𝐶𝑠

is
large, and a pair (𝑒 , 𝑖), define 𝐶𝑠+1 = 𝐶𝑠 ∪ {(𝑔(𝑒 , 𝑠), ℎ(𝑖 , 𝑠))} if UM

𝐶𝑠
∩ U

𝑍𝑖
𝑒

is large, and 𝐶𝑠+1 = 𝐶𝑠 otherwise. The set 𝐶 =
⋃
𝑠 𝐶𝑠 is the desired set.

Note that by choice of 𝑔 and ℎ, in the former case, UM
𝐶𝑠+1

= UM
𝐶𝑠

∩ U
𝑍𝑖
𝑒 . By

Lemma 9.6.15, the statement “UM
𝐶𝑠

∩ U
𝑍𝑖
𝑒 is large” is Π0

1(𝐶𝑠 ⊕ 𝑀′), so it
can be decided (𝐷 ⊕ 𝑀′)′-computably since 𝐶𝑠 ≤𝑇 𝐷. The use of 𝑔 and ℎ
ensures that 𝐶𝑠+1↾𝑠 = 𝐶𝑠↾𝑠.

Suppose 𝑀 is of low degree by the low basis theorem (Theorem 4.4.6). One
can start with a non-trivial class UM

𝐷
for some computable set 𝐷, and apply

Proposition 9.6.19 to obtain a ∅′′-computable set 𝐶 ⊇ 𝐷 such that UM
𝐶

is M-
minimal. However, ∅′′-computability is too complex for our purpose. Thankfully,
one does not need to explicitly have access to the set of indices of the M-
minimal class, but only to be able to check that a class is “compatible” with it.
This yields the notion of M-cohesive class.

9.6.4 M-cohesive classes

In general, if Aand B are two large classes, then A∩ B is not necessarily
large. For instance, consider the class A = L𝑋 and B = L

𝑋
for some bi-

infinite set 𝑋. Thus, in the algorithm of Proposition 9.6.19, the order in which
one considers the pairs (𝑒 , 𝑖) matters. Therefore, there exist many M-minimal
classes of the form UM

𝐶
, depending on the ordering of the pairs. The following

notion of M-cohesiveness is a way of choosing an M-minimal class without
explicitly giving its set of indices.

Definition 9.6.20. A large class A is M-cohesive26
26: By Le Houérou, Levy Patey and Mi-
mouni [83], for every countable Turing
ideal M, there exists a set 𝐶 ⊆ ℕ2 such
that UM

𝐶
is M-cohesive but not M-minimal.

if for every set 𝑋 ∈ M,
either A⊆ L𝑋 , or A⊆ L

𝑋
. ♦

152 9 Jump cone avoidance

This definition may seem out of the blue, so let us start with a few manipulations
which will give some intuition.

Exercise 9.6.21. Let A⊆ 2ℕ be M-cohesive.

1. Show that for every 𝑋 ∈ M, 𝑋 ∈ A iff A⊆ L𝑋 .
2. Deduce that A∩M is an ultrafilter on M. ★

The following exercise justifies the cohesiveness terminology.

Exercise 9.6.22 (Le Houérou, Levy Patey and Mimouni [83]). Recall that an
infinite set 𝐻 is cohesive for a sequence of sets 𝑅0 , 𝑅1 , . . . if for every 𝑛 ∈ ℕ,
either 𝐻 ⊆∗ 𝑅𝑛 , or 𝐻 ⊆ 𝑅𝑛 . Show that for every infinite set 𝐻 cohesive for the
Turing ideal M seen as a sequence of sets, the class L𝐻 is partition regular
and M-cohesive. ★

The following lemma is the most important combinatorial feature of M-cohesive
classes. It actually says that an M-cohesive class already contains the infor-
mation of an M-minimal class, in the sense that in the greedy algorithm of
Proposition 9.6.19, the ordering on the pairs does not matter.

Lemma 9.6.23 (Monin and Patey [81]). Let UM
𝐶

be an M-cohesive class.
Let UM

𝐷
and U𝑀

𝐸
be such that UM

𝐶
∩ UM

𝐷
and UM

𝐶
∩ UM

𝐸
are both large. Then

so is UM
𝐶

∩ UM
𝐷

∩ UM
𝐸

.27

27: Note that in this proof, we exploit the
fact that all these classes are intersections
of Σ0

1(M) classes, and the fact that M is a
Scott ideal.

★

Proof. Suppose for the contradiction that UM
𝐶
∩UM

𝐷
∩UM

𝐸
is not large. Then,

by Exercise 9.6.13, there are some finite sets 𝐶1 ⊆ 𝐶, 𝐷1 ⊆ 𝐷 and 𝐸1 ⊆ 𝐸

such that UM
𝐶1

∩ UM
𝐷1

∩ UM
𝐸1

is not large. For every 𝑘 ∈ ℕ, let C𝑘 be the
collection of all sets 𝑌0 ⊕ · · · ⊕ 𝑌𝑘−1 such that 𝑌0 ⊔ · · · ⊔ 𝑌𝑘−1 = ℕ and for
every 𝑖 < 𝑘,𝑌𝑖 ∉ UM

𝐶1
∩ UM

𝐷1
∩ UM

𝐸1
. Note that for every 𝑘, C𝑘 is Π0

1(M) since
UM
𝐶1

∩ UM
𝐷1

∩ UM
𝐸1

is Σ0
1(M). Moreover, there is some 𝑘 such that C𝑘 ≠ ∅.

Since M is a Scott ideal, there is such a set 𝑌0 ⊕ · · · ⊕𝑌𝑘−1 ∈ C𝑘 ∩M. Since
UM
𝐶

is M-cohesive, there is some 𝑖 < 𝑘 such that UM
𝐶

⊆ L𝑌𝑖 . In particular,
𝑌𝑖 ∈ UM

𝐶
, so either 𝑌𝑖 ∉ UM

𝐷
, or 𝑌𝑖 ∉ UM

𝐸
. Suppose 𝑌𝑖 ∉ UM

𝐷
, as the other

case is symmetric. Since 𝑌𝑗 ∩𝑌𝑖 = ∅ for every 𝑗 ≠ 𝑖, then 𝑌𝑗 ∉ UM
𝐶

⊆ L𝑌𝑖 for
every 𝑗 ≠ 𝑖. It follows that 𝑌0 , . . . , 𝑌𝑘−1 witnesses that UM

𝐶
∩ UM

𝐷
is not large.

Contradiction.

It follows that every M-cohesive class of the form UM
𝐶

admits a unique M-
minimal large subclass.

Lemma 9.6.24 (Monin and Patey [81]). For every M-cohesive class UM
𝐶

,
there exists a unique M-minimal large subclass:

⟨UM
𝐶 ⟩ =

⋂
𝑒∈ℕ,𝑋∈M

{U𝑋
𝑒 : UM

𝐶 ∩ U𝑋
𝑒 is large }

Proof. We first prove that ⟨UM
𝐶
⟩ is large. Let (𝑒0 , 𝑋0), (𝑒1 , 𝑋1), . . . be an

enumeration of all pairs (𝑒 , 𝑋) ∈ ℕ × M such that UM
𝐶

∩ U𝑋
𝑒 is large. By

induction on 𝑛, using Lemma 9.6.23,
⋂
𝑖<𝑛 U

𝑋𝑖
𝑒𝑖 is large for every 𝑛. Thus, by

Exercise 9.6.13, ⟨UM
𝐶
⟩ is large. Next, ⟨UM

𝐶
⟩ ⊆ UM

𝐶
as for every (𝑒 , 𝑖) ∈ 𝐶,

UM
𝐶

∩ U
𝑍𝑖
𝑒 is trivially large. Last, ⟨UM

𝐶
⟩ is M-minimal by construction.

Contrary to M-minimal classes, one can build a set 𝐶 ⊆ ℕ2 such that UM
𝐶

is
M-cohesive computably in any PA degree over 𝑀′.

9.7 Pigeonhole principle 153

28: Recall that by Exercise 4.6.5, 𝑃 is able
to choose, among two Π0

1(𝐷 ⊕ 𝑀′) formu-
las such that at least one is true, a valid
one.

Proposition 9.6.25 (Le Houérou, Levy Patey and Mimouni [83]). Let𝐷 ⊆
ℕ2 be a set such that UM

𝐷
is large and non-trivial. Then any PA degree

over 𝐷 ⊕ 𝑀′ computes a set 𝐶 ⊇ 𝐷 such that UM
𝐶

is M-cohesive. ★

Proof. Fix 𝑃 a PA degree over 𝐷 ⊕𝑀′.28 First, consider two 𝑀-computable
enumerations of sets (𝐸𝑛)𝑛∈ℕ and (𝐹𝑛)𝑛∈ℕ such that for every 𝑛 ∈ ℕ, U𝑍𝑛

𝐸𝑛
=

L𝑍𝑛 and U
𝑍𝑛
𝐹𝑛

= L
𝑍𝑛

. By the padding lemma, one can suppose that min𝐸𝑛 ,
min 𝐹𝑛 ≥ 𝑛. The set 𝐶 will be defined as

⋃
𝑛∈ℕ 𝐶𝑛 for 𝐶0 ⊆ 𝐶1 ⊆ . . . a

𝑃-computable sequence of 𝑀 ⊕ 𝐷-computable sets satisfying:

▶ 𝐶0 = 𝐷,
▶ UM

𝐶𝑘
is large for every 𝑘 ∈ ℕ,

▶ 𝐶𝑘↾𝑘 = 𝐶↾𝑘 for every 𝑘 ∈ ℕ, and thus 𝐶 will be 𝑃-computable.

Let 𝐶0 = 𝐷, then, by assumption, UM
𝐶0

is large.

Assume 𝐶𝑘 has been defined for some 𝑘 ∈ ℕ. Then, as UM
𝐶𝑘

is large, one of
the two following Π0

1(𝐷⊕𝑀′) statements must hold: “UM
𝐶𝑘

∩L𝑍𝑘 is large′′ or
“UM

𝐶𝑘
∩L

𝑍𝑘
is large′′. Hence, 𝑃 is able to choose one that is true. If UM

𝐶𝑘
∩L𝑍𝑘

is large, let 𝐶𝑘+1 = 𝐶𝑘 ∪ 𝐸𝑘 , and if UM
𝐶𝑘

∩L
𝑍𝑘

is large, let 𝐶𝑘+1 = 𝐶𝑘 ∪ 𝐹𝑘 .
By our assumption that min𝐸𝑛 ,min 𝐹𝑛 ≥ 𝑛 for all 𝑛, the value of 𝐶𝑘↾𝑘 will
be left unchanged in the rest of the construction.

Exercise 9.6.26 (Le Houérou, Levy Patey and Mimouni [83]). Let UM
𝐶

be
an M-cohesive class. Show that 𝐶⊕𝑀′ is of PA degree over 𝑋′ for every 𝑋 ∈
M. ★

Exercise 9.6.27. Let M ⊆ 2ℕ be a Scott ideal coded by a set 𝑀 of low
degree and 𝐶 ⊆ ℕ2 be a Δ0

2 set such that U𝐶
M

is non-trivial and large. Show
that for every computable instance 𝑅0 , 𝑅1 , . . . of COH with no computable
solution, there exists some 𝑛 ∈ ℕ such that U𝐶

M
∩L𝑅𝑛 and U𝐶

M
∩L

𝑅𝑛
are

both large.29

29: Hint: use Exercise 3.4.3 and Exer-
cise 9.6.11.

★

9.7 Pigeonhole principle

By Jockusch and Dzhafarov’s theorem (Theorem 3.4.6), RT1
2 admits strong

cone avoidance, the only sets that can be encoded by all the infinite subsets and
co-subsets of an arbitrary set are the computable ones. Using the framework
of largeness and partition regularity, we can now prove the counterpart for
jump computation, known as strong jump cone avoidance of RT1

2. It follows
that for every set 𝐴, there is an infinite subset 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴 of non-high
degree.

Theorem 9.7.1 (Monin and Patey [31])
Let 𝐶 be a non-Δ0

2 set. For every set 𝐴, there is an infinite subset 𝐻 ⊆ 𝐴

or 𝐻 ⊆ 𝐴 such that 𝐶 is not Δ0
2(𝐻).

Proof. Fix 𝐶 and𝐴. As in Theorem 3.4.6, we shall construct two sets𝐺0 ⊆ 𝐴

and 𝐺1 ⊆ 𝐴 using a disjunctive notion of forcing. For simplicity, let 𝐴0 = 𝐴

and 𝐴1 = 𝐴.

154 9 Jump cone avoidance

31: Also note that by Exercise 9.6.6, if part
𝑖 is valid in 𝑝 = (𝜎0 , 𝜎1 , 𝑋) and 𝑞 =

(𝜏0 , 𝜏1 , 𝑌) ≤ 𝑝 with 𝑌 =∗ 𝑋, then part 𝑖
is valid in 𝑞.

By the low basis theorem (Theorem 4.4.6) and Theorem 4.3.2, there exists
a set 𝑀 of low degree coding a Scott ideal M. By the cone avoidance basis
theorem (Theorem 3.2.6) relativized to ∅′ and Theorem 4.3.2, there is a code
𝑁 for a Scott ideal Ncontaining ∅′ such that 𝐶 ≰𝑇 𝑁 . By Proposition 9.6.25,
Ncontains a set 𝐷 ⊆ ℕ2 such that UM

𝐷
is an M-cohesive class.

Notion of forcing. The two sets 𝐺0 and 𝐺1 will be constructed using a variant
of Mathias forcing whose conditions are triples (𝜎0 , 𝜎1 , 𝑋), where

1. (𝜎𝑖 , 𝑋) is a Mathias condition for each 𝑖 < 2 ;
2. 𝜎𝑖 ⊆ 𝐴𝑖 ; 𝑋 ∈ ⟨UM

𝐷
⟩ ;

3. 𝑋 ∈ N.30

30: This notion of forcing ressembles the
one of Theorem 3.4.6, with two main differ-
ences. First, the reservoir must belong to
the M-minimal partition regular subclass of
UM
𝐷

, which ensures that it maintains a lot
of positive information. Second, one usu-
ally requires that the reservoir satisfies the
desired property, that is, 𝐶 is not Δ0

2(𝑋).
However, because of the forcing question
for Σ0

2 formulas, the reservoir only satisfies
that 𝐶 ≰𝑇 𝑋 ⊕𝐷 ⊕ ∅′. In particular, 𝑋 can
compute ∅′, or can even be of PA degree
over ∅′.

One must really think of a condition as a pair of Mathias conditions which share
a same reservoir. The interpretation [𝜎0 , 𝜎1 , 𝑋] of a condition (𝜎0 , 𝜎1 , 𝑋) is
the class

[𝜎0 , 𝜎1 , 𝑋] = {(𝐺0 , 𝐺1) : ∀𝑖 < 2 𝜎𝑖 ⪯ 𝐺𝑖 ⊆ 𝜎𝑖 ∪ 𝑋}

A condition (𝜏0 , 𝜏1 , 𝑌) extends (𝜎0 , 𝜎1 , 𝑋) if (𝜏𝑖 , 𝑌) Mathias extends (𝜎𝑖 , 𝑋)
for each 𝑖 < 2. Any filter F induces two sets 𝐺F,0 and 𝐺F,1 defined by
𝐺F,𝑖 =

⋃{𝜎𝑖 : (𝜎0 , 𝜎1 , 𝑋) ∈ F}. Note that (𝐺F,0 , 𝐺F,1) ∈
⋂{[𝜎0 , 𝜎1 , 𝑋] :

(𝜎0 , 𝜎1 , 𝑋) ∈ F}.

The goal is therefore to build two infinite sets 𝐺0 , 𝐺1, satisfying the following
requirements for every 𝑒0 , 𝑒1 ∈ ℕ:

R𝑒0 ,𝑒1 : Φ𝐺′
0

𝑒0 ≠ 𝐶 ∨Φ
𝐺′

1
𝑒1 ≠ 𝐶

If every requirement is satisfied, then an easy pairing argument shows that
either 𝐶 ≰𝑇 𝐺′

0, or 𝐶 ≰𝑇 𝐺′
1. However, in general, it is not possible to ensure

that 𝐺0 and 𝐺1 are both infinite. For example, 𝐴 could be finite or co-finite.

Validity. In the proof of Theorem 3.4.6, we used as a hypothesis that there is
no set satisfying the statement of the theorem, which implies in particular that
for every reservoir 𝑋, both 𝑋 ∩ 𝐴 and 𝑋 ∩ 𝐴 are infinite. In this proof, we will
need to consider a stronger property.

Definition 9.7.2. We say that part 𝑖 of (𝜎0 , 𝜎1 , 𝑋) is valid if 𝑋 ∩ 𝐴𝑖 ∈ UM
𝐷

.
Part 𝑖 of a filter F is valid if part 𝑖 is valid for every condition in F. ♦

Since 𝑋 ∈ ⟨UM
𝐷
⟩, then by partition regularity, either 𝐴0∩𝑋 or 𝐴1∩𝑋 belongs

to ⟨UM
𝐷
⟩. It follows that every condition has at least a valid part.31 Moreover,

if 𝑞 extends 𝑝 and part 𝑖 of 𝑞 is valid, then so is part 𝑖 of 𝑝. Thus, every filter
admits a valid part.

We shall first prove that for every sufficiently generic filter Fwith valid part 𝑖,
not only 𝐺F,𝑖 is infinite, but it furthermore belongs to ⟨UM

𝐷
⟩.

Lemma 9.7.3. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with valid part 𝑖 and let
V ⊇ ⟨UM

𝐷
⟩ be a large Σ0

1(M) class. There is an extension (𝜏0 , 𝜏1 , 𝑌) of 𝑝
such that [𝜏𝑖] ⊆ V. ★

Proof. Since part 𝑖 of 𝑝 is valid, then 𝑋 ∩ 𝐴𝑖 ∈ ⟨UM
𝐷
⟩ ⊆ V. Moreover,

V is Σ0
1(M), so there is some 𝜌 ⊆ 𝑋 ∩ 𝐴𝑖 such that [𝜌] ⊆ V. Last, by

upward-closure of V, [𝜎𝑖 ∪ 𝜌] ⊆ V, so letting 𝜏𝑖 = 𝜎𝑖 ∪ 𝜌, 𝜏1−𝑖 = 𝜎1−𝑖 and
𝑌 = 𝑋 \ {0, . . . , |𝜌|}, (𝜏0 , 𝜏1 , 𝑌) is the desired extension.

9.7 Pigeonhole principle 155

Forcing question for Σ0
1-formulas. We now design a forcing question for

Σ0
1 formulas. Note that this forcing question is not Σ0

1-preserving, and there-
fore does not yield a good first-jump control. This is due to the fact that the
reservoir 𝑋 is too complex, so the only way to access it is to approximate it
by a large class, yielding a Π0

1(N) statement. On the bright side, the forcing
question is not disjunctive, and can be applied on every valid part.

Definition 9.7.4. Given a string 𝜎 ∈ 2<ℕ and a Σ0
1 formula 𝜑(𝐺), define

𝜎 ?⊢𝜑(𝐺) to hold if the following class is large32

32: Note that this forcing question is not
defined over conditions, but over strings.
Given a condition (𝜎0 , 𝜎1 , 𝑋), it is intended
to be applied on 𝜎0 or 𝜎1, depending on
which part is valid. Also note that, surpris-
ingly, since the forcing question does not in-
volve the reservoir, its answer only depends
on the stem.

:

UM
𝐷 ∩ {𝑍 : ∃𝜌 ⊆ 𝑍 𝜑(𝜎 ∪ 𝜌)}

By Lemma 9.6.15, the forcing question is Π0
1(𝐷 ⊕ 𝑀′) uniformly in 𝜎 and 𝜑.

Since 𝑀 is of low degree, 𝑀′ ∈ Nand by assumption, 𝐷 ∈ N, so the forcing
question is Π0

1(N).

Lemma 9.7.5. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with valid part 𝑖 and 𝜑(𝐺)
be a Σ0

1 formula.

1. If 𝜎𝑖 ?⊢𝜑(𝐺), then there is an extension of 𝑝 forcing 𝜑(𝐺𝑖) ;
2. If 𝜎𝑖 ?⊬𝜑(𝐺), then there is an extension of 𝑝 forcing ¬𝜑(𝐺𝑖). ★

Proof. Let V= {𝑍 : ∃𝜌 ⊆ 𝑍 𝜑(𝜎𝑖 ∪ 𝜌)}.

Suppose first 𝜎𝑖 ?⊢𝜑(𝐺). Then UM
𝐷

∩ V is large, so by Lemma 9.6.24,
⟨UM

𝐷
⟩ ⊆ V. Since part 𝑖 of 𝑝 is valid, then 𝐴𝑖 ∩ 𝑋 ∈ ⟨UM

𝐷
⟩ ⊆ V. Un-

folding the definition of V, there is some 𝜌 ⊆ 𝐴𝑖 ∩ 𝑋 such that 𝜑(𝜎𝑖 ∪ 𝜌)
holds. Letting 𝜏𝑖 = 𝜎𝑖 ∪ 𝜌, 𝜏1−𝑖 = 𝜎1−𝑖 and 𝑌 = 𝑋 \ {0, . . . , |𝜌|}, (𝜏0 , 𝜏1 , 𝑌)
is an extension forcing 𝜑(𝐺𝑖).
Suppose now 𝜎𝑖 ?⊬𝜑(𝐺). Then UM

𝐷
∩ V is not large, so by Exercise 9.6.13,

there is a finite set 𝐹 ⊆ 𝐷 such that UM
𝐹

∩ V is not large. For every 𝑘, let C𝑘
be the Π0

1(M) class of all sets 𝑍0 ⊕ · · · ⊕𝑍𝑘−1 such that 𝑍0 ∪ · · · ∪𝑍𝑘−1 = ℕ

and for every 𝑗 < 𝑘, 𝑍𝑖 ∉ UM
𝐹

∩ V. By assumption, C𝑘 ≠ ∅ for some 𝑘 ∈ ℕ,
so since M is a Scott ideal, there is such a set 𝑍0 ⊕ · · · ⊕ 𝑍𝑘−1 in C𝑘 ∩M. By
partition regularity of ⟨UM

𝐷
⟩, there is some 𝑗 < 𝑘 such that 𝑋∩𝑍 𝑗 ∈ ⟨UM

𝐷
⟩. In

particular, 𝑍 𝑗 ∈ ⟨UM
𝐷
⟩ ⊆ UM

𝐹
so 𝑍 𝑗 ∉ V. Letting𝑌 = 𝑋∩𝑍 𝑗 , 𝑞 = (𝜎0 , 𝜎1 , 𝑌)

is an extension such that for every 𝜌 ⊆ 𝑌, ¬𝜑(𝜎𝑖 ∪ 𝜌) holds. It follows that 𝑞
forces ¬𝜑(𝐺𝑖).

Syntactic forcing relation. We now turn to second-jump control. The forcing
relation for Σ0

1, Π0
1 and Σ0

2 formulas is the usual one. It will be convenient to
work with the following syntactic forcing relation for Π0

2 formulas.

Definition 9.7.6. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition, 𝑖 < 2 be a part and
𝜑(𝐺) ≡ ∀𝑥𝜓(𝐺, 𝑥) be a Π0

2 formula. Let 𝑝 ⊩ 𝜑(𝐺𝑖) hold if for every 𝜌 ⊆ 𝑋

and every 𝑥 ∈ ℕ, 𝜎𝑖 ∪ 𝜌 ?⊢𝜓(𝐺, 𝑥).33

33: Assuming the forcing question for Σ0
1

formulas meets its specification, this forc-
ing relation says that for every 𝑥 and every
future extension of the stem, there will be
an extension forcing 𝜓(𝐺𝑖 , 𝑥). Thus, this
forcing question states, for each 𝑥, the den-
sity below 𝑝 of the set of conditions forc-
ing 𝜓(𝐺𝑖 , 𝑥). Since the forcing question for
Σ0

1 formulas meets its specification on valid
parts, then this syntactic forcing relation im-
plies the true forcing relation one the parts
which remain valid in the future.

♦

One easily proves that this syntactic forcing relation is closed under condition
extension. The following lemma states that, for every sufficiently generic filter F
with valid part 𝑖, if 𝑝 ⊩ 𝜑(𝐺𝑖) for some 𝑝 ∈ F, then 𝑝 forces 𝜑(𝐺𝑖).

Lemma 9.7.7. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with valid part 𝑖 and 𝜑(𝐺) ≡

156 9 Jump cone avoidance

∀𝑥𝜓(𝐺, 𝑥) be a Π0
2 formula. If 𝑝 ⊩ 𝜑(𝐺𝑖), then for every 𝑥 ∈ ℕ, there is an

extension 𝑞 ≤ 𝑝 forcing 𝜓(𝐺𝑖 , 𝑥). ★

Proof. Fix 𝑥 ∈ ℕ. Since 𝑝 ⊩ 𝜑(𝐺𝑖), then in particular, for 𝜌 = ∅, 𝜎𝑖 ?⊢𝜓(𝐺, 𝑥).
By Lemma 9.7.5, there is an extension of 𝑝 forcing 𝜓(𝐺𝑖 , 𝑥).

Disjunctive forcing question for Σ0
2-formulas. The notion of forcing admits a

Σ0
2-preserving disjunctive forcing question for Σ0

2 formulas, but which satisfies
its specification only if both parts of the condition are valid.

Definition 9.7.8. Given a condition 𝑝 = (𝜎0 , 𝜎1 , 𝑋) and a pair of Σ0
2 for-

mulas 𝜑0(𝐺) and 𝜑1(𝐺), with 𝜑𝑖(𝐺) ≡ ∃𝑥𝜓𝑖(𝐺, 𝑥), define 𝑝 ?⊢𝜑0(𝐺0) ∨
𝜑1(𝐺1) to hold if for every 2-partition 𝑍0 ∪ 𝑍1 = 𝑋, there is some 𝑖 < 2,
some 𝑥 ∈ ℕ and some 𝜌 ⊆ 𝑍𝑖 such that 𝜎𝑖 ∪ 𝜌 ?⊢𝜓𝑖(𝐺, 𝑥).3434: As usual, the formula 𝜓𝑖 being Π0

1, we
use here the forcing question for Π0

1 formu-
las obtained by taking the negation of the
forcing question for Σ0

1 formulas.

♦

By compactness, this forcing question holds iff there is a level ℓ ∈ ℕ such that
for every 2-partition 𝑍0 ∪ 𝑍1 = 𝑋↾ℓ , there is some 𝑖 < 2, some 𝑥 ∈ ℕ and
some 𝜌 ⊆ 𝑍𝑖 such that 𝜎𝑖 ∪ 𝜌 ?⊢𝜓𝑖(𝐺, 𝑥). The formula 𝜎𝑖 ∪ 𝜌 ?⊢𝜓𝑖(𝐺, 𝑥) is
Σ0

1(N) uniformly in 𝜎𝑖 , 𝜌 and 𝜓𝑖 , thus the overall forcing question is Σ0
1(N)

uniformly in 𝑝, 𝜑0 and 𝜑1.

Lemma 9.7.9. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with both valid parts and
𝜑0(𝐺), 𝜑1(𝐺) be two Σ0

1 formulas.

1. If 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1), then there is an extension of 𝑝 forcing 𝜑(𝐺𝑖)
for some 𝑖 < 2 ;

2. If 𝑝 ?⊬𝜑0(𝐺0) ∨ 𝜑1(𝐺1), then there is an extension 𝑞 of 𝑝 with 𝑞 ⊩
¬𝜑(𝐺𝑖) for some 𝑖 < 2. ★

Proof. Say 𝜑𝑖(𝐺) ≡ ∃𝑥𝜓𝑖(𝐺, 𝑥).
Suppose first 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1). Then, letting 𝑍0 = 𝑋 ∩ 𝐴0 and 𝑍1 =

𝑋 ∩ 𝐴1, there is some 𝑖 < 2, some 𝑥 ∈ ℕ and some 𝜌 ⊆ 𝑋 ∩ 𝐴𝑖 such
that 𝜎𝑖 ∪ 𝜌 ?⊢𝜓𝑖(𝐺, 𝑥). In particular, letting 𝜏𝑖 = 𝜎𝑖 ∪ 𝜌, 𝜏1−𝑖 = 𝜎1−𝑖 and
𝑌 = 𝑋 \ {0, . . . , |𝜌|}, 𝑞 = (𝜏0 , 𝜏1 , 𝑌) is an extension such that both parts
are valid. By Lemma 9.7.5, there is an extension of 𝑞 forcing 𝜓𝑖(𝐺𝑖 , 𝑥), hence
forcing 𝜑(𝐺𝑖).
Suppose now 𝑝 ?⊬𝜑0(𝐺0) ∨ 𝜑1(𝐺1). Let Cbe the Π0

1(N) class of all 𝑍 such
that, letting 𝑍0 = 𝑍 and 𝑍1 = 𝑍, for every 𝑖 < 2, every 𝑥 ∈ ℕ, and every
𝜌 ⊆ 𝑋 ∩ 𝑍𝑖 , 𝜎𝑖 ∪ 𝜌 ?⊬𝜓𝑖(𝐺, 𝑥). Since N is a Scott ideal, there is such a
set 𝑍 ∈ C∩ N. By partition regularity of ⟨UM

𝐷
⟩, there is some 𝑖 < 2 such

that 𝑋 ∩ 𝑍𝑖 ∈ ⟨UM
𝐷
⟩. The condition 𝑞 = (𝜎0 , 𝜎1 , 𝑋 ∩ 𝑍𝑖) is an extension of 𝑝

such that 𝑞 ⊩ ¬𝜑𝑖(𝐺𝑖).

Degenerate forcing question. In most cases, for sufficiently Cohen generic
or sufficiently random sets 𝐴, both parts of every conditions will be valid.
Unfortunately, in some degenerate cases, there might be some condition
𝑝 = (𝜎0 , 𝜎1 , 𝑋) with only one valid part, say part 0, and the disjunctive forcing
question may not work because it would yield an extension deciding the formula
on part 1. In this case, for every extension of 𝑝, part 1 will stay invalid, and
part 0 will be valid. We will therefore make a degenerate construction in the
valid part.

If some part of a condition is not valid, then it is witnessed by a large Σ0
1(M)

superclass of ⟨UM
𝐷
⟩ in the following sense.

9.7 Pigeonhole principle 157

Definition 9.7.10. A witness of invalidity of part 𝑖 of a condition 𝑝 = (𝜎0 , 𝜎1 , 𝑋)
is a Σ0

1(M) large class V⊇ ⟨UM
𝐷
⟩ such that 𝑋 ∩ 𝐴𝑖 ∉ V. ♦

If part 𝑖 of 𝑝 is not valid, then by definition,𝑋∩𝐴𝑖 ∉ ⟨UM
𝐷
⟩, so by Lemma 9.6.24,

there is some Σ0
1(M) class V such that 𝑋 ∩ 𝐴𝑖 ∉ V. Thus, every invalid

part admits a witness of invalidity. One can exploit this witness to design a
non-disjunctive forcing question for Σ0

2 formulas on the valid part with the good
definitional properties.

Definition 9.7.11. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with witness of inva-
lidity Von part 1 − 𝑖, and let 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥) be a Σ0

2 formula. Define
𝑝 ?⊢V𝜑(𝐺𝑖) to hold if for every 2-partition 𝑍0⊔𝑍1 = 𝑋 such that 𝑍1−𝑖 ∉ V,
there is some 𝑥 ∈ ℕ and some 𝜌 ⊆ 𝑍𝑖 such that 𝜎𝑖 ∪ 𝜌 ?⊢𝜓𝑖(𝐺, 𝑥). ♦

Again, by compactness, this degenerate forcing question is Σ0
1(N). The follow-

ing lemma shows that this forcing question meets its specification.

Lemma 9.7.12. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with witness of invalidity
Von part 1 − 𝑖, and let 𝜑(𝐺) be a Σ0

2 formula.

1. If 𝑝 ?⊢V𝜑(𝐺𝑖), then there is an extension of 𝑝 forcing 𝜑(𝐺𝑖).
2. If 𝑝 ?⊬V𝜑(𝐺𝑖), then there is an extension 𝑞 ≤ 𝑝 such that 𝑞 ⊩ ¬𝜑(𝐺𝑖).

★

Proof. Say 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥).
Suppose first 𝑝 ?⊢V𝜑(𝐺𝑖). In particular, for 𝑍0 = 𝐴0 ∩ 𝑋 and 𝑍1 = 𝐴1 ∩ 𝑋,
there is some 𝑥 ∈ ℕ and some 𝜌 ⊆ 𝐴𝑖 ∩ 𝑋 such that 𝜎𝑖 ∪ 𝜌 ?⊢𝜓𝑖(𝐺, 𝑥).
Letting 𝜏𝑖 = 𝜎𝑖 ∪ 𝜌, 𝜏1−𝑖 = 𝜎1−𝑖 and 𝑌 = 𝑋 \ {0, . . . , |𝜌|}, 𝑞 = (𝜏0 , 𝜏1 , 𝑌) is
an extension such that part 1−𝑖 is invalid, hence part 𝑖 is valid. By Lemma 9.7.5,
there is an extension of 𝑞 forcing 𝜓𝑖(𝐺𝑖 , 𝑥), hence forcing 𝜑(𝐺𝑖).
Suppose now 𝑝 ?⊬V𝜑(𝐺𝑖). Let C be the Π0

1(N) class of all 𝑍 such that,
letting 𝑍0 = 𝑍 and 𝑍1 = 𝑍, then 𝑍1−𝑖 ∉ Vand for every 𝑥 ∈ ℕ, and every
𝜌 ⊆ 𝑋 ∩ 𝑍𝑖 , 𝜎𝑖 ∪ 𝜌 ?⊬𝜓𝑖(𝐺, 𝑥). Since N is a Scott ideal, there is such a
set 𝑍 ∈ C∩N. By partition regularity of ⟨UM

𝐷
⟩, since 𝑋∩𝑍1−𝑖 ∉ V⊇ ⟨UM

𝐷
⟩,

then 𝑋 ∩𝑍𝑖 ∈ ⟨UM
𝐷
⟩. The condition 𝑞 = (𝜎0 , 𝜎1 , 𝑋 ∩𝑍𝑖) is an extension of 𝑝

such that 𝑞 ⊩ ¬𝜑𝑖(𝐺𝑖).

We are now ready to prove Theorem 9.7.1.

Suppose first there is a condition 𝑝 with some invalid part 1 − 𝑖. Let Fbe a
sufficiently generic filter containing 𝑝 and let 𝐺𝑖 = 𝐺F,𝑖 . Then part 𝑖 is valid
in F. By Lemma 9.7.7, the syntactic forcing relation for Π0

2 formulas implies the
true forcing relation on part 𝑖. By Lemma 9.7.12 and by adapting Theorem 9.3.5,
for every Turing functional Φ𝑒 , there is some condition 𝑞 ∈ F forcing Φ

𝐺′
𝑖

𝑒 ≠ 𝐶,
so 𝐶 is not Δ0

2(𝐺𝑖).
Suppose now that for every condition, both parts are valid. Let Fbe a suffi-
ciently generic filter, and let 𝐺𝑖 = 𝐺F,𝑖 for 𝑖 < 2. By Lemma 9.7.7, the syntactic
forcing relation for Π0

2 formulas implies the true forcing relation on both parts.
By Lemma 9.7.9 and by adapting Theorem 9.3.5, for every pair of Turing func-
tionals Φ𝑒0 ,Φ𝑒1 , there is some condition 𝑞 ∈ F forcing Φ

𝐺′
0

𝑒0 ≠ 𝐶 ∨Φ
𝐺′

1
𝑒1 ≠ 𝐶.

By a pairing argument, there is some 𝑖 < 2 such that 𝐶 is not Δ0
2(𝐺𝑖). This

completes the proof of Theorem 9.7.1.

158 9 Jump cone avoidance

Exercise 9.7.13 (Monin and Patey [31]). Let 𝑓 : ℕ → ℕ be ∅′-hyperimmune.
Adapt the proof of Theorem 9.7.1 and Theorem 3.6.4 to show that for ev-
ery set 𝐴, there is an infinite subset 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴 such that 𝑓 is 𝐻′-
hyperimmune. ★

Jump compactness avoidance 10
10.1 Context and motivation . 159
10.2 Jump PA avoidance . . . 160
10.3 Mathias forcing and COH 163
10.4 Product largeness 165
10.5 Product Mathias forcing . 169
10.6 Pigeonhole principle . . . 173
10.7 Jump DNC avoidance . . 181

Prerequisites: Chapters 2 to 5 and 9

Jump compactness avoidance combines the complexity of two orthogonal
problematics, namely, second-jump control and compactness avoidance. As
one shall expect, from a purely abstract viewpoint, it can be reduced to the
design of a forcing question for Σ0

2 formulas with the appropriate merging
properties. However, in real world applications, such as variants of Mathias
forcing in reverse mathematics, both techniques do not necessarily combine
well, adding an extra layer of complexity.

10.1 Context and motivation

Jump PA avoidance plays a particularly important role in reverse mathematics,
due to its connections with the cohesiveness principle. Recall from Section 3.4
that an infinite set 𝐶 ⊆ ℕ is cohesive for a sequence of sets ®𝑅 = 𝑅0 , 𝑅1 , . . . if
for every 𝑛 ∈ ℕ, 𝐶 ⊆∗ 𝑅𝑛 or 𝐶 ⊆∗ 𝑅𝑛 , where ⊆∗ means “included up to finite
changes”. The cohesiveness principle is the problem COH whose instances
are infinite sequences of sets, and whose solutions are infinite cohesive sets.

As mentioned in Chapter 9, COH should be considered as a statement about
jump computation, as it is computably equivalent1

1: This equivalence also holds over RCA0+
BΣ0

2, but not RCA0 alone. Indeed, RCA0 +
COH is Π1

1-conservative over RCA0 (Ex-
ercise 7.3.14), while by Fiori-Carones et
al. [62, Proposition 4.4], the other statement
implies BΣ0

2 over RCA0.

to the statement “For every
Δ0

2 infinite binary tree 𝑇 ⊆ 2<ℕ , there is a Δ0
2-approximation of an infinite path.”

There exists a uniformly computable sequence of sets2

2: Actually, it suffices to consider the se-
quence of all primitive recursive sets.

such that the degrees
of its cohesive sets are exactly those whose jump is PA over ∅′. Such an
instance is maximal, in the sense that every solution to this instance compute
a solution to every other computable instance. Moreover, for every set 𝑃 of PA
degree over ∅′, there exists an 𝜔-model Mof COH such that for every 𝑋 ∈ M,
𝑋′ ≤𝑇 𝑃. Therefore, separating a problem from COH over 𝜔-models can be
reduced without loss of generality to jump PA avoidance.

Definition 10.1.1. A problem P admits jump PA avoidance3 3: As usual, the unrelativized formulation
with 𝑍 = 𝐷 = ∅ is far more natural, but
does not behave well with artificial prob-
lems.

if for every pair
of sets 𝑍 and 𝐷 ≤𝑇 𝑍 such that 𝑍′ is not of PA degree over 𝐷′, every
𝑍-computable instance 𝑋 of P admits a solution 𝑌 such that (𝑌 ⊕ 𝑍)′ is not
of PA degree over 𝐷′.4

4: One can also define the notion of strong
jump PA avoidance, by considering arbitrary
instances of P instead of 𝑍-computable
ones.

♦

The cohesiveness principle can be considered as a sequential version of the
pigeonhole principle. An instance is a countable sequences of instances of RT1

2,
that is, a countable sequence of sets 𝑅0 , 𝑅1 , . . . , and a solution is a single
set which is, up to finite changes, a solution to every 𝑅𝑛 . One can define a
similar statement capturing the degrees whose jump are DNC over ∅′, in terms
of the thin set theorem. The thin set theorem for 𝑛-tuples (TS𝑛) is a statement
introduced by Friedman, whose instances are colorings 𝑓 : [ℕ]𝑛 → ℕ, and
whose solutions are infinite sets 𝐻 ⊆ ℕ such that 𝑓 [𝐻]𝑛 ≠ ℕ. Such sets are
called 𝑓 -thin.

Exercise 10.1.2 (Patey [88]). Given a uniformly computable sequence ®𝑔 =

𝑔0 , 𝑔1 , . . . of functions of typeℕ → ℕ, an infinite set 𝐶 ⊆ ℕ is thin ®𝑔-cohesive
if for every 𝑛 ∈ ℕ, there is some 𝑘 ∈ ℕ such that 𝐶 \ [0, 𝑘] is 𝑔𝑛-thin.

160 10 Jump compactness avoidance

1. Let ®𝑓 = 𝑓0 , 𝑓1 , . . . be the sequence of all primitive recursive functions
of type ℕ → ℕ. Show that for every infinite thin ®𝑓 -cohesive set 𝐶, 𝐶′ is
of DNC degree over ∅′.

2. Let ®𝑔 = 𝑔0 , 𝑔1 , . . . be a uniformly computable sequence of functions
of type ℕ → ℕ and 𝐷 be a set whose jump is of DNC degree over ∅′.
Show that 𝐷 computes an infinite thin ®𝑔-cohesive set. ★

The degrees whose jump are DNC over ∅′ received less attention than their
PA counterpart, but can be used to prove separations over another well-known
statement: the rainbow Ramsey theorem for pairs. A coloring 𝑓 : [ℕ]𝑛 → ℕ

is 𝑘-bounded if for every 𝑐 ∈ ℕ, 𝑓 −1(𝑐) has size at most 𝑘. A set 𝐻 ⊆ ℕ is
an 𝑓 -rainbow if 𝑓 is injective on [𝐻]𝑛 , that is, each color is used at most once.
The rainbow Ramsey theorem for 𝑛-tuples and 𝑘-bounded colorings (RRT𝑛

𝑘
)

is the problem whose instances are 𝑘-bounded colorings 𝑓 : [ℕ]𝑛 → ℕ, and
whose solutions are infinite 𝑓 -rainbows.

Exercise 10.1.3 (Miller). Construct a computable 2-bounded coloring 𝑓 :
[ℕ]2 → ℕ such that for every ∅′-c.e. set𝑊∅′

𝑒 , if card𝑊∅′
𝑒 ≥ 2𝑒 + 2, then𝑊∅′

𝑒

is not extendible into an infinite 𝑓 -rainbow. Deduce that every infinite 𝑓 -rainbow
is of DNC degree over ∅′.5

5: This uses the characterization of DNC
degrees in terms of effectively immune func-
tions. See Section 6.2 for more details. Miller
actually proved a reversal: for every com-
putable 𝑘-bounded coloring 𝑓 : [ℕ]2 → ℕ,
every DNC function over ∅′ computes an
infinite 𝑓 -rainbow.

★

It follows that if a problem P admits jump DNC avoidance in the following sense,
then there is an 𝜔-model of RCA0 + P which is not a model of RRT2

2.

Definition 10.1.4. A problem P admits jump DNC avoidance if for every pair
of sets 𝑍 and 𝐷 ≤𝑇 𝑍 such that 𝑍′ is not of DNC degree over 𝐷′, every
𝑍-computable instance 𝑋 of P admits a solution 𝑌 such that (𝑌 ⊕ 𝑍)′ is not
of DNC degree over 𝐷′. ♦

10.2 Jump PA avoidance

As explained, the pure theory of jump compactness avoidance is a simple
adaptation of the techniques of compactness avoidance to Σ0

2 formulas. In this
section, we give two examples with Cohen genericity and tree forcing for the
sake of concreteness, and then state the general abstract theorem, leaving its
proof as an exercise.

Theorem 10.2.1
For every sufficiently Cohen generic set 𝐺, 𝐺′ is not of PA degree over ∅′.

Proof. Consider Cohen forcing, that is, the set 2<ℕ of binary strings, partially
ordered by the prefix relation. We defined in Section 9.3 a forcing question for
Σ0

2 formulas.

Definition 10.2.2. Let 𝜎 be a Cohen condition, and 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥) be
a Σ0

2 formula. Define 𝜎 ?⊢𝜑(𝐺) to hold if there exists some 𝑥 ∈ ℕ and some
𝜏 ⪰ 𝜎 such that 𝜏 strongly forces 𝜓(𝐺, 𝑥), that is, for every 𝜌 ⪰ 𝜏, 𝜓(𝜌, 𝑥)
holds. ♦

This forcing question satisfies a strong version of its specifications, that is, if
𝜎 ?⊢𝜑(𝐺) does not hold, then 𝜎 itself already forces ¬𝜑(𝐺). It follows that,
given two Σ0

2-formulas 𝜑0(𝐺) and 𝜑1(𝐺), if none of 𝜎 ?⊢𝜑𝑖(𝐺) holds, then 𝜎
forces ¬𝜑0(𝐺) ∧ ¬𝜑1(𝐺). This property is exploited in the following lemma:

10.2 Jump PA avoidance 161

Lemma 10.2.3. For every condition 𝜎 ∈ 2<ℕ and every Turing index 𝑒 ∈ ℕ,
there is an extension 𝜏 ⪰ 𝜎 forcing Φ𝐺′

𝑒 not to be a {0, 1}-valued DNC function
over ∅′.6

6: Recall that a degree is PA iff it computes
a {0, 1}-valued DNC function. This equiva-
lence also holds relative to any oracle.

★

Proof. Consider the following set:

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : 𝜎 ?⊢Φ𝐺′
𝑒 (𝑥)↓= 𝑣}

Since the forcing question is Σ0
2-preserving, the set 𝑈 is Σ0

2. There are three
cases:

▶ Case 1: (𝑥,Φ∅′
𝑥 (𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ such that Φ∅′

𝑥 (𝑥)↓. By Property
(1) of the forcing question, there is an extension 𝜏 ⪰ 𝜎 forcing Φ𝐺′

𝑒 (𝑥)↓=
Φ∅′
𝑥 (𝑥).

▶ Case 2: there is some 𝑥 ∈ ℕ such that (𝑥, 0), (𝑥, 1) ∉ 𝑈 . Then 𝜎
already forces ¬(Φ𝐺′

𝑒 (𝑥)↓= 0), ¬(Φ𝐺′
𝑒 (𝑥)↓= 1), so 𝜎 forces Φ𝐺′

𝑒 not to
be a {0, 1}-valued DNC function over ∅′.

▶ Case 3: None of Case 1 and Case 2 holds. Then 𝑈 is a Σ0
2 graph of a

{0, 1}-valued DNC function over ∅′. This contradicts the fact that 0′ is
not PA over ∅′.

We are now ready to prove Theorem 10.2.1. Given 𝑒 ∈ ℕ, let D𝑒 be the set
of all conditions 𝜎 ∈ 2<ℕ forcing Φ𝐺′

𝑒 not to be a {0, 1}-valued DNC function
over ∅′. It follows from Lemma 10.2.3 that every D𝑒 is dense, hence every
sufficiently generic filter F is {D𝑒 : 𝑒 ∈ ℕ}-generic, so 𝐺′

F
is not of PA degree

over ∅′. This completes the proof of Theorem 10.2.1.

If a problem P admits a low basis, then it admits jump PA avoidance. Thus, by
the low basis theorem for Π0

1 classes (Theorem 4.4.6), there exists a PA degree
which is low, hence whose jump is not PA over ∅′. More generally, as explained
in Section 9.2, it is preferable to use an effective first-jump construction rather
than a second-jump one when available, as the former usually involves a
simpler machinery.

Although WKL admits a low basis, it is sometimes necessary to use a forcing
construction with a second-jump control, when trying for example to preserve
a first-jump and second-jump property simultaneously, as it was the case for
Theorem 9.4.1. We now prove that WKL can simultaneously avoid a cone, and
have a jump of non-PA degree over ∅′.

Theorem 10.2.4
Let 𝐶 be a non-computable set. For every non-empty Π0

1 class P ⊆ 2ℕ ,
there exists a member 𝐺 ∈ P such that 𝐶 ≰𝑇 𝐺 and 𝐺′ is not of PA degree
over ∅′.

Proof. The proof is an adaptation of Theorem 9.4.1, using the same notion of
forcing and the same forcing question. More precisely, we use a restriction of
the Jockusch-Soare forcing to infinite primitive recursive binary trees, partially
ordered by the inclusion relation. By Lemma 9.4.2, every Π0

1 class in 2ℕ can
be represented as the class of paths of a primitive recursive binary tree.

The forcing question for Σ0
1-formulas is the same as in Exercise 3.3.7 and

Theorem 9.4.1. We recall it for the sake of completeness.

162 10 Jump compactness avoidance

Definition 10.2.5. Given a condition 𝑇 ⊆ 2<ℕ and a Σ0
1 formula 𝜑(𝐺),

define 𝑇 ?⊢𝜑(𝐺) to hold if there is some level ℓ ∈ ℕ such that 𝜑(𝜎) holds
for every node 𝜎 at level ℓ in 𝑇. ♦

This forcing question isΣ0
1-preserving and admits strong properties: if𝑇 ?⊢𝜑(𝐺),

then 𝜎 already forces 𝜑(𝐺). On the other hand, if 𝑇 ?⊬𝜑(𝐺), then one must
restrict 𝑇 to an infinite primitive recursive sub-tree 𝑆 in order to force ¬𝜑(𝐺)
(see Lemma 9.4.4). By Theorem 3.3.4 for every sufficiently generic filter F,
𝐶 ≰𝑇 𝐺F.

Definition 10.2.6. Given a condition 𝑇 ⊆ 2<ℕ and a Σ0
2 formula 𝜑(𝐺) ≡

∃𝑥𝜓(𝐺, 𝑥), define 𝑇 ?⊢𝜑(𝐺) to hold if there is some 𝑥 ∈ ℕ and an exten-
sion 𝑆 ≤ 𝑇 such that 𝑆 ?⊢𝜓(𝐺, 𝑥). ♦

The forcing question for Σ0
2-formulas is Σ0

2-preserving, and also satisfies strong
properties, but on Π0

2-formulas rather than Σ0
2-formulas. By Lemma 9.4.6, if

𝑇 ?⊬𝜑(𝐺), then 𝑇 already forces ¬𝜑(𝐺). This property, similar to the case of
Cohen forcing, is exploited to prove the following lemma:

Lemma 10.2.7. For every condition 𝑇 and every Turing index 𝑒 ∈ ℕ, there
is an extension 𝑆 ⊆ 𝑇 forcing Φ𝐺′

𝑒 not to be a {0, 1}-valued DNC function
over ∅′. ★

Proof. Consider the following set:

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : 𝑇 ?⊢Φ𝐺′
𝑒 (𝑥)↓= 𝑣}

Since the forcing question is Σ0
2-preserving, the set 𝑈 is Σ0

2. There are three
cases:

▶ Case 1: (𝑥,Φ∅′
𝑥 (𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ such that Φ∅′

𝑥 (𝑥)↓. By Property
(1) of the forcing question, there is an extension 𝑆 ⊆ 𝑇 forcing Φ𝐺′

𝑒 (𝑥)↓=
Φ∅′
𝑥 (𝑥).

▶ Case 2: there is some 𝑥 ∈ ℕ such that (𝑥, 0), (𝑥, 1) ∉ 𝑈 . Then 𝑇
already forces ¬(Φ𝐺′

𝑒 (𝑥)↓= 0) ∧ ¬(Φ𝐺′
𝑒 (𝑥)↓= 1), so 𝑇 forces Φ𝐺′

𝑒 not
to be a {0, 1}-valued DNC function over ∅′.

▶ Case 3: None of Case 1 and Case 2 holds. Then 𝑈 is a Σ0
2 graph of a

{0, 1}-valued DNC function over ∅′. This contradicts the fact that 0′ is
not PA over ∅′.

Putting all the pieces together, for every sufficiently generic filter F, 𝐶 ≰𝑇 𝐺F

by Theorem 3.3.4, and 𝐺′
F

is not of PA degree over ∅′ by Lemma 10.2.7. This
completes the proof of Theorem 10.2.4.

Recall from Section 5.1 that given a notion of forcing (ℙ,≤) and a family of
formulas Γ, a forcing question is Γ-merging if for every 𝑝 ∈ ℙ and every pair of
Γ-formulas 𝜑0(𝐺), 𝜑1(𝐺), if 𝑝 ?⊢𝜑0(𝐺) and 𝑝 ?⊢𝜑1(𝐺) both hold, then there
is an extension 𝑞 ≤ 𝑝 forcing 𝜑0(𝐺) ∧ 𝜑1(𝐺).

Exercise 10.2.8. Let (ℙ,≤) be a notion of forcing with a Σ0
2-preserving Π0

2-
merging forcing question. Adapt the proof of Theorem 5.1.9 to show that for
every sufficiently generic filter F, 𝐺′

F
is not of PA degree over ∅′. ★

10.3 Mathias forcing and COH 163

7: Recall that the principal function of an
infinite set 𝑋 = {𝑥0 < 𝑥1 < . . . } is the
function 𝑝𝑋 : ℕ → ℕ defined by 𝑛 ↦→ 𝑥𝑛 .

10.3 Mathias forcing and COH

Solutions to Ramsey-type theorems are usually built using variants of Mathias
forcing. As seen in Proposition 9.5.1, Mathias-like notions of forcing tend to
produce sets of high degree when the reservoirs are only under computability-
theoretic restrictions. Indeed, by considering sufficiently sparse reservoirs, one
can ensure that the principal function7 generic set 𝐺 eventually dominates
every total computable function. By Martin’s domination theorem, these sets
are of high degree.

We therefore developed in Section 9.6 a framework of partition regularity,
yielding variants of Mathias forcing enjoying many of the combinatorial fea-
tures of Mathias forcing, but with a good second-jump control.8

8: The reader must be familiar with Sec-
tion 9.6 to understand the remainder of this
section.Recall that a

class P⊆ 2ℕ is partition regular if it is non-empty, it is closed under superset,
and for every 𝑋 ∈ P and every 2-cover 𝑌0 ∪ 𝑌1 ⊇ 𝑋, there is some 𝑖 < 2
such that 𝑌𝑖 ∈ P. The idea is to work with Mathias conditions (𝜎, 𝑋) such
that 𝑋 ∈ P, where P is a partition regular class containing only “non-sparse”
infinite sets.

Restricting the reservoirs to a well-chosen partition regular class enabled to
prevent the reservoirs from being too sparse, while still allowing the basic
operations on reservoirs, such as finite truncation, or finite partitioning. Un-
fortunately, although this restriction is sufficient to obtain strong jump cone
avoidance, there is no hope of obtaining jump PA avoidance using a notion of
forcing which allows finite partitioning of the reservoir.

Proposition 10.3.1. Fix a partition regular class P⊆ 2ℕ . Let ℙ be the restric-
tion of computable Mathias forcing where reservoirs belong to P. For every
sufficiently generic filter F, 𝐺′

F
is of PA degree over ∅′. ★

Proof. Fix a uniformly computable sequence of sets 𝑅0 , 𝑅1 , . . . such that
for every infinite ®𝑅-cohesive set 𝐶, 𝐶′ is of PA degree over ∅′. We claim
that for every sufficiently generic filter F, 𝐺F is ®𝑅-cohesive. Indeed, given a
condition (𝜎, 𝑋) and some 𝑛, either 𝑋∩𝑅𝑛 , or 𝑋∩𝑅𝑛 belongs to P, so either
(𝜎, 𝑋∩𝑅𝑛) or (𝜎, 𝑋∩𝑅𝑛) is a valid extension. Any sufficiently generic filter F
containing the former (latter) extension satisfies 𝐺F ⊆∗ 𝑅𝑛 (𝐺F ⊆∗ 𝑅𝑛).

The previous proposition can be considered as a sanity check, but does not
help designing an appropriate notion of forcing. In order to better understand
the problem, let us consider the forcing question for Σ0

2-formulas for the most
basic variant of Mathias forcing with a good second-jump control. For this, we
need to reintroduce some pieces of notation from Section 9.6.

Letting 𝑊𝑍
0 ,𝑊

𝑍
1 , . . . be the list of all 𝑍-c.e. sets of strings, this induce a

list U𝑍
0 , U

𝑍
1 , . . . of all Σ0

1(𝑍) classes of sets, upward-closed by inclusion, as
follows: U𝑍

𝑒 = {𝑋 : (∃𝜌 ∈ 𝑊𝑍
𝑒)𝜌 ⊆ 𝑋}. Fix a countable Scott ideal M =

{𝑍0 , 𝑍1 , . . . }, coded by a set 𝑀 =
⊕

𝑛 𝑍𝑛 . Any set 𝑋 ∈ M is represented
by an integer 𝑎 ∈ ℕ such that 𝑋 = 𝑍𝑎 . We then say that 𝑎 is an 𝑀-code
of 𝑋. One will consider exclusively partition regular classes of the form UM

𝐶
=⋂

(𝑒 ,𝑖)∈𝐶 U
𝑍𝑖
𝑒 , for some set of indices 𝐶 ⊆ ℕ2.

Thinking of a partition regular class as a “reservoir of reservoirs”, the smaller
the partition regular class is, the more positive information it imposes on the
reservoirs. The idea is therefore to fix a maximal set of indices 𝐶 ⊆ ℕ2 such
that UM

𝐶
is partition regular. Such a class is then called M-minimal. Consider

164 10 Jump compactness avoidance

10: Le Houérou, Levy Patey and Mi-
mouni [83, Lemma 4.15] gave a direct proof
of the necessity of PA degrees over 𝑀′, but
there is a less direct argument: if there were
an M-cohesive class UM

𝐶
with 𝐶 ⊕ 𝑀′ of

non-PA degree over ∅′, then one would be
able to construct an infinite cohesive set
whose jump is not of PA degree over ∅′,
yielding a contradiction.

11: Recall that

L𝑋 = {𝑍 : 𝑍 ∩ 𝑋 is infinite }

If one only asked 𝑋 to belong to UM
𝐶

, then
by considering a partition regular subclass
UM
𝐷

⊆ UM
𝐶

, 𝑋 might no belong to UM
𝐷

,
so (𝜎, 𝑋, 𝐷) would not be a valid extension.
Requiring that UM

𝐶
is a partition regular sub-

class of L𝑋 is a way to strongly ensure that
𝑋 will belong to all partition regular sub-
classes of UM

𝐶
.

the notion of forcing whose conditions are pairs (𝜎, 𝑋), where 𝑋 ∈ UM
𝐶

and
𝑋 ∈ M, and whose extension is usual Mathias extension. The forcing question
for Σ0

2-formulas is defined as follows:

Definition 10.3.2. Given a condition (𝜎, 𝑋) and a Σ0
2 formula 𝜑(𝐺) ≡

∃𝑥𝜓(𝐺, 𝑥), define (𝜎, 𝑋) ?⊢𝜑(𝐺) to hold if there is some finite 𝜌 ⊆ 𝑋

and some 𝑥 ∈ ℕ such that the following class is not large9

9: Recall that a class A⊆ 2ℕ is large if it
is upward-closed, and for every 𝑘 ∈ ℕ and
every 𝑘-cover 𝑌0 ∪ · · · ∪ 𝑌𝑘−1 = ℕ, there
is some 𝑖 < 𝑘 such that 𝑌𝑖 ∈ A. By Propo-
sition 9.6.10, an upward-closed class A is
large iff it contains a partition regular sub-
class. An arbitrary union of partition regular
classes being partition regular, Acontains a
maximal partition regular subclass, written
L(A).

UM
𝐶 ∩ {𝑍 : ∃𝜂 ⊆ 𝑍 ¬𝜓(𝜎 ∪ 𝜌 ∪ 𝜂, 𝑥)}

This forcing question is Σ0
1(𝑀′⊕𝐶) and Π0

2-merging, which is almost sufficient
to apply Exercise 10.2.8. However, even in the case where the Scott set M
is coded by a set of low degree, the natural algorithm to build an M-minimal
class UM

𝐶
produces a Δ0

3 set of indices 𝐶 (see Proposition 9.6.19), yielding a
Σ0

3 forcing question for Σ0
2-formulas. In the case of jump cone avoidance, we

circumvented this problem by considering a weaker notion of minimality, called
M-cohesiveness. By Proposition 9.6.25, PA degrees over 𝑀′ are sufficient
(and necessary10) to compute a set 𝐶 ⊆ ℕ2 such that UM

𝐶
is M-cohesive,

which is sufficient to obtain a diagonalization lemma by the cone avoidance
basis theorem.

In the case of jump PA avoidance, however, having a Π0
2-merging forcing

question for Σ0
2-formulas which is Σ0

1 relative to a PA degree over ∅′ is not
sufficient to apply Exercise 10.2.8. One must therefore give up the notions of
M-minimality and M-cohesiveness, and work with evolving partition regular
classes. Consider therefore a new notion of forcing, whose conditions are of
the form (𝜎, 𝑋, 𝐶), where

1. (𝜎, 𝑋) is a Mathias condition;
2. UM

𝐶
is a partition regular subclass of L𝑋 ;11

3. 𝑋 ∈ M and 𝑀′ ⊕ 𝐶 is not of PA degree over ∅′.
A condition (𝜏, 𝑌, 𝐷) extends (𝜎, 𝑋, 𝐶) if (𝜏, 𝑌) Mathias extends (𝜎, 𝑋) and
𝐷 ⊇ 𝐶. The latter constraint ensures that UM

𝐷
⊆ UM

𝐶
, so the partition regular

class becomes more and more restrictive during the construction. The new
forcing question for Σ0

2-formulas can be defined as follows:

Definition 10.3.3. Given a condition (𝜎, 𝑋, 𝐶) and a Σ0
2 formula 𝜑(𝐺) ≡

∃𝑥𝜓(𝐺, 𝑥), define (𝜎, 𝑋, 𝐶) ?⊢𝜑(𝐺) to hold if the following class is not
large12

12: This forcing question coincides with Def-
inition 10.3.2 in the case UM

𝐶
is M-cohesive

by Lemma 9.6.23. However, in the more gen-
eral case of an arbitrary partition regular
class, one must use the latter formulation.

UM
𝐶 ∩

⋂
𝑥∈ℕ,𝜌⊆𝑋

{𝑍 : ∃𝜂 ⊆ 𝑍 ¬𝜓(𝜎 ∪ 𝜌 ∪ 𝜂, 𝑥)}

This new forcing question is again Σ0
1(𝑀′⊕𝐶), but letting 𝑀 be of low degree,

one can ensure that 𝑀′ ⊕ 𝐶 ≡𝑇 ∅′, hence that the forcing question is Σ0
2-

preserving. This improved complexity is at one cost: the new forcing question
is not Π0

2-merging. Indeed, suppose (𝜎, 𝑋, 𝐶) ?⊬𝜑(𝐺), then letting 𝐷 ⊇ 𝐶

be a set of indices such that

UM
𝐷 = UM

𝐶 ∩
⋂

𝑥∈ℕ,𝜌⊆𝑋
{𝑍 : ∃𝜂 ⊆ 𝑍 ¬𝜓(𝜎 ∪ 𝜌 ∪ 𝜂, 𝑥)}

the condition (𝜎, 𝑋, 𝐷) is an extension of (𝜎, 𝑋, 𝐶) forcing ¬𝜑(𝐺). However,
suppose that 𝜑0(𝐺) ≡ ∃𝑥𝜓0(𝐺, 𝑥) and 𝜑1(𝐺) ≡ ∃𝑥𝜓1(𝐺, 𝑥) be two Σ0

2-
formulas, if (𝜎, 𝑋, 𝐶) ?⊬𝜑𝑖(𝐺) for both 𝑖 < 2, then letting 𝐷𝑖 ⊇ 𝐶 be the

10.4 Product largeness 165

13: Generalizing Mathias conditions to mul-
tiple reservoirs is a way to get rid of
the issue of Proposition 10.3.1. Indeed, if
(𝜎, 𝑋0 , 𝑋1 , 𝐷) is a condition, and 𝑅 is a set,
then maybe neither (𝜎, 𝑋0 ∩𝑅, 𝑋1 ∩𝑅, 𝐷)
nor (𝜎, 𝑋0 ∩ 𝑅, 𝑋1 ∩ 𝑅, 𝐷) will be a valid
extension, so this notion of forcing does not
produce in general cohesive sets.

corresponding set of indices for each 𝑖 < 2, it might be that UM
𝐷0

and UM
𝐷1

are both partition regular, but UM
𝐷0∪𝐷1

= UM
𝐷0

∩ UM
𝐷1

is not, and therefore one
cannot choose (𝜎, 𝑋, 𝐷0 ∪ 𝐷1) as the desired extension. Again, by Proposi-
tion 10.3.1, this notion of forcing cannot admit a forcing question with the right
properties, as it produces cohesive sets. One must therefore modify the notion
of forcing.

The solution consists of keeping both partition regular classes UM
𝐷0

and UM
𝐷1

even if they are incompatible, and commit to preserve the positive information
from both classes. Concretely, UM

𝐷
= UM

𝐷0
× UM

𝐷1
is a class over 2ℕ × 2ℕ

which is partition regular in the following sense: for every (𝑋0 , 𝑋1) ∈ UM
𝐷

, for
every 𝑍0 ∪ 𝑍1 ⊇ 𝑋0 and 𝑅0 ∪ 𝑅1 ⊇ 𝑋1, there is some 𝑖 , 𝑗 < 2 such that
(𝑍𝑖 , 𝑅 𝑗) ∈ P. We shall therefore obtain a generalized condition13 of the form
(𝜎, 𝑋0 , 𝑋1 , 𝐷), where 𝑋0 , 𝑋1 are two reservoirs and UM

𝐷
is a partition regular

class over 2ℕ × 2ℕ which is a sub-class of

L𝑋0 ,𝑋1 = {(𝑍0 , 𝑍1) : 𝑋0 ∩ 𝑍0 and 𝑋1 ∩ 𝑍1 are both infinite}

Because the forcing question will be used multiple times, the dimension of the
product space will increase over conditions extensions. Moreover, we shall
manipulate partition regular classes over product spaces which cannot be
expressed as the cartesian product of partition regular classes over 2ℕ . We
therefore need to develop the framework of product partition regularity.

10.4 Product largeness

The theory of product partition regularity is a fairly straightforward generalization
of standard partition regularity and will therefore not receive as a detailed
development as in Section 9.6. In particular, many proofs will be left as exercise.
In what follows, fix a finite set 𝐼, which will serve as the index set14

14: From now on, we shall use index set
to denote the set of indices in the product
space. This should not be confused with
the set 𝐶 ⊆ ℕ2 of indices representing the
class UM

𝐶
.

of the product
space. We shall therefore work with sub-classes of 𝐼 → 2ℕ .15

15: The reason we do not use 𝐼 =

{0, . . . , 𝑛 − 1} and work with products of
the form 2ℕ×· · ·×2ℕ will become apparent
in the next section, where we will use a hier-
archy of index sets forming a tree structure.

Elements of the
set 𝐼 will be denoted 𝜈 or 𝜇, which for now can be thought of as integers, but
later will be better represented as strings.

One could define partition regularity for product classes, yielding a well-behaving
generalization of partition regularity over 2ℕ . However, in the next sections, all
the necessary combinatorics can be formulated in terms of largeness rather
than partition regularity. We shall therefore solely introduce largeness for prod-
uct classes, to reduce the number of concepts.

Definition 10.4.1. A class A⊆ 𝐼 → 2ℕ is large16 16: When 𝐼 is a singleton, this corresponds
to standard largeness over 2ℕ .

if

1. For all ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ ∈ Aand 𝑌𝜈 ⊇ 𝑋𝜈, then ⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ ∈ A.17

17: We use the notation ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ to
represent an element of 𝐼 → 2ℕ . Any such
element can be coded by an element of 2ℕ .

2. For every 𝑘 ∈ ℕ and every 𝑘-cover 𝑌0 ∪ · · · ∪ 𝑌𝑘−1 = ℕ, there is
some 𝑗 : 𝐼 → 𝑘 such that ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ A. ♦

The following fundamental lemma generalizes Exercise 9.6.13 and plays an
important role in the effective theory of large classes:

Lemma 10.4.2 (Monin and Patey [78]). Suppose A0 ⊇ A1 ⊇ . . . is a de-
creasing sequence of large classes. Then

⋂
𝑠 A𝑠 is large. ★

Proof. If ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ ∈ ⋂
𝑠 A𝑠 and 𝑌𝜈 ⊇ 𝑋𝜈 for every 𝜈 ∈ 𝐼, then for

every 𝑠, since A𝑠 is large, ⟨𝑌𝜈 : 𝜈 ∈ 𝑌⟩ ∈ A𝑠 , so ⟨𝑌𝜈 : 𝜈 ∈ 𝑌⟩ ∈ ⋂
𝑠 A𝑠 . Let

166 10 Jump compactness avoidance

𝑌0 ∪ · · · ∪𝑌𝑘 = ℕ for some 𝑘 ∈ ℕ. For every 𝑠 ∈ ℕ, by largeness of A𝑠 , there
is some 𝑗 : 𝐼 → 𝑘 such that ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ A𝑠 . By the infinite pigeonhole
principle, there is some 𝑗 : 𝐼 → 𝑘 such that ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ A𝑠 for infinitely
many 𝑠. Since A0 ⊇ A1 ⊇ . . . is a decreasing sequence, ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∈⋂
𝑠 A𝑠 .

Recall that for every infinite set𝑋 ∈ 2ℕ , the class L𝑋 = {𝑌 : 𝑋∩𝑌 is infinite }
is partition regular. We generalize the definition to product classes.

Definition 10.4.3. Given ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, let

L⟨𝑋𝜈 :𝜈∈𝐼⟩ = {⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ : ∀𝜈 ∈ 𝐼, 𝑌𝜈 ∩ 𝑋𝜈 is infinite}

The following easy exercise simply states that the definition is invariant under
finite modifications of the sets.

Exercise 10.4.4 (Monin and Patey [78]). Let ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ and ⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩
be such that 𝑋𝜈 =

∗ 𝑌𝜈1818: The notation𝑋 =∗ 𝑌 means that𝑋 and
𝑌 are equal up to finite changes.

for every 𝜈 ∈ 𝐼. Then L⟨𝑋𝜈 :𝜈∈𝐼⟩ = L⟨𝑌𝜈 :𝜈∈𝐼⟩ . ★

In general, L𝑋 ∩L𝑌 ⊋ L𝑋∩𝑌 for infinite sets 𝑋,𝑌. For instance, if 𝑋 and 𝑌
are the sets of all odd and even numbers, respectively, then ℕ ∈ L𝑋 ∩L𝑌

but L𝑋∩𝑌 = ∅. On the other hand, if L𝑋 ∩L𝑌 is large, then so is L𝑋∩𝑌 . The
following lemma generalizes this property.

Lemma 10.4.5 (Monin and Patey [78]). Let A ⊆ 𝐼 → 2ℕ be a large class
and ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, ⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ be two tuples. If A∩ L⟨𝑋𝜈 :𝜈∈𝐼⟩ ∩ L⟨𝑌𝜈 :𝜈∈𝐼⟩ is
large, then so is A∩L⟨𝑋𝜈∩𝑌𝜈 :𝜈∈𝐼⟩ . ★

Proof. First, note that A∩ L⟨𝑋𝜈∩𝑌𝜈 :𝜈∈𝐼⟩ is upward-closed for inclusion. Let
𝑍0 ∪ · · · ∪ 𝑍𝑘−1 = ℕ. By refining the covering, we can assume that for
every 𝑡 < 𝑘 and 𝜈 ∈ 𝐼, 𝑍𝑡 is both 𝑋𝜈 and 𝑌𝜈-homogeneous. Since A∩
L⟨𝑋𝜈 :𝜈∈𝐼⟩ ∩ L⟨𝑌𝜈 :𝜈∈𝐼⟩ is large, there is some 𝑗 : 𝐼 → 𝑘 such that ⟨𝑍 𝑗(𝜈) :
𝜈 ∈ 𝐼⟩ ∈ A∩ L⟨𝑋𝜈 :𝜈∈𝐼⟩ ∩ L⟨𝑌𝜈 :𝜈∈𝐼⟩ . We claim that 𝑍 𝑗(𝜈) ⊆ 𝑋𝜈 ∩ 𝑌𝜈 for
every 𝜈 ∈ 𝐼. Indeed, since ⟨𝑍 𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ L⟨𝑋𝜈 :𝜈∈𝐼⟩ , then 𝑍 𝑗(𝜈) ∩ 𝑋𝜈 is
infinite, so by 𝑋𝜈-homogeneity of 𝑍 𝑗(𝜈), 𝑍 𝑗(𝜈) ⊆ 𝑋𝜈. Similarly, 𝑍 𝑗(𝜈) ⊆ 𝑌𝜈.
Thus ⟨𝑍 𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ A∩L⟨𝑋𝜈∩𝑌𝜈 :𝜈∈𝐼⟩ .

Recall from Section 9.6 that every large class A ⊆ 2ℕ admits a maximal
partition regular sub-class L(A), which admits a formulation purely in terms
of largeness thanks to Exercise 9.6.12. We give a similar definition for product
classes.

Proposition 10.4.6 (Monin and Patey [78]). Let A ⊆ 𝐼 → 2ℕ be a non-
trivial large class. The class

L(A) = {⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ ∈ A : A∩L⟨𝑋𝜈 :𝜈∈𝐼⟩ is large }

is a large sub-class of A. ★

Proof. First, L(A) is by definition a sub-class of A. Moreover, it is upward-
closed for inclusion. Suppose for the contradiction that L(A) is not large.
Then there is some 𝑘 ∈ ℕ and some 𝑘-cover 𝑋0 ∪ · · · ∪ 𝑋𝑘−1 = ℕ such
that for every 𝑗 : 𝐼 → 𝑘, ⟨𝑋𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∉ L(A). Unfolding the definition,

10.4 Product largeness 167

for every 𝑗 : 𝐼 → 𝑘, A∩ L⟨𝑋𝑗(𝜈):𝜈∈𝐼⟩ is not large. Thus for every 𝑗 : 𝐼 → 𝑘,
there is some 𝑘 𝑗 ∈ ℕ and some 𝑘 𝑗-cover 𝑌0 ∪ · · · ∪ 𝑌𝑘 𝑗−1 = ℕ such that
for every 𝑖 : 𝐼 → 𝑘 𝑗 , ⟨𝑌𝑖(𝜈) : 𝜈 ∈ 𝐼⟩ ∉ A. Let 𝑍0 ∪ . . . 𝑍ℓ−1 = ℕ be the
common refinement of all these covers. Then, for every 𝑟 : 𝐼 → ℓ , ⟨𝑍𝑟(𝜈) :
𝜈 ∈ 𝐼⟩ ∉ A∩L⟨𝑍𝑟(𝜈):𝜈∈𝐼⟩ . However, since A is large, there is some 𝑟 : 𝐼 → ℓ

such that ⟨𝑍𝑟(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ A, and since A is non-trivial, 𝑍𝑟(𝜈) is infinite for
every 𝜈 ∈ 𝐼, so ⟨𝑍𝑟(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ L⟨𝑍𝑟(𝜈):𝜈∈𝐼⟩ . It follows that ⟨𝑍𝑟(𝜈) : 𝜈 ∈ 𝐼⟩ ∈
A∩L⟨𝑍𝑟(𝜈):𝜈∈𝐼⟩ . Contradiction.

Exercise 10.4.7.

1. Define the notion of partition regularity of sub-classes of 𝐼 → 2ℕ .
2. Show that if A⊆ 𝐼 → 2ℕ is large, then L(A) is the maximal partition

regular subclass of A. ★

10.4.1 Effective classes

Let 𝑊𝑍,𝐼
0 ,𝑊𝑍,𝐼

1 , . . . be a list of all 𝑍-c.e. subsets of 𝐼 → 2<ℕ . As above, this
induces a list U𝑍,𝐼

0 , U𝑍,𝐼
1 , . . . of all Σ0

1(𝑍) sub-classes of 𝐼 → 2ℕ , upward-
closed by inclusion. Fix a countable Scott ideal M= {𝑍0 , 𝑍1 , . . . } coded by
a set 𝑀 =

⊕
𝑛 𝑍𝑛 . Given a set 𝐶 ⊆ ℕ2, we write U

M,𝐼
𝐶

for
⋂

(𝑒 ,𝑖)∈𝐶 U
𝑍𝑖 ,𝐼
𝑒 .

Lemma 10.4.8. Let 𝐶 ⊆ ℕ2 be a set. The statement “UM,𝐼
𝐶

is large” isΠ0
1(𝐶⊕

𝑀′) uniformly in 𝐶, 𝑀 and 𝐼. ★

Proof. Let us first show that the statement “U𝑍,𝐼
𝑒 is large” is Π0

2(𝑍) uniformly
in 𝑒, 𝑍 and 𝐼. Indeed, by compactness, U𝑍,𝐼

𝑒 is large iff for every 𝑘 ∈ ℕ, there
is some ℓ ∈ ℕ such that for every 𝑘-cover 𝑌0 ∪ · · · ∪𝑌𝑘−1 = {0, . . . , ℓ}, there
is some 𝑗 : 𝐼 → 𝑘 and some 𝜌 ∈ 𝑊 𝐼

𝑒 such that for each 𝜈 ∈ 𝐼, 𝜌(𝜈) ⊆ 𝑌𝑗(𝜈).
This statement is Π0

2(𝑍) uniformly in 𝑒 and 𝑍. Then, by Lemma 10.4.2, UM,𝐼
𝐶

is large iff for every finite set 𝐹 ⊆ 𝐶, UM,𝐼
𝐹

is large. The resulting statement is
therefore Π0

1(𝐶 ⊕ 𝑀′).

We shall work exclusively with non-trivial classes of the form U
M,𝐼
𝐶

where M

is a Scott ideal coded by a set of low degree, and 𝐶 ⊆ ℕ2 is Δ0
2. The following

exercise shows that such classes are Π0
2.

Exercise 10.4.9. Let Mbe a Scott ideal, coded by a set 𝑀 of low degree. Let
𝐶 ⊆ ℕ2 be Σ0

2. Show that UM,𝐼
𝐶

is Π0
2. ★

10.4.2 Projections

We developed so far a theory of product largeness for a fixed set of indices 𝐼.
The main theorem of this chapter will invoke the pigeonhole principle over 𝐼
to obtain a sub-set 𝐽 ⊆ 𝐼 over which the large class admits better properties.
We must therefore define a proper notion of projection of a class A⊆ 𝐼 → 2ℕ
over a sub-set 𝐽 ⊆ 𝐼.

168 10 Jump compactness avoidance

Definition 10.4.10. Given a class A ⊆ 𝐼 → 2ℕ and a subset 𝐽 ⊆ 𝐼, let
𝜋𝐽(A) be the class of all ⟨𝑋𝜈 : 𝜈 ∈ 𝐽⟩ such that the following class is large:19

19: There exist multiple candidate notions
of projection. For instance, one could have
asked the class to be non-empty instead of
large. However, this definition enjoys better
combinatorial properties. {⟨𝑋𝜈 : 𝜈 ∈ 𝐼 \ 𝐽⟩ : ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ ∈ A}

It is not clear at first sight that this definition of projection is not too strong, that
is, asking the residual class to be large instead of non-empty might yield a
small projection. Thankfully, the following lemma states that a large number of
elements satisfies this property.

Lemma 10.4.11 (Monin and Patey [78]). Let A⊆ 𝐼 → 2ℕ be a large class,
and 𝐽 ⊆ 𝐼 be a subset. Then 𝜋𝐽(A) is large. ★

Proof. The class 𝜋𝐽(A) is upward-closed by upward-closure of A. Let 𝑌0 ∪
· · · ∪ 𝑌𝑘−1 = ℕ for some 𝑘 ∈ ℕ. Suppose for the contradiction that for every
𝑗 : 𝐽 → 𝑘, ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐽⟩ ∉ 𝜋𝐽(A). Unfolding the definition, for every
𝑗 : 𝐽 → 𝑘, the following class is not large:

{⟨𝑋𝜈 : 𝜈 ∈ 𝐼 \ 𝐽⟩ : ⟨𝑋𝜈 : 𝜈 ∈ 𝐼 \ 𝐽⟩ · ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐽⟩ ∈ A}

Let 𝑍0∪· · ·∪𝑍ℓ−1 = ℕ be the common refinement of all the covers witnessing
that these classes are not large, and of 𝑌0 ∪ · · · ∪𝑌𝑘−1 = ℕ. Since A is large,
there is some 𝑟 : 𝐼 → ℓ such that ⟨𝑍𝑟(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ A. Since the cover refines
𝑌0 ∪ · · · ∪ 𝑌𝑘−1 = ℕ, there is a function 𝑗 : 𝐽 → 𝑘 such that for every 𝜈 ∈ 𝐽,
𝑌𝑗(𝜈) ⊇ 𝑍𝑟(𝜈). Let 𝑖 : 𝐼 \ 𝐽 → ℓ be the restriction of 𝑟 to 𝐼 \ 𝐽. Then by upward-
closure of A, ⟨𝑍𝑖(𝜈) : 𝜈 ∈ 𝐼 \ 𝐽⟩ ∪ ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐽⟩ ∈ A, which contradicts the
fact that 𝑍0 ∪ · · · ∪ 𝑍ℓ−1 = ℕ refines the witness of non-largeness for 𝑗.

The following lemma states the existence of a commutative diagram between
large classes and their projections. It will be very useful to consider each
projection independently, and obtain a decreasing sequence of large sub-
classes of 𝐼 → 2ℕ .

Lemma 10.4.12 (Monin and Patey [78]). Let U
M,𝐼
𝐶

⊆ 𝐼 → 2ℕ be a large
class for someΔ0

2 set 𝐶 ⊆ ℕ2, 𝐽 ⊆ 𝐼 be a subset of indices and A⊆ 𝜋𝐽(UM,𝐼
𝐶

)
be a Π0

2 large class. Then there is a Δ0
2 set 𝐷 ⊇ 𝐶 such that UM,𝐼

𝐷
⊆ U

M,𝐼
𝐶

is
large, and 𝜋𝐽(UM,𝐼

𝐷
) = A. ★

Proof. Say A= U
M,𝐽

𝐸
for some Δ0

2 set 𝐸 ⊆ ℕ2. There exists an increasing
computable function 𝑓 : ℕ → ℕ such that for every 𝑒 ∈ ℕ and every oracle 𝑍,
U
𝑍,𝐼

𝑓 (𝑒) = {⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ : ⟨𝑋𝜈 : 𝜈 ∈ 𝐽⟩ ∈ U
𝑍,𝐽
𝑒 }. Let 𝐷 = 𝐶 ∪ {(𝑓 (𝑒), 𝑖) :

(𝑒 , 𝑖) ∈ 𝐸}. Then 𝐷 is Δ0
2 and U

M,𝐼
𝐷

is the class of all ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ ∈ U
M,𝐼
𝐶

such that ⟨𝑋𝜈 : 𝜈 ∈ 𝐽⟩ ∈ A. Since 𝐷 ⊇ 𝐶, UM,𝐼
𝐷

⊆ U
M,𝐼
𝐶

.

We claim that UM,𝐼
𝐷

is large.2020: This claim is precisely the reason we de-
fined projection in terms of largeness rather
than non-emptiness.

Note that it is upward-closed, as both U
M,𝐼
𝐶

and
Aare. Let 𝑘 ∈ ℕ and𝑌0∪· · ·∪𝑌𝑘−1 = ℕ. Since A⊆ 𝐽 → 2ℕ is large, there is
some 𝑗 : 𝐽 → 𝑘 such that ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐽⟩ ∈ A. Moreover, since A⊆ 𝜋𝐽(UM,𝐼

𝐶
),

the class

{⟨𝑋𝜈 : 𝜈 ∈ 𝐼 \ 𝐽⟩ : ⟨𝑋𝜈 : 𝜈 ∈ 𝐽 \ 𝐼⟩ ∪ ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐽⟩ ∈ U
M,𝐼
𝐶

⟩

is large. Therefore, there is some 𝑖 : 𝐼 \ 𝐽 → 𝑘 such that ⟨𝑌𝑖(𝜈) : 𝜈 ∈ 𝐼 \ 𝐽⟩
belongs to this class. Letting 𝑟 : 𝐼 → 𝑘 be the common extension of 𝑖 and 𝑗,
⟨𝑌𝑟(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ U

M,𝐼
𝐶

. Thus, ⟨𝑌𝑟(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ U
M,𝐼
𝐷

. This proves our claim.

10.5 Product Mathias forcing 169

We claim that 𝜋𝐽(UM,𝐼
𝐷

) = A. By definition, given ⟨𝑌𝜈 : 𝜈 ∈ 𝐽⟩ ∈ A, the class
B = {⟨𝑌𝜈 : 𝜈 ∈ 𝐼 \ 𝐽⟩ : ⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ ∈ U

M,𝐼
𝐶

} is large since A⊆ 𝜋𝐽(UM,𝐼
𝐶

).
By construction of U

M,𝐼
𝐷

, B = {⟨𝑌𝜈 : 𝜈 ∈ 𝐼 \ 𝐽⟩ : ⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ ∈ U
M,𝐼
𝐷

},
so ⟨𝑌𝜈 : 𝜈 ∈ 𝐽⟩ ∈ 𝜋𝐽(UM,𝐼

𝐷
). It follows that 𝜋𝐽(UM,𝐼

𝐷
) ⊇ A. Suppose now

that ⟨𝑌𝜈 : 𝜈 ∈ 𝐽⟩ ∈ 𝜋𝐽(UM,𝐼
𝐷

). Then the class D = {⟨𝑌𝜈 : 𝜈 ∈ 𝐼 \ 𝐽⟩ : ⟨𝑌𝜈 :
𝜈 ∈ 𝐼⟩ ∈ U

M,𝐼
𝐷

} is large, and in particular non-empty. By definition of UM,𝐼
𝐷

,
⟨𝑌𝜈 : 𝜈 ∈ 𝐽⟩ ∈ A. Thus 𝜋𝐽(UM,𝐼

𝐷
) ⊆ A.

Exercise 10.4.13. Let 𝐼 = {0, 1}, 𝐽 = {0}, let Odd and Even be the sets of
odd and even numbers, respectively. Let B= (LOdd × 2ℕ) ∪ (LEven × {ℕ}).
Let �̂�𝐽(B) be the set of all 𝑋 ∈ 2ℕ such that (𝑋,𝑌) ∈ B for some set 𝑌.21

21: In other words, �̂�𝐽 (B) is the alternative
notion of projection. The goal of this exercise
is to show that such version does not satisfy
Lemma 10.4.12.1. Show that B is large.

2. What is 𝜋𝐽(B)? What is �̂�𝐽(B)?
3. Show that LEven is a Π0

2 sub-class of �̂�𝐽(B), but there is no large sub-
class D⊆ B such that �̂�𝐽(D) = LEven. ★

10.4.3 Index sets

So far, we only manipulated large classes over product spaces for a fixed
index set 𝐼, and reduced the dimension of a space using projection. One of the
main interest of product spaces is to force multiple positive information on the
reservoirs by considering the cartesian product of two large classes. Given two
index sets 𝐼 and 𝐾, there exists a natural one-to-one correspondence between
the following two classes:22 22: The translation from the second class to

the first class is known in computer science
as curryfication.𝐾 → (𝐼 → 2ℕ) and 𝐾 × 𝐼 → 2ℕ

We therefore identify the two classes, and given a class A ⊆ 𝐼 → 2ℕ , we
consider 𝐾 → Aas a sub-class of 𝐾 × 𝐼 → 2ℕ .

Definition 10.4.14. Given two index sets 𝐼 and 𝐽, we write 𝐽 ≤ 𝐼 if there is
an index set 𝐾 such that 𝐽 = 𝐾 × 𝐼. Given two classes A⊆ 𝐼 → 2ℕ and
B⊆ 𝐽 → 2ℕ , we write B≤ A if 𝐽 = 𝐾 × 𝐼 for some 𝐾 and B⊆ 𝐾 → A.♦

If 𝐽 ≤ 𝐼 as witnessed by an index set 𝐾, we call canonical surjection the
function 𝑓 : 𝐽 → 𝐼 defined for every (𝜇, 𝜈) ∈ 𝐽 × 𝐼 by 𝑓 (𝜇, 𝜈) = 𝜈.

Exercise 10.4.15. Let 𝐼0 ≥ 𝐼1 ≥ 𝐼2 be three index sets and A𝑖 ⊆ 𝐼𝑖 → 2ℕ be
classes for each 𝑖 < 3. Show that if A3 ≤ A2 and A2 ≤ A1, then A3 ≤ A1.★

10.5 Product Mathias forcing

Let us now exemplify the concepts introduced in this chapter by designing a
variant of Mathias forcing whose generic sets have a jump of non-PA degree
over ∅′. The main theorem of this chapter will be an elaboration of this notion
of forcing, with many subtleties due to the disjunctive nature of the pigeonhole
principle.

Fix a countable Scott ideal M, coded by a set 𝑀 of low degree. Consider
the notion of forcing23

23: This notion of forcing may seem quite
complex at first sight, but it is arguably the
natural refinement of Mathias forcing with a
good second-jump control which produces
non-cohesive solutions.

whose conditions24

24: One could have merged the sets ⟨𝑋 :
𝜈 ∈ 𝐼⟩ into a single set 𝑋 =

⋃
𝜈∈𝐼 𝑋𝜈 , and

worked with tuples (𝜎, 𝑋, 𝐼 , 𝐶), such that
U
M,𝐼
𝐶

is a large sub-class of L⟨𝑋:𝜈∈𝐼⟩ . The
use of multiple reservoirs will however be
needed for our later refinement of Mathias
forcing.

are tuples (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶),
where

170 10 Jump compactness avoidance

1. 𝐼 is a finite index set;
2. (𝜎,⋃𝜈∈𝐼 𝑋𝜈) is a Mathias condition;
3. U

M,𝐼
𝐶

is a large sub-class of L⟨𝑋𝜈 :𝜈∈𝐼⟩ ;
4. ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ ∈ M and 𝐶 is Δ0

2.

A condition (𝜏, ⟨𝑌𝜇 : 𝜇 ∈ 𝐽⟩, 𝐷) extends (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) if (𝜏,⋃𝜇∈𝐽 𝑌𝜇)
Mathias extends (𝜎,⋃𝜈∈𝐼 𝑋𝜈), 𝐽 ≤ 𝐼 with canonical surjection 𝑓 : 𝐽 → 𝐼,
U

M,𝐽

𝐷
≤ U

M,𝐼
𝐶

, and for every 𝜇 ∈ 𝐽, 𝑌𝜇 ⊆ 𝑋 𝑓 (𝜇).

Every filter F for this notion of forcing induces a set 𝐺F =
⋃{𝜎 : (𝜎, ⟨𝑋𝜈 :

𝜈 ∈ 𝐼⟩, 𝐶) ∈ F}. The following extension lemma states that not only for every
sufficiently generic filter F, the set 𝐺F is infinite, but if Fcontains a condition
(𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶), then 𝐺F∩ 𝑋𝜈 is infinite for every 𝜈 ∈ 𝐼.

Lemma 10.5.1. Let (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) be a condition and 𝑥 ∈ 𝑋𝜈 for
some 𝜈 ∈ 𝐼. Then (𝜎 ∪ {𝑥}, ⟨𝑋𝜈 \ [0, 𝑥] : 𝜈 ∈ 𝐼⟩, 𝐶) is a valid extension. ★

Proof. Immediate by Exercise 10.4.4.

As one expects, the use of multiple reservoirs prevents 𝐺F to be cohesive
as a set. The following lemma states that for every computable instance ®𝑅
of COH with no computable solution, and every sufficiently generic filter F, the
set 𝐺F is not ®𝑅-cohesive.

Lemma 10.5.2. Let ®𝑅 = 𝑅0 , 𝑅1 , . . . be a uniformly computable sequence of
sets with no computable infinite ®𝑅-cohesive set. For every condition (𝜎, ⟨𝑋𝜈 :
𝜈 ∈ 𝐼⟩, 𝐶), and every 𝜇 ∈ 𝐼, there is an extension (𝜎, ⟨𝑌(𝑖 ,𝜈) : (𝑖 , 𝜈) ∈
2 × 𝐼⟩, 𝐷) and some 𝑛 ∈ ℕ such that 𝑌(0,𝜇) ⊆ 𝑅𝑛 and 𝑌(1,𝜇) ⊆ 𝑅𝑛 . ★

Proof. Pick any 𝜇 ∈ 𝐼 and let A = 𝜋{𝜇}(UM,𝐼
𝐶

). Note that A is a Π0
2 sub-

class of L𝑋𝜇 . By Exercise 9.6.27, there is some 𝑛 ∈ ℕ such that A∩ L𝑅𝑛

and A∩ L
𝑅𝑛

are both large. By Lemma 10.4.5, A0 = A∩ L𝑅𝑛∩𝑋𝜇 and
A1 = A∩ L

𝑅𝑛∩𝑋𝜇
are both large. By Lemma 10.4.12, there are two Δ0

2

sets 𝐷0 , 𝐷1 ⊇ 𝐶 such that UM,𝐼
𝐷𝑖

⊆ U
M,𝐼
𝐶

is large and 𝜋{𝜇}(U𝑀,𝐼
𝐷𝑖

) = A𝑖 for

each 𝑖 < 2. Let 𝐽 = 2 × 𝐼, 𝐷 ⊆ ℕ2 be such that UM,𝐽

𝐷
= U

M,𝐼
𝐷0

× U
M,𝐼
𝐷1

. Then

U
M,𝐽

𝐷
≤ U

M,𝐼
𝐶

. Let 𝑌(0,𝜇) = 𝑋𝜇 ∩ 𝑅𝑛 , 𝑌(1,𝜇) = 𝑋𝜇 ∩ 𝑅𝑛 , and 𝑌(𝑖 ,𝜈) = 𝑋𝜈

otherwise. Then the condition (𝜎, ⟨𝑌𝜈 : 𝜈 ∈ 𝐽⟩, 𝐷) is the desired extension.

Having a notion of forcing producing non-cohesive generic sets is a sanity
check, but it might be the case that the generic set computes a cohesive set
for a computable instance of COH. We shall prove later that this does not
happen, by designing a Π0

2-merging and Σ0
2-preserving forcing question for

Σ0
2-formulas.

Forcing question for Σ0
1-formulas. We now design a forcing question for

Σ0
1-formulas. It essentially corresponds to the forcing question for computable

Mathias forcing.25
25: Contrary to the proof of Theorem 9.7.1,
the reservoirs belong to M, so the forcing
question can directly involve the reservoirs
rather than using an over-approximation in
terms of largeness. The forcing question
therefore has a good definitional complexity
and is Π0

1-extremal.

Definition 10.5.3. Given a Mathias condition (𝜎, 𝑋) and aΣ0
1 formula 𝜑(𝐺),

define (𝜎, 𝑋) ?⊢𝜑(𝐺) to hold there exists some 𝜌 ⊆ 𝑋 such that 𝜑(𝜎 ∪ 𝜌)
holds. ♦

Note that this relation is Σ0
1(𝑋). The proof of validity of the forcing question for

Σ0
1-formulas is straightforward and is left as an exercise.

10.5 Product Mathias forcing 171

Exercise 10.5.4. Let 𝑝 = (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) be a condition and 𝜑(𝐺) be a
Σ0

1 formula. Prove that

1. if (𝜎,⋃𝜈 𝑋𝜈) ?⊢𝜑(𝐺), then there is an extension of 𝑝 forcing 𝜑(𝐺) ;
2. if (𝜎,⋃𝜈 𝑋𝜈) ?⊬𝜑(𝐺), then there is an extension of 𝑝 forcing ¬𝜑(𝐺). ★

Syntactic forcing relation. As in the proof of Theorem 9.7.1, it will be conve-
nient to define a syntactic forcing relation for Π0

2-formulas.

Definition 10.5.5. Let 𝑝 = (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) be a condition and 𝜑(𝐺) ≡
∀𝑥𝜓(𝐺, 𝑥) be a Π0

2 formula. Let 𝑝 ⊩ 𝜑(𝐺) hold if for every 𝜌 ⊆ ⋃
𝜈∈𝐼 𝑋𝜈

and every 𝑥 ∈ ℕ,26

26: One would be tempted to only require
that the intersection of the left and right-
hand side of the inclusion is large. However,
since U

M,𝐼
𝐶

may decrease over condition
extension, this forcing relation would not be
closed under extension. Asking for inclusion
is a way to strongly enforce the largeness of
the intersection, for every further restriction
of UM,𝐼

𝐶
.

27

27: Technically, we should have used

(𝜎 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑌𝜈 \ [0,max 𝜌])

to ensure that the minimum of the reservoirs
is larger than the stems, but we drop this
restriction for simplicity of the notation.

U
M,𝐼
𝐶

⊆ {⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ : (𝜎 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑌𝜈) ?⊢𝜓(𝐺, 𝑥)}

Since the size of the index set may increase over condition extension, it is not
completely clear that this syntactic forcing relation is closed under extension.
The following lemma shows that it is the case.

Lemma 10.5.6. Let 𝑝 be a condition and 𝜑(𝐺) be a Π0
2-formula such that

𝑝 ⊩ 𝜑(𝐺). For every extension 𝑞 ≤ 𝑝, 𝑞 ⊩ 𝜑(𝐺). ★

Proof. Say 𝑝 = (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶), 𝑞 = (𝜏, ⟨𝑌𝜇 : 𝜇 ∈ 𝐽⟩, 𝐷), and
𝜑(𝐺) ≡ ∀𝑥𝜓(𝐺, 𝑥). Let 𝐾 be such that 𝐽 = 𝐾 × 𝐼, and let 𝑓 : 𝐽 → 𝐼 be
the canonical surjection. Fix some 𝑥 ∈ ℕ and some 𝜌 ⊆ ⋃

𝜇∈𝐽 𝑌𝜇. Since
(𝜏,⋃𝜇∈𝐽 𝑌𝜇) Mathias extends (𝜎,⋃𝜈∈𝐼 𝑋𝜈), there is some 𝜂 ⊆ ⋃

𝜈∈𝐼 𝑋𝜈 such
that 𝜏 ∪ 𝜌 = 𝜎 ∪ 𝜂. Since 𝑝 ⊩ 𝜑(𝐺), then

U
M,𝐼
𝐶

⊆ {⟨𝑅𝜈 : 𝜈 ∈ 𝐼⟩ : (𝜎 ∪ 𝜂,
⋃
𝜈∈𝐼

𝑅𝜈) ?⊢𝜓(𝐺, 𝑥)}

We claim that

U
M,𝐽

𝐷
⊆ {⟨𝑍𝜇 : 𝜇 ∈ 𝐽⟩ : (𝜏 ∪ 𝜌,

⋃
𝜇∈𝐽

𝑍𝜇) ?⊢𝜓(𝐺, 𝑥)}

Fix some ⟨𝑍𝜇 : 𝜇 ∈ 𝐽⟩ ∈ U
M,𝐽

𝐷
. Since U

M,𝐽

𝐷
≤ U

M,𝐼
𝐶

, UM,𝐽

𝐷
⊆ 𝐾 → U

M,𝐼
𝐶

. It
follows that there is some ⟨𝑅𝜈 : 𝜈 ∈ 𝐼⟩ ∈ U

M,𝐼
𝐶

such that
⋃

𝜇∈𝐽 𝑍𝜇 ⊇ ⋃
𝜈∈𝐼 𝑅𝜈.

Since (𝜎 ∪ 𝜂,
⋃

𝜈∈𝐼 𝑅𝜈) ?⊢𝜓(𝐺, 𝑥), then (𝜏 ∪ 𝜌,
⋃

𝜇∈𝐽 𝑍𝜇) ?⊢𝜓(𝐺, 𝑥).

Together with Lemma 10.5.6, the following lemma states that, for every suffi-
ciently generic filter F, if 𝑝 ⊩ 𝜑(𝐺) for some 𝑝 ∈ F, then 𝑝 forces 𝜑(𝐺).

Lemma 10.5.7. Let 𝑝 = (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) be a condition and 𝜑(𝐺) ≡
∀𝑥𝜓(𝐺, 𝑥) be a Π0

2 formula. If 𝑝 ⊩ 𝜑(𝐺), then for every 𝑥 ∈ ℕ, there is an
extension 𝑞 ≤ 𝑝 forcing 𝜓(𝐺, 𝑥). ★

Proof. Fix 𝑥 ∈ ℕ. Since 𝑝 ⊩ 𝜑(𝐺), then in particular, for 𝜌 = ∅,

U
M,𝐼
𝐶

⊆ {⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ : (𝜎 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑌𝜈) ?⊢𝜓(𝐺, 𝑥)}

Since ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩ ∈ U
M,𝐼
𝐶

, then (𝜎,⋃𝜈∈𝐼 𝑋𝜈) ?⊢𝜓(𝐺, 𝑥). By Exercise 10.5.4,
there is an extension of 𝑝 forcing 𝜓(𝐺, 𝑥).

172 10 Jump compactness avoidance

Forcing question forΣ0
2-formulas. We now have all the necessary tools to de-

fine a forcing question for Σ0
2-formulas with good definitional and combinatorial

properties.

Definition 10.5.8. Let 𝑝 = (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) be a condition and 𝜑(𝐺) ≡
∃𝑥𝜓(𝐺, 𝑥) be a Σ0

2 formula. Let 𝑝 ?⊢𝜑(𝐺) hold if the following class is not
large:

U
M,𝐼
𝐶

∩
⋂

𝑥∈ℕ,𝜌⊆⋃𝜈∈𝐼 𝑋𝜈

{⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ : (𝜎 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑌𝜈) ?⊢𝜓(𝐺, 𝑥)}

By Lemma 10.4.8, the forcing question is Σ0
1(𝐶 ⊕ 𝑀′), hence Σ0

2 since 𝑀 is
low and 𝐶 Δ0

2. It follows that the forcing question is Σ0
2-preserving. We now

prove that it meets its specifications.

Lemma 10.5.9. Let 𝑝 be a condition and 𝜑(𝐺) a Σ0
2-formula.

1. If 𝑝 ?⊢𝜑(𝐺), then there is an extension of 𝑝 forcing 𝜑(𝐺).
2. If 𝑝 ?⊬𝜑(𝐺), then there is an extension 𝑞 of 𝑝 with 𝑞 ⊩ ¬𝜑(𝐺). ★

Proof. Say 𝑝 = (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) and 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥).

Suppose first 𝑝 ?⊢𝜑(𝐺). Then there is some finite set 𝐹 ⊆ 𝐶, some ℓ ∈ ℕ

and some 𝑥0 , . . . , 𝑥ℓ−1 ∈ ℕ and 𝜌0 , . . . , 𝜌ℓ−1 ⊆ ⋃
𝜈∈𝐼 𝑋𝜈 such that

A= U
M,𝐼
𝐹

∩
⋂
𝑠<ℓ

{⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ : (𝜎 ∪ 𝜌𝑠 ,
⋃
𝜈∈𝐼

𝑌𝜈) ?⊢𝜓(𝐺, 𝑥𝑠)}

is not large. Given 𝑘 ∈ ℕ, let C𝑘 be the Π0
1(M) class of all𝑌0⊕· · ·⊕𝑌𝑘−1 ∈ 2ℕ

such that 𝑌0 ∪ · · · ∪ 𝑌𝑘−1 = ℕ and for every 𝑗 : 𝐼 → 𝑘, ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∉ A.
There is some 𝑘 ∈ ℕ such that C𝑘 ≠ ∅. Since M is a Scott ideal, there is some
𝑌0 ⊕ · · · ⊕ 𝑌𝑘−1 ∈ C𝑘 ∩ M. By Proposition 10.4.6, there is some 𝑗 : 𝐼 → 𝑘

such that U
M,𝐼
𝐶

∩ L⟨𝑌𝑗(𝜈):𝜈∈𝐼⟩ is large. Since ⟨𝑌𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∉ A, there is
some 𝑠 < ℓ such that (𝜎 ∪ 𝜌𝑠 ,

⋃
𝜈∈𝐼 𝑌𝑗(𝜈)) ?⊢𝜓(𝐺, 𝑥𝑠). By definition of a

condition, UM,𝐼
𝐶

⊆ L⟨𝑋𝜈 :𝜈∈𝐼⟩ , so by Lemma 10.4.5, UM,𝐼
𝐶

∩L⟨𝑋𝜈∩𝑌𝑗(𝜈):𝜈∈𝐼⟩ is
large. For every 𝜈 ∈ 𝐼, let 𝑍𝜈 = 𝑋𝜈 ∩ 𝑌𝑗(𝜈). Let 𝐷 ⊇ 𝐶 be a Δ0

2 set such
that U

M,𝐼
𝐷

= U
M,𝐼
𝐶

∩ L⟨𝑍𝜈 :𝜈∈𝐼⟩ . Then 𝑞 = (𝜎 ∪ 𝜌𝑠 , ⟨𝑍𝜈 : 𝜈 ∈ 𝐼⟩, 𝐷) is an
extension of 𝑝 such that (𝜎 ∪ 𝜌𝑠 ,

⋃
𝜈∈𝐼 𝑌𝑗(𝜈)) ?⊢𝜓(𝐺, 𝑥𝑠). By Exercise 10.5.4,

there is an extension of 𝑞 forcing 𝜓(𝐺, 𝑥𝑠), hence forcing 𝜑(𝐺).

Suppose first 𝑝 ?⊬𝜑(𝐺). Let 𝐷 ⊇ 𝐶 be a Δ0
2 set such that

U
M,𝐼
𝐷

= U
M,𝐼
𝐶

∩
⋂

𝑥∈ℕ,𝜌⊆⋃𝜈∈𝐼 𝑋𝜈

{⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ : (𝜎 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑌𝜈) ?⊢𝜓(𝐺, 𝑥)}

Then 𝑞 = (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) is an extension of 𝑝 such that 𝑞 ⊩ ¬𝜑(𝐺).

Our last lemma states that the forcing question for Σ0
2-formulas is Π0

2-merging.
It follows from Exercise 10.2.8 that for every sufficiently generic filter F, 𝐺′

F
is

not of PA degree over ∅′.

Lemma 10.5.10. Let 𝑝 be a condition and 𝜑0(𝐺), 𝜑1(𝐺) be two Σ0
2-formulas.

If 𝑝 ?⊬𝜑0(𝐺) and 𝑝 ?⊬𝜑1(𝐺), then there is an extension 𝑞 of 𝑝 with 𝑞 ⊩
¬𝜑0(𝐺) and 𝑞 ⊩ ¬𝜑1(𝐺). ★

10.6 Pigeonhole principle 173

Proof. Say 𝑝 = (𝜎, ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) and 𝜑𝑖(𝐺) ≡ ∃𝑥𝜓𝑖(𝐺, 𝑥) for each 𝑖 <
2. For each 𝑖 < 2, let 𝐷𝑖 ⊇ 𝐶 be a Δ0

2 set such that

U
M,𝐼
𝐷𝑖

= U
M,𝐼
𝐶

∩
⋂

𝑥∈ℕ,𝜌⊆⋃𝜈∈𝐼 𝑋𝜈

{⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ : (𝜎 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑌𝜈) ?⊢𝜓𝑖(𝐺, 𝑥)}

Let 𝐷 ⊆ ℕ2 be a Δ0
2 set such that UM,2×𝐼

𝐷
= U

M,𝐼
𝐷0

× U
M,𝐼
𝐷1

. For each (𝑖 , 𝜈) ∈
2 × 𝐼, let 𝑌(𝑖 ,𝜈) = 𝑋𝜈. Then 𝑞 = (𝜎, ⟨𝑌(𝑖 ,𝜈) : (𝑖 , 𝜈) ∈ 2 × 𝐼⟩, 𝐷) is the desired
extension of 𝑝.

Exercise 10.5.11. Fix a uniformly computable sequence ®𝑔 = 𝑔0 , 𝑔1 , . . . of
functions of type ℕ → ℕ. Use product Mathias forcing to show that there
exists an infinite thin ®𝑔-cohesive28

28: Recall that an infinite set 𝐶 ⊆ ℕ is
thin ®𝑔-cohesive if for every 𝑛 ∈ ℕ, there is
some 𝑘 ∈ ℕ such that 𝐶 \ [0, 𝑘] is 𝑔𝑛 -thin.set 𝐶 ⊆ ℕ such that 𝐶′ is not of PA degree

over ∅′. ★

10.6 Pigeonhole principle

As explained in Section 3.4, Ramsey’s theorem for pairs can be decomposed
into the cohesiveness principle (COH) and the pigeonhole principle for Δ0

2
instances ((RT1

2)′). It is natural to wonder whether this decomposition is strict,
that is, whether COH implies (RT1

2)′ or (RT1
2)′ implies COH over RCA0. The

former question can easily be answered negatively by a first-jump control
argument (see Hirschfeldt et al. [47]), while the former was a long-standing open
question. It was first answered negatively by Chong, Slaman and Yang [29]
using non-standard models.29

29: Chong, Slaman and Yang [29] con-
structed a non-standard model of RCA0 +
BΣ0

2+(RT1
2)′ in which every set is of low de-

gree (from the viewpoint of the model). Such
a model cannot be standard, as Downey et
al. [28] constructed a Δ0

2 set with no infinite
subset of it or its complement of low degree.

More recently, Monin and Patey [78] proved
that (RT1

2)′ does not imply COH over 𝜔-models, by proving that (RT1
2)′ admits

jump PA avoidance using a variant of the product Mathias forcing.

Theorem 10.6.1 (Monin and Patey [78])
Let 𝐴 ⊆ ℕ be a Δ0

2 set. There exists an infinite subset 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴

such that 𝐻′ is not of PA degree over ∅′.30
30: The statement relativizes as follows:
For every set 𝑍 such that 𝑍′ is not of PA de-
gree over ∅′, and every Δ0

2(𝑍) set 𝐴, there
exists an infinite subset 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴

such that (𝐻 ⊕ 𝑍)′ is not of PA degree
over ∅′.The natural attempt would be to adapt product Mathias forcing to construct

solutions to (RT1
2)′, the same way Mathias forcing was adapted in the proof of

Theorem 3.4.6. Fix aΔ0
2 set𝐴 and a countable Scott ideal M, coded by a set𝑀

of low degree. Let 𝐴0 = 𝐴 and 𝐴1 = 𝐴, and consider the notion of forcing
(ℚ,≤) whose conditions are tuples of the form (𝜎0 , 𝜎1 , ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶),
where (𝜎𝑖 , ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) is a product Mathias forcing condition for each 𝑖 <
2, and 𝜎𝑖 ⊆ 𝐴𝑖 . Condition extension is defined accordingly. One must really
think of such notion of a condition as two product Mathias conditions sharing
the reservoirs and notions of largeness. Any filter F induces two sets 𝐺F,0
and 𝐺F,1, defined by 𝐺F,𝑖 =

⋃{𝜎𝑖 : (𝜎0 , 𝜎1 , ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) ∈ F}.

Syntactic forcing relation. The syntactic forcing relation for Π0
2-formulas is

a straightforward adaptation of Definition 10.5.5. The only difference comes
from the structural constraint of homogeneity, which requires 𝜌 to be included
in 𝐴𝑖 .

Definition 10.6.2. Let 𝑝 = (𝜎0 , 𝜎1 , ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) be a condition, 𝑖 < 2
be a part and 𝜑(𝐺) ≡ ∀𝑥𝜓(𝐺, 𝑥) be a Π0

2 formula. Let 𝑝 ⊩ 𝜑(𝐺𝑖) hold if

174 10 Jump compactness avoidance

for every 𝜌 ⊆ 𝐴𝑖 ∩
⋃

𝜈∈𝐼 𝑋𝜈 and every 𝑥 ∈ ℕ,

U
M,𝐼
𝐶

⊆ {⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ : (𝜎𝑖 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑌𝜈) ?⊢𝜓(𝐺, 𝑥)}

The proof of stability of the syntactic forcing relation under condition extension
is left as an exercise.

Exercise 10.6.3. Adapt the proof of Lemma 10.5.6 to show that if 𝑝 is a
condition and 𝜑(𝐺) is a Π0

2-formula such that 𝑝 ⊩ 𝜑(𝐺𝑖) for some 𝑖 < 2, then
for every extension 𝑞 ≤ 𝑝, 𝑞 ⊩ 𝜑(𝐺𝑖). ★

Contrary to product Mathias forcing, this syntactic forcing relation does not
entail the semantic one in general, because the stem must be a subset of 𝐴𝑖 .
One must therefore introduce a notion of validity as in Theorem 9.7.1.

Definition 10.6.4. We say that part 𝑖 of (𝜎0 , 𝜎1 , ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) is valid if
⟨𝑋𝜈 ∩ 𝐴𝑖 : 𝜈 ∈ 𝐼⟩ ∈ U

M,𝐼
𝐶

. Part 𝑖 of a filter F is valid if part 𝑖 is valid for
every condition in F.31

31: One could have strengthened the
definition of validity by requiring that
U
M,𝐼
𝐶

∩ L⟨𝑋𝜈∩𝐴𝑖 :𝜈∈𝐼⟩ is large. Indeed,
Lemma 10.6.13 already proves the exis-
tence of a valid part in the stronger sense.

♦

A new problem arises in the realm of product spaces: if A⊆ 2ℕ × 2ℕ is large,
there is not necessarily some 𝑖 < 2 such that (𝐴𝑖 , 𝐴𝑖) ∈ A. It follows that
every condition does not necessarily have a valid side. We shall leave this
issue for now. The notion of validity is designed so that the following lemma
holds.

Lemma 10.6.5 (Monin and Patey [78]). Let 𝑝 = (𝜎0 , 𝜎1 , ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶)
be a condition with valid part 𝑖 and 𝜑(𝐺) ≡ ∀𝑥𝜓(𝐺, 𝑥) be a Π0

2 formula.
If 𝑝 ⊩ 𝜑(𝐺𝑖), then for every 𝑥 ∈ ℕ, there is an extension 𝑞 ≤ 𝑝 forcing
𝜓(𝐺𝑖 , 𝑥). ★

Proof. Fix 𝑥 ∈ ℕ. Since 𝑝 ⊩ 𝜑(𝐺𝑖), then in particular, for 𝜌 = ∅,

U
M,𝐼
𝐶

⊆ {⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩ : (𝜎𝑖 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑌𝜈) ?⊢𝜓(𝐺, 𝑥)}

By validity of part 𝑖 of 𝑝, ⟨𝑋𝜈∩𝐴𝑖 : 𝜈 ∈ 𝐼⟩ ∈ U
M,𝐼
𝐶

, so (𝜎𝑖 , 𝐴𝑖∩
⋃

𝜈∈𝐼 𝑋𝜈) ?⊢𝜓(𝐺, 𝑥).
Let 𝜇 ⊆ 𝐴𝑖 ∩

⋃
𝜈∈𝐼 𝑋𝜈 be such that 𝜓(𝜎𝑖 ∪ 𝜇, 𝑥) holds. Let 𝜏𝑖 = 𝜎𝑖 ∪ 𝜇,

𝜏1−𝑖 = 𝜎1−𝑖 , and for each 𝜈 ∈ 𝐼, let 𝑌𝜈 = 𝑋𝜈 \ {0, . . . ,max𝜇}. Then
(𝜏0 , 𝜏1 , ⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶) is an extension forcing 𝜓(𝐺𝑖 , 𝑥).

Together with Exercise 10.6.3, the previous lemma implies that, for every
sufficiently generic filter Fwith valid part 𝑖, if 𝑝 ⊩ 𝜑(𝐺𝑖) for some 𝑝 ∈ F, then
𝑝 forces 𝜑(𝐺𝑖).3232: This statement might be vacuous as the

existence of a sufficiently generic filter with
a valid part is not clear. Exercise 10.6.6 (Monin and Patey [78]). Let 𝑝, 𝑞 ∈ ℚ be two conditions

such that 𝑞 ≤ 𝑝. Show that if part 𝑖 of 𝑞 is valid, then so is part 𝑖 of 𝑝. ★

The following exercise implies that for every sufficiently generic filter Fwith
valid part 𝑖, 𝐺F,𝑖 is infinite.

Exercise 10.6.7 (Monin and Patey [78]). Let 𝑝 = (𝜎0 , 𝜎1 , ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶)
be a condition. Show that if part 𝑖 of 𝑝 is valid, then there is an extension
𝑞 = (𝜏0 , 𝜏1 , ⟨𝑌𝜈 : 𝜈 ∈ 𝐼⟩, 𝐷) such that card 𝜏𝑖 > card 𝜎𝑖 .33

33: Note that the extension has the same
index set as the condition. This will be useful
in combination with Lemma 10.6.14.

★

10.6 Pigeonhole principle 175

Index sets. As mentioned, if A⊆ 2ℕ × 2ℕ is large, there is not necessarily
some 𝑖 < 2 such that (𝐴𝑖 , 𝐴𝑖) ∈ A. On the other hand, if A⊆ 2ℕ × 2ℕ × 2ℕ ,
by the pigeonhole principle, there is some 𝑖 < 2 and some 𝑎 < 𝑏 < 3
such that (𝐴𝑖 , 𝐴𝑖) ∈ 𝜋{𝑎,𝑏}(A). We shall therefore work with a more complex
notion of condition over a larger index set, representing multiple ℚ-conditions
by projections. To do this, we shall define an infinite sequence of big index
sets I0 ≥ I1 ≥ . . . where I𝑛 contains only finite sequences of length 𝑛,
satisfying some appropriate Ramsey property on its index subsets.

Example 10.6.8. Say I1 = {0, 1, 2} and let 𝐼 ◁I1 if 𝐼 ⊆ I1 and card 𝐼 =
2. By the pigeonhole principle, for every 2-partition of I1, there is some
monochromatic 𝐼 ◁I1.

We now generalize the previous example for argument for every 𝑛. Let 𝑢0 , 𝑢1 , . . .

be inductively defined by 𝑢0 = 1 and 𝑢𝑛+1 =
(2𝑢𝑛+1

2
)
𝑢𝑛 .

Definition 10.6.9. Given 𝑛 ∈ ℕ, the meta 𝑛-index set I𝑛 is defined induc-
tively defined as follows: I0 = {𝜖}, and

I𝑛+1 = (2𝑢𝑛 + 1) × I𝑛 = {𝑥 · 𝜈 : 𝑥 ≤ 2𝑢𝑛 ∧ 𝜈 ∈ 𝐼𝑛}

Technically, meta index sets are nothing but index sets. However, they differ by
their role, as they should be thought of families of index sets {𝐼 ⊆ I𝑛 : 𝐼◁I𝑛},
for some relation ◁ that we define now:

Definition 10.6.10. Let ◁ be the smallest relation satisfying {𝜖} ◁I0, and
if 𝐼 ◁I𝑛 and 𝑥 < 𝑦 ≤ 2𝑢𝑛 , then (𝑥 · 𝐼 ∪ 𝑦 · 𝐼) ◁I𝑛+1.34 34: The notation 𝑥 · 𝐼 means {𝑥 · 𝜈 : 𝜈 ∈ 𝐼}.♦

Note that if 𝐼◁I𝑛 , then 𝐼 ⊆ I𝑛 . Moreover, if 𝐽◁I𝑛+1, then there is some 𝐼◁I𝑛
such that 𝐽 ≤ 𝐼. An easy counting argument yields the following lemma.

Lemma 10.6.11 (Monin and Patey [78]). For every 𝑛 ∈ ℕ, card{𝐼 ⊆ I𝑛 :
𝐼 ◁I𝑛} = 𝑢𝑛 . ★

Proof. By induction over 𝑛. For 𝑛 = 0, there is exactly one 𝐼 ⊆ I0 such that
𝐼◁I0, namely, {𝜖}, and 𝑢0 = 1. Suppose card{𝐼 ⊆ I𝑛 : 𝐼◁I𝑛} = 𝑢𝑛 . Then
card{𝐽 ⊆ I𝑛+1 : 𝐽 ◁I𝑛+1} =

(2𝑢𝑛+1
2

)
card{𝐼 ⊆ I𝑛 : 𝐼 ◁I𝑛} =

(2𝑢𝑛+1
2

)
𝑢𝑛 =

𝑢𝑛+1.

The following lemma states that the meta index sets satisfy some desired
Ramsey property. It will play an essential role in proving that every meta-
condition contains a branch with a valid side.

Lemma 10.6.12 (Monin and Patey [78]). For every 𝑛 ∈ ℕ and every 2-cover
𝐵0 ∪ 𝐵1 = I𝑛 , there is some 𝐼 ◁I𝑛 and some 𝑖 < 2 such that 𝐼 ⊆ 𝐵𝑖 . ★

Proof. By induction on 𝑛. The case 𝑛 = 0 is trivial. Assume it holds for 𝑛.
Let 𝐵0 ∪ 𝐵1 = I𝑛+1. For every 𝑥 ≤ 2𝑢𝑛 and 𝑖 < 2, let 𝐵𝑥,𝑖 = {𝜈 : 𝑥 · 𝜈 ∈ 𝐵𝑖}.
Note that for each 𝑥 ≤ 2𝑢𝑛 , 𝐵𝑥,0 ∪ 𝐵𝑥,1 = I𝑛 , so by induction hypothesis,
there is some 𝐼𝑥 ◁I𝑛 and 𝑖𝑥 < 2 such that 𝐼𝑥 ⊆ 𝐵𝑥,𝑖𝑥 . By Lemma 10.6.11,
card{𝐼 ⊆ I𝑛 : 𝐼◁I𝑛} = 𝑢𝑛 , so by the pigeonhole principle, there is some 𝑥 <
𝑦 ≤ 2𝑢𝑛 , some 𝐼 ◁ I𝑛 and 𝑖 < 2 such that 𝐼 = 𝐼𝑥 = 𝐼𝑦 and 𝑖 = 𝑖𝑥 = 𝑖𝑦 .
Letting 𝐽 = 𝑥 · 𝐼 ∪ 𝑦 · 𝐼, we have 𝐽 ◁I𝑛+1 and 𝐽 ⊆ 𝐵𝑖 .

176 10 Jump compactness avoidance

Meta-conditions. We now define a more complex notion of forcing (ℙ,≤),
whose conditions are of the form (⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁ I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩, 𝐶) for
some 𝑛 ∈ ℕ, where

1. 𝜎𝐼
𝑖
⊆ 𝐴𝑖 for each 𝑖 < 2 and 𝐼 ◁I𝑛 ;

2. (𝜎𝐼
𝑖
,
⋃

𝜈∈𝐼 𝑋𝜈) is a Mathias condition for each 𝑖 < 2 and 𝐼 ◁I𝑛 ;
3. U

M,I𝑛
𝐶

⊆ I𝑛 → 2ℕ is a large sub-class of L⟨𝑋𝜈 :𝜈∈I𝑛⟩ ;
4. ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩ ∈ M and 𝐶 is Δ0

2.

We write ℙ𝑛 for the set of meta-conditions indexed by I𝑛 , and ℚ𝑛 for the set of
conditions indexed by some 𝐼◁I𝑛 . One should really think of a meta-condition
𝑐 = (⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩, 𝐶) as 𝑢𝑛-many parallel ℚ-conditions
𝑐[𝐼] = (𝜎𝐼0 , 𝜎𝐼1 , ⟨𝑋𝜈 : 𝜈 ∈ 𝐼⟩, 𝐶 𝐼) for each 𝐼 ◁ I𝑛 , where 𝐶 𝐼 ⊆ ℕ2 is such
that UM,𝐼

𝐶𝐼
= 𝜋𝐼(UM,I𝑛

𝐶
). We shall refer to 𝑐[𝐼] as branches of 𝑐. The notion

of meta-condition has been design so that it satisfies the following validity
lemma:

Lemma 10.6.13 (Monin and Patey [78]). For every meta-condition 𝑐 ∈ ℙ𝑛 ,
there is some 𝐼 ◁I𝑛 such that 𝑐[𝐼] admits a valid part. ★

Proof. Say 𝑐 = (⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩, 𝐶). Since 𝐴0 ∪ 𝐴1 = ℕ

and by Proposition 10.4.6, L(UM,I𝑛
𝐶

) is large, there is some 𝑗 : I𝑛 → 2 such
that ⟨𝐴 𝑗(𝜈) : 𝜈 ∈ I𝑛⟩ ∈ L(UM,I𝑛

𝐶
). Thus, UM,I𝑛

𝐶
∩L⟨𝑋𝜈 :𝜈∈I𝑛⟩ ∩L⟨𝐴𝑗(𝜈):𝜈∈I𝑛⟩

is large, so by Lemma 10.4.5, UM,I𝑛
𝐶

∩L⟨𝑋𝜈∩𝐴𝑗(𝜈):𝜈∈I𝑛⟩ is large.

Let 𝐵𝑖 = {𝜈 ∈ I𝑛 : 𝑗(𝜈) = 𝑖} for each 𝑖 < 2. Since 𝐵0 ∪ 𝐵1 = I𝑛 , then by
Lemma 10.6.12, there is some 𝐼 ◁I𝑛 and some 𝑖 < 2 such that 𝐼 ⊆ 𝐵𝑖 . Since
U

M,I𝑛
𝐶

∩ L⟨𝑋𝜈∩𝐴𝑗(𝜈):𝜈∈I𝑛⟩ is large, then ⟨𝑋𝜈 ∩ 𝐴 𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ 𝜋𝐼(UM,I𝑛
𝐶

).
As 𝐼 ⊆ 𝐵𝑖 , ⟨𝑋𝜈 ∩ 𝐴𝑖 : 𝜈 ∈ 𝐼⟩ = ⟨𝑋𝜈 ∩ 𝐴 𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∈ 𝜋𝐼(UM,I𝑛

𝐶
), so part 𝑖

of the ℚ-condition 𝑐[𝐼] is valid.

A meta-condition 𝑑 = (⟨𝜏𝐽0 , 𝜏
𝐽

1 : 𝐽 ◁ I𝑚⟩, ⟨𝑌𝜇 : 𝜇 ∈ I𝑚⟩, 𝐷) extends 𝑐 =

(⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩, 𝐶) if 𝑚 ≥ 𝑛, and for every 𝐽 ◁I𝑚 , letting
𝐼 ◁I𝑛 be the unique index set such that 𝐽 ≤ 𝐼, 𝑑[𝐽] ≤ 𝑐[𝐼] as ℚ-conditions.
The following commutative diagram will be very useful to propagate lemmas
from (ℚ,≤) forcing to (ℙ,≤) forcing.

Lemma 10.6.14 (Monin and Patey [78]). Fix a meta-condition 𝑐 ∈ ℙ𝑛 and
𝐼 ◁I𝑛 . For every ℚ𝑛-condition 𝑞 ≤ 𝑐[𝐼], there is a meta-condition 𝑑 ≤ 𝑐 in ℙ𝑛
such that 𝑑[𝐼] = 𝑞.35

35: One must be a bit careful when using
this lemma: it only states the existence of a
commutative diagram for a fixed 𝑛.

★

Proof. Say 𝑐 = (⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩, 𝐶) and 𝑞 = (𝜏𝐼0 , 𝜏𝐼1 , ⟨𝑌𝜈 :
𝜈 ∈ 𝐼⟩, 𝐷𝐼). By Lemma 10.4.12, there is a Δ0

2 set 𝐷 ⊇ 𝐶 such that UM,I𝑛
𝐷

⊆
U

M,I𝑛
𝐶

is a large class and 𝜋𝐼(UM,I𝑛
𝐷

) = U
M,𝐼

𝐷𝐼 . For every 𝐽 ◁I𝑛 with 𝐽 ≠ I

and 𝑖 < 2, let 𝜏𝐽
𝑖
= 𝜎𝐽

𝑖
. For every 𝜈 ∈ I𝑛 \ 𝐼, let 𝑌𝜈 = 𝑋𝜈. The meta-condition

𝑑 = (⟨𝜏𝐼0 , 𝜏𝐼1 : 𝐼 ◁ I𝑛⟩, ⟨𝑌𝜈 : 𝜈 ∈ I𝑛⟩, 𝐷) is an extension of 𝑐 such that
𝑑[𝐼] = 𝑞.

Forcing question for Σ0
2-formulas. A meta-condition representing multiple

ℚ-conditions, requirements must be forced on every branch of the meta-
condition.

10.6 Pigeonhole principle 177

Definition 10.6.15. Given a requirement R(𝐺), a part 𝑖 < 2 and a meta-
condition 𝑐 ∈ ℙ𝑛 , let R(𝑐, 𝑖) be the set of all 𝐼 ◁I𝑛 such that 𝑐[𝐼] does not
force R(𝐺𝑖).36

36: This definition and the following expla-
nation is slightly approximative in the sense
given to “forcing”. In our setting, a posi-
tive answer to the forcing question yields
an extension strongly forcing the Σ0

2 for-
mula, while the witness of a negative an-
swer syntactically forces its negation. As
seen, the syntactical forcing relation implies
the semantical one only on valid parts. A re-
quirement being often a disjunction between
wrong computation and partiality, the formal
sense given to “forcing” actually depends
on the side of the disjunction. We will there-
fore give a more formal sense in the case
of jump PA avoidance in Definition 10.6.20.

♦

One could define a non-disjunctive Σ0
2-preserving forcing question for Σ0

2-
formulas on ℚ-conditions which would meet its specifications, and witness
the answer by an extension with the same index set. For a single Σ0

2-formula,
one could then use Lemma 10.6.14 to define a finite decreasing sequence
of meta-conditions 𝑐 = 𝑐0 ≥ 𝑐1 ≥ · · · ≥ 𝑐𝑘 such that R(𝑐𝑠+1 , 𝑖) ⊊ R(𝑐𝑠 , 𝑖),
eventually yielding R(𝑐𝑘 , 𝑖) = ∅ for each 𝑖 < 2, thus forcing the requirement
on every part of every branch.

However, in order to obtain jump PA avoidance, one must design a Π0
2-merging

forcing question. The forcing question for Σ0
2-formulas on ℚ-conditions is Π0

2-
merging, but the witnessed extension is obtained by considering the cartesian
product of multiple large classes, hence increasing the index set. Trying to
adapt Lemma 10.6.14 to increasing index sets would yield an extension 𝑑 with
more branches. Then R(𝑑, 𝑖) might be larger than R(𝑐, 𝑖), which would not
yield a progress towards forcing the requirements on all the branches.

We shall therefore directly design a forcing question for Σ0
2-formulas on meta-

conditions 𝑐, parameterized by the set R(𝑐, 𝑖), with the following property:
either there exists an extension 𝑑 with the same index set forcing R(𝐺𝑖) on
some branch 𝐼 ∈ R(𝑐, 𝑖), yielding R(𝑑, 𝑖) ⊆ R(𝑐, 𝑖) \ {𝐼}, or there exists
an extension 𝑑 ∈ ℙ𝑚 with a larger index set, but forcing R(𝐺𝑖) on every
branch 𝐽 ◁I𝑚 such that 𝐽 ≤ 𝐼 for some 𝐼 ∈ R(𝑐, 𝑖), so R(𝑑, 𝑖) = ∅.37

37: The idea was already present in the
proof of Liu’s theorem [12], who designed
a forcing question for Σ0

1-formulas with the
same features. It is also present in Theo-
rem 5.3.3.

Definition 10.6.16. Let 𝑐 = (⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁ I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩, 𝐶) be a
meta-condition, 𝐻 ⊆ {𝐼 ◁ I𝑛}, 𝑖 < 2 and 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥) be a Σ0

2
formula. Let 𝑐 ?⊢𝐻 𝜑(𝐺𝑖) hold if the following class is not large:

U
M,I𝑛
𝐶

∩
⋂

𝐼∈𝐻,𝑥∈ℕ,
𝜌⊆𝐴𝑖∩

⋃
𝜈∈𝐼 𝑋𝜈

{⟨𝑍𝜇 : 𝜇 ∈ I𝑛⟩ : (𝜎𝑖 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑍𝜈) ?⊬𝜓(𝐺, 𝑥)}

Note that the relation in Σ0
2 uniformly in 𝐻, 𝑖 and 𝜑(𝐺). The following lemma

states that the forcing question meets its specifications and the witnessed
extension has the same index set.

Lemma 10.6.17 (Monin and Patey [78]). Let 𝑐 ∈ ℙ𝑛 be a meta-condition,
𝐻 ⊆ {𝐼 ◁I𝑛}, 𝑖 < 2, and 𝜑(𝐺) be a Σ0

2 formula.

1. If 𝑐 ?⊢𝐻 𝜑(𝐺𝑖), then there is an extension 𝑑 ≤ 𝑐 in ℙ𝑛 and some 𝐼 ∈ 𝐻
such that 𝑑[𝐼] strongly forces38 38: Recall that given a notion of forcing

(ℙ,≤), a condition 𝑝 strongly forces a for-
mula 𝜑(𝐺) if the formula holds for every
filter containing 𝑝.

𝜑(𝐺𝑖).
2. If 𝑐 ?⊬𝐻 𝜑(𝐺𝑖), then there is an extension 𝑑 ≤ 𝑐 in ℙ𝑛 such that for

every 𝐼 ∈ 𝐻, 𝑑[𝐼] ⊩ ¬𝜑(𝐺𝑖). ★

Proof. Say 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥) and 𝑐 = (⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁ I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈
I𝑛⟩, 𝐶). For every 𝐼 ∈ 𝐻, 𝑥 ∈ ℕ and 𝜌 ⊆ 𝐴𝑖 ∩

⋃
𝜈∈𝐼 𝑋𝜈, let

A𝐼 ,𝑥,𝜌 = {⟨𝑍𝜇 : 𝜇 ∈ I𝑛⟩ : (𝜎𝐼𝑖 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑍𝜈) ?⊬𝜓(𝐺, 𝑥)}

Suppose first 𝑐 ?⊢𝐻 𝜑(𝐺𝑖). Then there is some finite set 𝐹 ⊆ 𝐶 and some 𝑡 ∈

178 10 Jump compactness avoidance

39: Note that in the definition of a weakly Γ-
merging forcing question, the parameter 𝑘
might depend on the condition 𝑝.

ℕ such that the following class is not large:

B= U
M,I𝑛
𝐹

⋂
𝐼∈𝐻,𝑥<𝑡 ,𝜌⊆𝐴𝑖∩

⋃
𝜈∈𝐼 𝑋𝜈↾𝑡

A𝐼 ,𝑥,𝜌

Since B is Σ0
1(M) and M is a Scott ideal, there is some 𝑘 ∈ ℕ and a 𝑘-cover

𝑍0∪· · ·∪𝑍𝑘−1 = ℕ in Msuch that for every 𝑗 : I𝑛 → 𝑘, ⟨𝑍 𝑗(𝜈) : 𝜈 ∈ 𝐼⟩ ∉ B.
By Proposition 10.4.6, L(UM,I𝑛

𝐶
) is large, so there is some 𝑗 : I𝑛 → 𝑘 such

that ⟨𝑍 𝑗(𝜈) : 𝜈 ∈ I𝑛⟩ ∈ L(UM,I𝑛
𝐶

). In particular, U
M,I𝑛
𝐶

∩ L⟨𝑋𝜈 :𝜈∈I𝑛⟩ ∩
L⟨𝑍 𝑗(𝜈):𝜈∈I𝑛⟩ is large, so by Lemma 10.4.5, so is U

M,I𝑛
𝐶

∩ L⟨𝑋𝜈∩𝑍 𝑗(𝜈):𝜈∈I𝑛⟩ .
In particular, ⟨𝑋𝜈 ∩ 𝑍 𝑗(𝜈) : 𝜈 ∈ I𝑛⟩ ∈ U

M,I𝑛
𝐹

, so there is some 𝐼 ∈ 𝐻,
some 𝑥 < 𝑡 and some 𝜌 ⊆ 𝐴𝑖 ∩

⋃
𝜈∈𝐼 𝑋𝜈↾𝑡 such that ⟨𝑋𝜈 ∩ 𝑍 𝑗(𝜈)⟩ ∉

A𝐼 ,𝑥,𝜌. Unfolding the definition of A𝐼 ,𝑥,𝜌, (𝜎𝐼
𝑖
∪ 𝜌,

⋃
𝜈∈𝐼 𝑍 𝑗(𝜈)) ?⊬𝜓(𝐺, 𝑥), so

(𝜎𝐼
𝑖
∪ 𝜌,

⋃
𝜈∈𝐼 𝑍 𝑗(𝜈)) strongly forces 𝜓(𝐺, 𝑥), hence strongly forces 𝜑(𝐺).

Let 𝐷 ⊆ 𝐶 be a Δ0
2 set such that U

M,I𝑛
𝐷

= U
M,I𝑛
𝐶

∩ L⟨𝑋𝜈∩𝑍 𝑗(𝜈):𝜈∈I𝑛⟩ . For
every 𝜈 ∈ I𝑛 , let 𝑌𝜈 = (𝑋𝜈 ∩ 𝑍 𝑗(𝜈)) \ {0, . . . , 𝑡}. Let 𝜏𝐼

𝑖
= 𝜎𝑖

𝐼
∪ 𝜌 and

𝜏𝐼1−𝑖 = 𝜎𝐼1−𝑖 . For every 𝐽 ◁ I𝑛 with 𝐽 ≠ 𝐼, let 𝜏𝐽0 = 𝜎𝐽0 and 𝜏𝐽1 = 𝜎𝐽1. The
meta-condition 𝑑 = (⟨𝜏𝐽0 , 𝜏

𝐽

1 : 𝐽 ◁I𝑛⟩, ⟨𝑌𝜈 : 𝜈 ∈ I𝑛⟩, 𝐷) is an extension of 𝑐
such that 𝑑[𝐼] strongly forces 𝜑(𝐺𝑖).

Suppose now 𝑐 ?⊬𝐻 𝜑(𝐺𝑖). Let 𝐷 ⊇ 𝐶 be a Δ0
2 set such that

U
M,I𝑛
𝐷

= U
M,I𝑛
𝐶

⋂
𝐼∈𝐻,𝑥∈ℕ,𝜌⊆𝐴𝑖∩

⋃
𝜈∈𝐼 𝑋𝜈

A𝐼 ,𝑥,𝜌

The meta-condition 𝑑 = (⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩, 𝐷) is an extension
of 𝑐 such that 𝑑[𝐼] ⊩ ¬𝜑(𝐺𝑖) for every 𝐼 ∈ 𝐻.

Recall from Section 5.2 that given a notion of forcing (ℙ,≤) and a family of
formulas Γ, a forcing question is weakly Γ-merging39 if for every 𝑝 ∈ ℙ, there
is some 𝑘 ∈ ℕ such that for every 𝑘-tuple of Γ-formulas 𝜑0(𝐺), . . . , 𝜑𝑘−1(𝐺),
if 𝑝 ?⊢𝜑𝑖(𝐺) for each 𝑖 < 𝑘, then there is an extension 𝑞 ≤ 𝑝 and two
indices 𝑖 < 𝑗 < 𝑘 such that 𝑞 forces 𝜑𝑖(𝐺) ∧ 𝜑 𝑗(𝐺). Thanks to Liu’s notion of
valuation (see Section 5.2), if a notion of forcing admits a Σ0

2-preserving and
weakly Π0

2-merging forcing question for Σ0
2-formulas, then every sufficiently

generic filter yields a set whose jump is not of PA degree over ∅′.

This notion of weak Π0
2-merging forcing question does not apply directly on

meta-conditions due to the branching and disjunctive nature of meta-conditions,
but the same combinatorial argument holds, with the necessary adaptation. In
particular, the following lemma informally states that the forcing question on
meta-conditions for Σ0

2-formulas is weakly Π0
2-merging.

Lemma 10.6.18 (Monin and Patey [78]). Let 𝑐 ∈ ℙ𝑛 be a meta-condition,
𝐻 ⊆ {𝐼 ◁I𝑛}, 𝑖 < 2 and 𝜑0(𝐺), . . . , 𝜑2𝑢𝑛 (𝐺) be 2𝑢𝑛 + 1 many Σ0

2 formulas.
Suppose that for every 𝑠 ≤ 2𝑢𝑛 , 𝑐 ?⊬𝐻 𝜑𝑠(𝐺𝑖). Then there is some extension
𝑑 ∈ ℙ𝑛+1 such that for every 𝐼 ∈ 𝐻 and every 𝐽 ◁I𝑛+1 such that 𝐽 ≤ 𝐼, there
are some 𝑎 < 𝑏 ≤ 2𝑢𝑛 such that

𝑑[𝐽] ⊩ ¬𝜑𝑎(𝐺𝑖) and 𝑑[𝐽] ⊩ ¬𝜑𝑏(𝐺𝑖)

Proof. Say 𝑐 = (⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁ I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩, 𝐶) and 𝜑𝑠(𝐺) ≡
∃𝑥𝜓𝑠(𝐺, 𝑥) for each 𝑠 ≤ 2𝑢𝑛 . For every 𝑠 ≤ 2𝑢𝑛 , the following class is

10.6 Pigeonhole principle 179

large:

A𝑠 = U
M,I𝑛
𝐶

∩
⋂

𝐼∈𝐻,𝑥∈ℕ,
𝜌⊆𝐴𝑖∩

⋃
𝜈∈𝐼 𝑋𝜈

{⟨𝑍𝜇 : 𝜇 ∈ I𝑛⟩ : (𝜎𝐼𝑖 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑍𝜈) ?⊬𝜓𝑠(𝐺, 𝑥)}

Let 𝐷 ⊆ ℕ2 be a Δ0
2 set such that U

M,I𝑛+1
𝐷

=
∏

𝑗≤2𝑢𝑛 A𝑠 . In particular,
U

M,I𝑛+1
𝐷

is large. For every (𝑗 , 𝜈) ∈ I𝑛+1, let 𝑌(𝑗 ,𝜈) = 𝑋𝜈. For every 𝐽 ◁I𝑛+1,
let 𝜏𝐽0 = 𝜎𝐼0 and 𝜏𝐽1 = 𝜎𝐼1, where 𝐼 ◁I𝑛 is the unique index set such that 𝐽 ≤ 𝐼.
Note that UM,I𝑛+1

𝐷
⊆ L⟨𝑌𝜇:𝜇∈I𝑛+1⟩ and U

M,I𝑛+1
𝐷

≤ U
M,I𝑛
𝐶

. The meta-condition
𝑑 = (⟨𝜏𝐽0 , 𝜏

𝐽

1 : 𝐽 ◁I𝑛+1⟩, ⟨𝑌𝜇 : 𝜇 ∈ I𝑛+1⟩, 𝐷) is an extension of 𝑐.

Fix 𝐼 ∈ 𝐻 and 𝐽 ◁ I𝑛+1 such that 𝐽 ≤ 𝐼. Let 𝑎 < 𝑏 ≤ 2𝑢𝑛 be such that
𝐽 = {𝑎, 𝑏} × 𝐼. We claim that 𝑑[𝐽] ⊩ ¬𝜑𝑎(𝐺𝑖) and 𝑑[𝐽] ⊩ ¬𝜑𝑏(𝐺𝑖). We prove
the former, the latter being symmetric. Fix some 𝑥 ∈ ℕ and 𝜌 ⊆ 𝐴𝑖 ∩

⋃
𝜇∈𝐽 𝑌𝜇.

In particular, 𝜌 ⊆ 𝐴𝑖∩
⋃

𝜈∈𝐼 𝑋𝜈. Fix ⟨𝑍𝜇 : 𝜇 ∈ 𝐽⟩ ∈ 𝜋𝐽(UM,I𝑛+1
𝐷

). In particular,

⟨𝑍(𝑎,𝜈) : 𝜈 ∈ 𝐼⟩ ∈ A𝑎 ⊆ {⟨𝑍𝜇 : 𝜇 ∈ I𝑛⟩ : (𝜎𝐼𝑖 ∪ 𝜌,
⋃
𝜈∈𝐼

𝑍𝜈) ?⊬𝜓𝑎(𝐺, 𝑥)}

so (𝜎𝐼
𝑖
∪𝜌,

⋃
𝜈∈𝐼 𝑍(𝑎,𝜈)) ?⊬𝜓𝑎(𝐺, 𝑥). As 𝜎𝐼

𝑖
= 𝜏𝐽

𝑖
and

⋃
𝜈∈𝐼 𝑍(𝑎,𝜈) ⊆

⋃
𝜇∈𝐽 𝑍𝜇,

then (𝜏𝐽
𝑖
∪ 𝜌,

⋃
𝜇∈𝐽 𝑍𝜇) ?⊬𝜓𝑎(𝐺, 𝑥). Thus, for every 𝑥 ∈ ℕ and 𝜌 ⊆ 𝐴𝑖 ∩⋃

𝜇∈𝐽 𝑌𝜇, 𝜋𝐽(UM,I𝑛+1
𝐷

) ⊆ {⟨𝑍𝜇 : 𝜇 ∈ 𝐽⟩ : (𝜏𝐽
𝑖
∪𝜌,

⋃
𝜇∈𝐽 𝑍𝜇) ?⊬𝜓𝑎(𝐺, 𝑥)}, so

𝑑[𝐽] ⊩ ¬𝜑𝑎(𝐺𝑖).

Diagonalization. We now use the forcing question for Σ0
2-formulas to prove

the appropriate diagonalization lemmas in the context of jump PA avoidance.
Because of the weakly Π0

2-merging nature of the forcing question for meta-
conditions, one needs to use the valuation machinery introduced by Liu [12].

Recall from Section 5.2 that a valuation is a partial {0, 1}-valued function
ℎ ⊆ ℕ → 2. A valuation is finite if it has finite support, that is, dom ℎ is
finite. A valuation ℎ is 𝑍-correct if for every 𝑛 ∈ dom ℎ, Φ𝑍

𝑛 (𝑛) ↓≠ ℎ(𝑛).
Two valuations 𝑓 and ℎ are compatible if for every 𝑛 ∈ dom 𝑓 ∩ dom ℎ,
𝑓 (𝑛) = ℎ(𝑛). The following lemma is a relativization of Lemma 5.2.3.

Lemma 10.6.19 (Liu [12]). Fix a set 𝑍. Let𝑈 be a 𝑍-c.e. set of finite valua-
tions. Either 𝑈 contains a 𝑍-correct40 40: Note that the appropriate relativization

of Lemma 5.2.3 requires to relativize the
notion of correctness, as it is a computability-
theoretic property.

valuation, or for every 𝑘 ∈ ℕ, there are
𝑘 pairwise incompatible finite valuations outside of 𝑈 . ★

For every 𝑒 ∈ ℕ, let R𝑒(𝐺) be the requirement “either Φ𝐺′
𝑒 is partial, or

Φ𝐺′
𝑒 (𝑥) ↓= Φ∅′

𝑥 (𝑥) for some 𝑥 ∈ ℕ.” As mentioned in a note next to Defini-
tion 10.6.15, we overload the forcing relation for the requirement R𝑒(𝐺).

Definition 10.6.20. Given aℚ-condition 𝑝, some index 𝑒 ∈ ℕ and a part 𝑖 <
2, we say that 𝑝 forces R𝑒(𝐺𝑖) if

1. either 𝑝 strongly forces “Φ
𝐺′
𝑖

𝑒 is incompatible with ℎ” for a ∅′-correct
valuation ℎ,

2. or 𝑝 ⊩ “Φ
𝐺′
𝑖

𝑒 is compatible with ℎ𝑠 ” for two incompatible valuations
ℎ0 , ℎ1.41

41: The statement “Φ𝐺
′

𝑒 is incompatible
with ℎ” is Σ0

2(𝐺), as it is equivalent to
∃𝑥Φ𝐺′

𝑒 (𝑥)↓≠ ℎ(𝑥).

♦

According to Definition 10.6.15, given a meta-condition 𝑐 ∈ ℙ𝑛 we write
R𝑒(𝑐, 𝑖) for the set of index sets 𝐼◁I𝑛 such that 𝑐[𝐼] does not force R𝑒(𝐺𝑖).

180 10 Jump compactness avoidance

Lemma 10.6.21 (Monin and Patey [78]). For every meta-condition 𝑐, every
part 𝑖 < 2 and index 𝑒 ∈ ℕ such that R𝑒(𝑐, 𝑖) ≠ ∅, there is an extension
𝑑 ≤ 𝑐 such that cardR𝑒(𝑑, 𝑖) < cardR𝑒(𝑐, 𝑖). ★

Proof. Let 𝐻 = R𝑒(𝑐, 𝑖), and let 𝑈 be the set of all valuations ℎ such
that 𝑐 ?⊢𝐻 “Φ

𝐺′
𝑖

𝑒 is incompatible with ℎ”. Note that the set 𝑈 is ∅′-c.e., so by
Lemma 10.6.19, we have two cases. Case 1: ℎ ∈ 𝑈 for some ∅′-correct
valuation ℎ. Then, by Lemma 10.6.17, there is an extension 𝑑 ≤ 𝑐 in ℙ𝑛 and
some 𝐼 ∈ 𝐻 such that 𝑑[𝐼] strongly forces Φ

𝐺′
𝑖

𝑒 to be incompatible with ℎ.
In particular, R𝑒(𝑑, 𝑖) ⊊ R𝑒(𝑐, 𝑖), hence cardR𝑒(𝑑, 𝑖) < cardR𝑒(𝑐, 𝑖).
Case 2: ℎ0 , . . . , ℎ2𝑢𝑛 ∉ 𝑈 for 2𝑢𝑛 + 1 pairwise incompatible valuations.
By Lemma 10.6.18, there is an extension 𝑑 ≤ 𝑐 in ℙ𝑛+1 such that for ev-
ery 𝐼 ∈ 𝐻 and every 𝐽 ◁I𝑛+1 such that 𝐽 ≤ 𝐼, there are some 𝑎 < 𝑏 ≤ 2𝑢𝑛
such that 𝑑[𝐽] ⊩ “Φ

𝐺′
𝑖

𝑒 is compatible with ℎ𝑎” and 𝑑[𝐽] ⊩ “Φ
𝐺′
𝑖

𝑒 is compat-
ible with ℎ𝑏”, hence 𝑑[𝐽] forces R𝑒(𝐺𝑖). It follows that R𝑒(𝑑, 𝑖) = ∅, so
cardR𝑒(𝑑, 𝑖) < cardR𝑒(𝑐, 𝑖).

We say that a meta-condition 𝑐 ∈ ℙ𝑛 forces R𝑒(𝐺) if 𝑐[𝐼] forces R𝑒(𝐺𝑖) for
every 𝐼 ◁I𝑛 and 𝑖 < 2.

Lemma 10.6.22 (Monin and Patey [78]). For every meta-condition 𝑐 and 𝑒 ∈
ℕ, there is an extension 𝑑 ≤ 𝑐 forcing R𝑒(𝐺). ★

Proof. Apply iteratively Lemma 10.6.21 to obtain a meta-condition 𝑑0 ≤ 𝑐

such that R𝑒(𝑑0 , 0) = ∅. Then, apply again iteratively Lemma 10.6.21 to obtain
a meta-condition 𝑑1 ≤ 𝑑0 such that R𝑒(𝑑1 , 1) = ∅.

Tree structure. The partial order of meta-conditions being countable, every ℙ-
filter can be identified with an infinite decreasing sequence of meta-conditions
𝑐0 ≥ 𝑐1 ≥ . . . Each meta-conditions represents multiple ℚ-conditions, each
of which admits two parts. By Lemma 10.6.13, every meta-condition admits
a branch with a valid part, and by Exercise 10.6.6, the valid parts a upward-
closed under the extension relation. The valid parts of ℚ-conditions along
a decreasing sequence of meta-conditions therefore naturally form a tree
structure, motivating the following definition.

Definition 10.6.23. A path through a ℙ-filter F is a pair ⟨𝑃, 𝑖⟩ where 𝑖 < 2,
such that

1. for every 𝑛 ∈ ℕ, 𝑃(𝑛) ◁I𝑛 such that 𝑃(𝑛 + 1) ≤ 𝑃(𝑛);
2. for every 𝑐 ∈ F∩ ℙ𝑛 , part 𝑖 of 𝑐[𝑃(𝑛)] is valid. ♦

By Lemma 10.6.13 and Exercise 10.6.6, every ℙ-filter admits a path. For every
ℙ-filter Fand every path ⟨𝑃, 𝑖⟩, let

𝐺F,𝑃,𝑖 =
⋃

{𝜎𝑃(𝑛)
𝑖

: (⟨𝜎𝐼0 , 𝜎𝐼1 : 𝐼 ◁I𝑛⟩, ⟨𝑋𝜈 : 𝜈 ∈ I𝑛⟩, 𝐶) ∈ F}

If F is a sufficiently generic ℙ-filter and ⟨𝑃, 𝑖⟩ is a path through F, then
F𝑃 = {𝑐[𝑃(𝑛)] : 𝑐 ∈ F∩ℙ𝑛 , 𝑛 ∈ ℕ} might not be a sufficiently generic ℚ-filter.
Thankfully, if a ℚ-condition 𝑝 strongly forces a Σ0

1, a Π0
2 or a Σ0

2-formula, then
the property holds for every ℚ-filter containing 𝑝, with no consideration of
genericity. The following lemma states that the syntactic forcing relation for
Π0

2-formulas holds along paths of every sufficiently generic ℙ-filter.

10.7 Jump DNC avoidance 181

Lemma 10.6.24 (Monin and Patey [78]). Let Fbe a sufficiently generic ℙ-
filter, and let ⟨𝑃, 𝑖⟩ be a path through F. Let 𝜑(𝐺) be a Π0

2-formula and 𝑐 ∈ F.
If 𝑐[𝑃(𝑛)] ⊩ 𝜑(𝐺𝑖), then 𝜑(𝐺F,𝑃,𝑖) holds. ★

Proof. Fix some 𝑥 ∈ ℕ and say 𝜑(𝐺) ≡ ∀𝑥𝜓(𝐺, 𝑥). Let D𝑥 be the set of
meta-conditions 𝑑 ≤ 𝑐 such that 𝑑[𝐼] forces 𝜓(𝐺𝑖 , 𝑥) for every branch 𝐼 ≤
𝑃(𝑛) such that part 𝑖 of 𝑑[𝐼] is valid. By Exercise 10.6.3, Lemma 10.6.5 and
Lemma 10.6.14, the set D𝑥 is dense below 𝑐, so by genericity of F, there is
some 𝑑 ∈ D𝑥 ∩ F. Say 𝑑 ∈ P𝑚 . Since 𝑃(𝑚) ≤ 𝑃(𝑛) and part 𝑖 of 𝑑[𝐼] is
valid, 𝑑[𝑃(𝑚)] forces 𝜓(𝐺𝑖 , 𝑥), so 𝜓(𝐺F,𝑃,𝑖 , 𝑥) holds. Thus 𝜑(𝐺F,𝑃,𝑖) holds.

We are now ready to prove Theorem 10.6.1.

Proof of Theorem 10.6.1. Let F be a sufficiently generic ℙ-filter, and let
⟨𝑃, 𝑖⟩ be a path through F. By definition of a meta-condition, 𝐺F,𝑃,𝑖 ⊆ 𝐴𝑖 . By
Exercise 10.6.7 and Lemma 10.6.14, 𝐺F,𝑃,𝑖 is infinite. By Lemma 10.6.22, for
every 𝑒 ∈ ℕ, the set of meta-conditions forcing R𝑒(𝐺) is dense, hence there
is some 𝑑𝑒 ∈ ℙ ∩Fsuch that 𝑑𝑒 forces R𝑒(𝐺). By Lemma 10.6.24, it follows
that R𝑒(𝐺F,𝑃,𝑖) holds for every 𝑒 ∈ ℕ, so 𝐺′

F,𝑃,𝑖
is not of PA degree over ∅′.

This completes the proof of Theorem 10.6.1.

10.7 Jump DNC avoidance

As mentioned in the introduction, jump DNC avoidance did not receive as much
attention as jump PA avoidance since the DNC counterpart to COH did not
occur naturally in reverse mathematics.

Exercise 10.7.1. Adapt the proof of Theorem 10.2.1 to show that for every
sufficiently Cohen generic set 𝐺, 𝐺′ is not of DNC degree over ∅′. ★

Exercise 10.7.2. Adapt the proof of Theorem 10.2.4 to show that given a
non-computable set 𝐶 and a non-empty Π0

1 class P ⊆ 2ℕ , there exists a
member 𝐺 ∈ P such that 𝐶 ≰𝑇 𝐺 and 𝐺′ is not of DNC degree over ∅′. ★

Recall from Section 5.8 that given a notion of forcing (ℙ,≤) and a family
of formulas Γ, a forcing question is countably Γ-merging if for every 𝑝 ∈ ℙ

and every countable sequence of Γ-formulas (𝜑𝑠(𝐺))𝑠∈ℕ , if 𝑝 ?⊢𝜑𝑠(𝐺) for
each 𝑠 ∈ ℕ, then there is an extension 𝑞 ≤ 𝑝 forcing ∀𝑠𝜑𝑠(𝐺).

Exercise 10.7.3. Let (ℙ,≤) be a notion of forcing with a Σ0
2-preserving, count-

ably Π0
2-merging forcing question. Adapt the proof of Theorem 5.8.4 to show

that for every sufficiently generic filter F, 𝐺′
F

is not of DNC degree over ∅′.★

Both in the cases of Cohen forcing and WKL, we actually exploited a stronger
feature of the forcing question for Σ0

2-formulas. A forcing question for Σ0
𝑛-

formulas is Π0
𝑛-extremal if for every Σ0

𝑛-formula 𝜑 and every condition 𝑝 ∈ ℙ,
if 𝑝 ?⊬𝜑(𝐺), then 𝑝 forces ¬𝜑(𝐺).

182 10 Jump compactness avoidance

Exercise 10.7.4. Let (ℙ,≤) be a notion of forcing with a Π0
𝑛-extremal forcing

question. Show that the forcing question is countably Π0
𝑛-merging. ★

The status of the pigeonhole principle with respect to DNC degrees is slightly
different than PA degrees. First of all, contrary to PA degrees (see Theo-
rem 5.4.3), for every set 𝑋, there exists an instance of RT1

2 such that every
solution is of DNC degree over 𝑋. Such instance is constructed thanks to
the notion of effective immunity. Recall from Section 6.2 that given a function
ℎ : ℕ → ℕ, an infinite set 𝐴 is ℎ-immune if for every c.e. set 𝑊𝑒 such that
𝑊𝑒 ⊆ 𝐴, then card𝑊𝑒 ≤ ℎ(𝑒). An infinite set is effectively immune if it is
ℎ-immune for some computable function ℎ : ℕ → ℕ.

Proposition 10.7.5 (Hirschfeldt et al. [47]). For every set 𝑋, there is an 𝑋′-
computable effectively bi-𝑋-immune42

42: The relativization of effective immunity
has two parameters: a set 𝐴 is 𝑌-effectively
𝑋-immune if there is an𝑌-computable func-
tion ℎ : ℕ → ℕ such that for every 𝑋-c.e.
set 𝑊𝑋

𝑒 with 𝑊𝑋
𝑒 ⊆ 𝐴, then card𝑊𝑋

𝑒 ≤
ℎ(𝑒).

set 𝐴. ★

Proof. Let ℎ : ℕ → ℕ be defined by ℎ(𝑒) = 3𝑒 + 2. We build an ℎ-𝑋-
immune set 𝐴 by stages using an 𝑋′-computable construction. At stage 𝑒,
assume 𝐴↾𝑒 is defined, and 𝐴(𝑛) is defined for at most 2𝑒 other 𝑛’s. Decide
𝑋′-computably whether 𝑊𝑋

𝑒 has at least 3𝑒 + 2 many elements. If so, then
there are at least two elements 𝑛0 , 𝑛1 ∈ 𝑊𝑋

𝑒 for which 𝐴 has not yet been
decided. Let 𝐴(𝑛0) = 0 and 𝐴(𝑛1) = 1. In any case, if 𝐴(𝑒) is not defined yet,
let 𝐴(𝑒) be any value among 0 and 1. This completes the construction.

In particular, letting 𝑋 = ∅′, there exists a Δ0
3 instance of RT1

2 such that every
solution computes a DNC function over ∅′. This implies that RT1

2 does not
admit strong DNC avoidance, and a fortiori does not admit strong jump DNC
avoidance.

Exercise 10.7.6. Use Proposition 5.7.2 to prove the existence, for every set𝑋,
of an 𝑋′-computable set 𝐴 such that every infinite subset of 𝐴 or of 𝐴 is of
DNC degree over 𝑋. ★

Of course, the pigeonhole principle being computably true, every Δ0
2 instance

of RT1
2 admits a Δ0

2 solution, hence a solution which is not of DNC degree
over ∅′. The following question remains open:

Question 10.7.7. Is there a Δ0
2 instance of RT1

2 such that for every solution 𝐻,
𝐻′ is of DNC degree over ∅′? ★

One would naturally want to adapt the proof of Theorem 10.6.1 and work with
𝜔-product largeness to obtain a countably Π0

2-merging forcing question for
Σ0

2-formulas. However, 𝜔-product spaces do not behave as nicely as finite
product spaces, leaving the question open.

Higher jump cone avoidance 11
11.1 Context and motivation . 183
11.2 First examples 184
11.3 Pigeonhole principle . . . 185
11.4 Computable ordinals . . 190
11.5 Hyperarithmetic hierarchy 192
11.6 Higher recursion theory . 194
11.7 Transfinite jump control . 197

Prerequisites: Chapters 2, 3 and 9

The conceptual gap from second to iterated jump control is not as significant
as from first to second jump control. Indeed, the main difficulty comes from
dealing with non-continuous functionals, which already occurs at the Σ0

2 level.
There is therefore often a natural generalization from second to all the levels
of the arithmetic hierarchy.

New difficulties arise when trying to control the jump at transfinite levels. The
arithmetic hierarchy extends to the hyperarithmetic hierarchy through iterations
along computable ordinals. While the arithmetic hierarchy is indexed by inte-
gers, which are left unchanged when considering relativization to a generic
set, the hyperarithmetic hierarchy is indexed by computable ordinals, which is
a relative notion: the generic set might compute more ordinals, and therefore
might have more levels in its relative hyperarithmetic hierarchy.

11.1 Context and motivation

The study of iterated jump control at the arithmetic and hyperarithmetic levels
has two different motivations, both coming from reverse mathematics.

Arithmetic jump control. At the arithmetic level, arithmetic jump control is an
essential tool in the study of Ramsey-type hierarchies. Consider for instance
the rainbow Ramsey theorem, which is a particular case of the canonical
Ramsey theorem of Erdős and Rado.

Definition 11.1.1. A coloring 𝑓 : [ℕ]𝑛 → ℕ is 𝑘-bounded if each color
appears at most 𝑘 times, that is, | 𝑓 −1(𝑐)| ≤ 𝑘 for every 𝑐 ∈ ℕ. A set 𝐻 ⊆ ℕ

is an 𝑓 -rainbow if 𝑓 is injective on [𝐻]𝑛 . The rainbow Ramsey theorem
for 𝑛-tuples and 𝑘-bounds (RRT𝑛

𝑘
) states that every 𝑘-bounded coloring

𝑓 : [ℕ]𝑛 → ℕ admits an infinite 𝑓 -rainbow. ♦

As for Ramsey’s theorem, the rainbow Ramsey theorem forms a hierarchy of
statements based on the size 𝑛 of the tuples. However, while RT𝑛2 collapses
and is equivalent to ACA0 for 𝑛 ≥ 3, Wang [15] proved that RRT𝑛2 is strictly
weaker than ACA0 for every 𝑛 ≥ 1. Whether or not the rainbow Ramsey
hierarchy is strict remains open.

Csima and Mileti [80] proved that every computable instance of RRT𝑛2 admits
a Π0

𝑛 solution, while there exists a computable instance of RRT𝑛2 with no Σ0
𝑛

solution. The most promising approach to separate RRT𝑛2 from RRT𝑛+1
2 is

using the natural invariant lying at the Δ0
𝑛 level of the arithmetic hierarchy,

namely, low𝑛ness. By Cholak, Jockusch and Slaman [27] and Wang [89],
every computable instance of RRT𝑛2 admits a low𝑛 solution for 𝑛 ∈ {2, 3}. The
general case is likely to be solved using arithmetic jump control.

Hyperarithmetic jump control. The duality between computability and definabil-
ity is omnipresent in reverse mathematics. The base theory, RCA0, captures
“computable mathematics”, and its 𝜔-models admit a nice characterization in
terms of Turing ideals. The systems WKL0 and ACA0 also admit computability-
theoretic formulations, in terms of existence of PA degrees and of the halting

184 11 Higher jump cone avoidance

3: The base case is a solution to Exer-
cise 3.3.6.

set, respectively. On the other hand, the two highest systems of the Big Five,
namely, ATR0 and Π1

1-CA0, are better explained in terms of higher recursion
theory, stating the existence of every transfinite iterations of the halting set, and
the existence of Kleene’s O, respectively. Given the importance of arithmetic
jump control in the study of the lower systems of reverse mathematics, one
can reasonably guess that hyperarithmetic jump control will play some role in
the study of principles at the level of ATR0 and Π1

1-CA0.

11.2 First examples

As mentioned, there exists a natural generalization from second jump to arith-
metic jump control, using inductive definitions. We illustrate this using Cohen
forcing.

Theorem 11.2.1 (Feferman [90])
Fix 𝑛 ≥ 1 and let 𝐶 be a non-Δ0

𝑛 set. For every sufficiently Cohen generic
filter F, 𝐶 is not Δ0

𝑛(𝐺F).

Proof. In order to prove our theorem, we need to define a Σ0
𝑛-preserving

forcing question for Σ0
𝑛-formulas.

Definition 11.2.2. Let 𝜎 ∈ 2<ℕ be a Cohen condition and 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥)
be a Σ0

𝑛 formula for 𝑛 ≥ 1.

1. For 𝑛 = 1, let 𝜎 ?⊢𝜑(𝐺) hold if there is some 𝑥 ∈ ℕ and some 𝜏 ⪰ 𝜎
such that 𝜓(𝜏, 𝑥) holds.

2. For 𝑛 > 1, let 𝜎 ?⊢𝜑(𝐺) hold if there is some 𝑥 ∈ ℕ and some 𝜏 ⪰ 𝜎
such that 𝜏 ?⊢𝜓(𝐺, 𝑥).1

1: Here, 𝜓 is a Π0
𝑛−1-formula. The notation

𝜏 ?⊢𝜓(𝐺, 𝑥) is therefore a shorthand for
𝜏 ?⊬¬𝜓(𝐺, 𝑥), that is, the forcing question
for Π0

𝑛−1-formulas induced by taking the
negation of the forcing question for Σ0

𝑛−1-
formulas.

♦

A simple induction on the structure of the formulas shows that given a Σ0
𝑛-

formula 𝜑(𝐺), the relation 𝜎 ?⊢𝜑(𝐺) is Σ0
𝑛 uniformly in its parameters. The

following lemma shows that the definition of the forcing question meets a strong
version of its specifications.

Lemma 11.2.3. Let 𝜎 ∈ 2<ℕ be a Cohen condition and 𝜑(𝐺) be a Σ0
𝑛 formula

for 𝑛 ≥ 1.

1. If 𝜎 ?⊢𝜑(𝐺), then there is an extension 𝜏 ⪰ 𝜎 forcing 𝜑(𝐺).
2. If 𝜎 ?⊬𝜑(𝐺), then 𝜎 forces ¬𝜑(𝐺).2

2: This property states that the forcing ques-
tion for Σ0

𝑛 -formulas is Π0
𝑛 -extremal (see

Definition 7.6.5). It follows that sufficiently
Cohen generic sets preserve many compu-
tational properties.

★

Proof. We prove simultaneously both items inductively on the structure of
the formula 𝜑(𝐺). Say 𝜑(𝐺) ≡ ∃𝜓(𝐺, 𝑥) where 𝜓(𝐺, 𝑥) is Π0

𝑛−1.

Base case: 𝑛 = 1.3 If 𝜎 ?⊢𝜑(𝐺), then, letting 𝜏 ⪰ 𝜎 and 𝑥 ∈ ℕ witness the
definition, for every filter Fcontaining 𝜏, 𝐺F ⪰ 𝜏, hence 𝜓(𝐺F, 𝑥) holds, so
𝜑(𝐺F) holds. It follows that 𝜏 is an extension of 𝜎 forcing 𝜑(𝐺). Conversely, if
𝜎 does not force ¬𝜑(𝐺), then there is a filter Fcontaining 𝜎 such that 𝜑(𝐺F)
holds. Then, by the use property, there is a finite 𝜏 ≺ 𝐺F and some 𝑥 ∈ ℕ

such that 𝜓(𝜏, 𝑥) holds. Since 𝜎 ≺ 𝐺F, by taking 𝜏 long enough, one has
𝜎 ≺ 𝜏, thus 𝜎 ?⊢𝜑(𝐺).
Inductive case: 𝑛 > 1. If 𝜎 ?⊢𝜑(𝐺), then there is some 𝑥 ∈ ℕ and some
𝜏 ⪰ 𝜎 such that 𝜏 ?⊢𝜓(𝐺, 𝑥). By induction hypothesis, there is some 𝜌 ⪰ 𝜏
forcing 𝜓(𝐺, 𝑥). In particular, 𝜌 is an extension of 𝜎 forcing 𝜑(𝐺). If 𝜎 ?⊬𝜑(𝐺),
then for every 𝑥 ∈ ℕ and every 𝜏 ⪰ 𝜎, 𝜏 ?⊬𝜓(𝐺, 𝑥). By induction hypothesis,

11.3 Pigeonhole principle 185

4: By Post’s theorem, the following prop-
erty is Σ0

𝑛 , although the translation is not
straightforward:

Φ𝐺
(𝑛−1)

𝑒 (𝑥)↓= 𝑣

for every 𝑥 ∈ ℕ and every 𝜏 ⪰ 𝜎, there is some 𝜌 ⪰ 𝜏 forcing ¬𝜓(𝐺, 𝑥). In
other words, for every 𝑥 ∈ ℕ, the set of all 𝜌 forcing ¬𝜓(𝐺, 𝑥) is dense below
𝜎. Thus, for every sufficiently generic filter Fcontaining 𝜎 and for every 𝑥 ∈ ℕ,
there is some 𝜌 ∈ F forcing ¬𝜓(𝐺, 𝑥), hence ∀𝑥¬𝜓(𝐺F, 𝑥) holds. In other
words, 𝜎 forces ¬𝜑(𝐺).

The following diagonalization lemma is a straightforward generalization of
Lemma 3.2.2.

Lemma 11.2.4. For every Cohen condition 𝜎 ∈ 2<ℕ and every Turing index 𝑒,
there is an extension 𝜏 ⪰ 𝜎 forcing Φ𝐺(𝑛−1)

𝑒 ≠ 𝐶. ★

Proof. Consider the following set4

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : 𝜎 ?⊢Φ𝐺(𝑛−1)
𝑒 (𝑥)↓= 𝑣}

Since the forcing question is Σ0
𝑛-preserving, the set 𝑈 is Σ0

𝑛 . There are three
cases:

▶ Case 1: (𝑥, 1− 𝐶(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ. By Lemma 11.2.3(1), there
is an extension 𝜏 ⪰ 𝜎 forcing Φ𝐺(𝑛−1)

𝑒 (𝑥)↓= 1 − 𝐶(𝑥).
▶ Case 2: (𝑥, 𝐶(𝑥)) ∉ 𝑈 for some 𝑥 ∈ ℕ. By Lemma 11.2.3(2), there is

an extension 𝜏 ⪰ 𝜎 forcing Φ𝐺(𝑛−1)
𝑒 (𝑥)↑ or Φ𝐺(𝑛−1)

𝑒 (𝑥)↓≠ 𝐶(𝑥).
▶ Case 3: None of Case 1 and Case 2 holds. Then 𝑈 is a Σ0

𝑛 graph of
the characteristic function of 𝐶, hence 𝐶 is Δ0

𝑛 . This contradicts our
hypothesis.

We are now ready to prove Theorem 11.2.1. Let Fbe a sufficiently generic
filter for Cohen forcing, and let 𝐺F =

⋃
F. By genericity of F, 𝐺F is an infinite

binary sequence, and by Lemma 11.2.4, 𝐶 ≰𝑇 𝐺
(𝑛−1)
F

, in other words 𝐶 is not
Δ0
𝑛(𝐺). This completes the proof of Theorem 11.2.1.

Exercise 11.2.5. Let (ℙ,≤) be a notion of forcing with aΣ0
𝑛-preserving forcing

question. Show that for every non-Δ0
𝑛 set 𝐶 and every sufficiently generic

filter F, 𝐶 is not Δ0
𝑛(𝐺F). ★

Exercise 11.2.6 (Wang [82]). Let (ℙ,≤) be the primitive recursive Jockusch-
Soare forcing, that is, ℙ is the set of all infinite primitive recursive binary trees
𝑇 ⊆ 2<ℕ , partially ordered by inclusion.

1. Adapt the proof of Theorem 9.4.1 to design a Σ0
𝑛-preserving forcing

question for Σ0
𝑛-formulas.

2. Deduce that for every non-Δ0
𝑛 set 𝐶 and every sufficiently generic ℙ-

filter F, 𝐶 is not Δ0
𝑛(𝐺F). ★

11.3 Pigeonhole principle

Although the conceptual gap from second-jump to higher jump control is much
smaller than from first to second-jump control, the generalization sometimes re-
quires some non-trivial adaptation. The pigeonhole principle is a good example
of a statement with a reasonably simple first-jump control (Theorem 3.4.6), with

186 11 Higher jump cone avoidance

6: Note that U
M𝑠
𝐸𝑠

= ⟨UM𝑠
𝐷𝑠

⟩ by
Lemma 9.6.24 and by M𝑠 -cohesiveness of
the class U

M𝑠
𝐷𝑠

.

7: This notion of forcing is very similar to the
one of Theorem 9.7.1, with M𝑛−1 playing
the role of the ideal N.

a second-jump control requiring the development of a whole new machinery
(Theorem 9.7.1), and whose generalization to higher jump control still contains
some subtleties.5

5: In order to understand this section, it is
mandatory to be completely familiar with the
material of Chapter 9.

Theorem 11.3.1 (Monin and Patey [31])
Fix 𝑛 ≥ 1 and let 𝐶 be a non-Δ0

𝑛 set. For every set 𝐴, there is an infinite
subset 𝐻 ⊆ 𝐴 or 𝐻 ⊆ 𝐴 such that 𝐶 is not Δ0

𝑛(𝐻).

Proof. The case 𝑛 = 1 is Theorem 3.4.6 and the case 𝑛 = 2 is Theo-
rem 9.7.1. We therefore assume that 𝑛 ≥ 3, although one could prove all
cases simultaneously with more case analysis within the definitions and the
proof. Fix 𝐶 and 𝐴. As in the previous cases, we shall construct two sets
𝐺0 ⊆ 𝐴 and 𝐺1 ⊆ 𝐴 using a disjunctive notion of forcing. For simplicity, let
𝐴0 = 𝐴 and 𝐴1 = 𝐴.

Hierarchy of Scott ideals. By multiple applications of the low basis theorem
(Theorem 4.4.6) and Theorem 4.3.2, there exists a sequence of sets𝑀0 , . . . , 𝑀𝑛−2
such that for every 𝑠 < 𝑛 − 1,

1. 𝑀𝑠 is of low degree over ∅(𝑠);
2. 𝑀𝑠 is a code for a Scott ideal M𝑠 containing ∅(𝑠).

By the cone avoidance basis theorem (Theorem 3.2.6) relativized to ∅(𝑛−1) and
Theorem 4.3.2, there is a code 𝑀𝑛−1 for a Scott ideal M𝑛−1 containing ∅(𝑛−1)

such that 𝐶 ≰𝑇 𝑀𝑛−1. Note that for every 𝑠 < 𝑛 − 1, 𝑀′
𝑠 ∈ M𝑠+1.

Hierarchy of partition regular classes. We construct a sequence𝐷0 , . . . , 𝐷𝑛−2
such that for every 𝑠 < 𝑛 − 1,

1. U
M𝑠

𝐷𝑠
is an M𝑠 -cohesive large class;

2. U
M𝑠+1
𝐷𝑠+1

⊆ ⟨UM𝑠

𝐷𝑠
⟩ if 𝑠 < 𝑛 − 2.

First, by Proposition 9.6.25, M1 contains a set 𝐷0 ⊆ ℕ2 such that U
M0
𝐷0

is
an M0-cohesive class. Suppose 𝐷𝑠 is defined and belongs to M𝑠+1, with
𝑠 < 𝑛−2. By Proposition 9.6.19, there is an (𝑀′

𝑠 ⊕𝐷𝑠)′-computable set 𝐸𝑠 ⊇
𝐷𝑠 such that UM𝑠

𝐸𝑠
is M𝑠 -minimal.6 In particular, 𝐸𝑠 is 𝑀′

𝑠+1-computable, so
𝐸𝑠 ∈ M𝑠+2. Furthermore, since 𝑀𝑠 ∈ M𝑠+1 and 𝑀𝑠+1 is a Scott code, there is
a computable function 𝑓 : ℕ → ℕ such that for every 𝑒 ∈ ℕ, 𝑓 (𝑒) is an 𝑀𝑠+1-
code and 𝑒 is an𝑀𝑠 -code of the same set. Let 𝐹𝑠+1 = {(𝑎, 𝑓 (𝑒)) : (𝑎, 𝑒) ∈ 𝐸𝑠}.
Then U

M𝑠+1
𝐹𝑠+1

= U
M𝑠

𝐸𝑠
and 𝐹𝑠+1 ∈ M𝑠+2. By Proposition 9.6.25, M𝑠+2 contains

a set 𝐷𝑠+1 ⊇ 𝐹𝑠+1 such that UM𝑠+1
𝐷𝑠+1

is M𝑠+1-cohesive. In particular,

U
M𝑠+1
𝐷𝑠+1

⊆ U
M𝑠+1
𝐹𝑠+1

= U
M𝑠

𝐸𝑠
= ⟨UM𝑠

𝐷𝑠
⟩

Notion of forcing. The notion of forcing is a variant of Mathias forcing whose
conditions are triples (𝜎0 , 𝜎1 , 𝑋), where7

1. (𝜎𝑖 , 𝑋) is a Mathias condition for each 𝑖 < 2 ;
2. 𝜎𝑖 ⊆ 𝐴𝑖 ; 𝑋 ∈ ⟨UM𝑛−2

𝐷𝑛−2
⟩ ;

3. 𝑋 ∈ M𝑛−1.

The interpretation [𝜎0 , 𝜎1 , 𝑋] of a condition (𝜎0 , 𝜎1 , 𝑋), the notion of exten-
sion, the definition of a valid part of a condition are exactly the same as
in Theorem 9.7.1. The following lemma also holds, with the same proof as
Lemma 9.7.3. Therefore, for every sufficiently generic filter Fwith valid part 𝑖,
𝐺F,𝑖 is infinite and belongs to ⟨UM𝑛−2

𝐷𝑛−2
⟩.

11.3 Pigeonhole principle 187

Lemma 11.3.2. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with valid part 𝑖 and let
V⊇ ⟨UM𝑛−2

𝐷𝑛−2
⟩ be a large Σ0

1(M𝑛−2) class. There is an extension (𝜏0 , 𝜏1 , 𝑌)
of 𝑝 such that [𝜏𝑖] ⊆ V. ★

Forcing question at lower levels. In the proof of Theorem 9.7.1, we defined
a non-disjunctive Π0

2(N) forcing question for Σ0
1-formulas and a disjunctive

Σ0
1(N) forcing question for Σ0

2-formulas. The generalization to Theorem 11.3.1
goes as follows: the non-disjunctive forcing question will be extended to every
Σ0
𝑠 -formula, for 𝑠 ∈ {1, . . . , 𝑛 − 1}, yielding a Π0

1(M𝑠) forcing question for Σ0
𝑠 -

formulas, and one will keep the same disjunctive Σ0
1(M𝑛−1) forcing question

for Σ0
𝑛-formulas.

Definition 11.3.3. Given a string 𝜎 ∈ 2<ℕ and a Σ0
1 formula 𝜑(𝐺), define

𝜎 ?⊢𝜑(𝐺) to hold if the following class is large:8
8: Note that for Σ0

𝑠 -formulas, we consider
largeness with respect to U

M𝑠−1
𝐷𝑠−1

. The ad-
vantage is that it yields a better definitional
complexity than using U

M𝑛−1
𝐷𝑛−1

, but it re-
quires to have some compatibility between
U
M𝑠−1
𝐷𝑠−1

and U
M𝑛−1
𝐷𝑛−1

. This was the purpose
of the construction of 𝐷0 , . . . , 𝐷𝑛−2.

U
M0
𝐷0

∩ {𝑍 : ∃𝜌 ⊆ 𝑍 𝜑(𝜎 ∪ 𝜌)}

Given a string 𝜎 ∈ 2<ℕ and a Σ0
𝑠 -formula 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥) for 𝑠 ∈

{2, . . . , 𝑛 − 1}, define 𝜎 ?⊢𝜑(𝐺) to hold if the following class is large:9

9: As usual, 𝜓 is Π0
𝑠−1, so 𝜎∪𝜌 ?⊢𝜓(𝐺, 𝑥)

is a shorthand for 𝜎 ∪ 𝜌 ?⊬¬𝜓(𝐺, 𝑥).
U

M𝑠−1
𝐷𝑠−1

∩ {𝑍 : ∃𝜌 ⊆ 𝑍 ∃𝑥 𝜎 ∪ 𝜌 ?⊢𝜓(𝐺, 𝑥)}

By induction over the complexity of the formulas and using Lemma 9.6.15,
one can prove that for Σ0

𝑠 -formulas, the relation 𝜎 ?⊢𝜑(𝐺) is Π0
1(𝐷𝑠−1 ⊕

𝑀′
𝑠−1) uniformly in 𝜎 and 𝜑. Since 𝑀′

𝑠−1 , 𝐷𝑠−1 ∈ M𝑠 , the relation is Π0
1(M𝑠).

Before proving the validity of Definition 11.3.3, one first needs to focus on
the forcing relation for Π0

𝑠 -formulas, for 𝑠 ∈ {2, . . . , 𝑛}. Recall that in the
proof of Theorem 9.7.1, we defined a custom syntactic forcing relation for
Π0

2-formulas, implying the semantic forcing relation only on the valid parts. It
becomes more convenient to define a syntactic relation at every level, both for
Σ0
𝑠 and Π0

𝑠 -formulas.

Definition 11.3.4. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition and 𝑖 < 2 be a part.
We define the relation ⊩ for Σ0

𝑠 and Π0
𝑠 -formulas for 𝑠 ∈ {1, . . . , 𝑛} induc-

tively as follows. For a Δ0
0-formula 𝜓(𝐺, 𝑥),

1. 𝑝 ⊩ ∃𝑥𝜓(𝐺𝑖 , 𝑥) if 𝜓(𝜎𝑖 , 𝑥) holds for some 𝑖 < 2;
2. 𝑝 ⊩ ∀𝑥¬𝜓(𝐺𝑖 , 𝑥) if (∀𝜌 ⊆ 𝑋)(∀𝑥)¬𝜓(𝜎𝑖 ∪ 𝜌, 𝑥).

For a Π0
𝑠−1-formula 𝜓(𝐺, 𝑥) with 𝑠 ∈ {2, . . . , 𝑛}

1. 𝑝 ⊩ ∃𝑥𝜓(𝐺𝑖 , 𝑥) if 𝑝 ⊩ 𝜓(𝐺𝑖 , 𝑥) for some 𝑥 ∈ ℕ;
2. 𝑝 ⊩ ∀𝑥¬𝜓(𝐺𝑖 , 𝑥) if (∀𝜌 ⊆ 𝑋)(∀𝑥)𝜎𝑖 ∪ 𝜌 ?⊢¬𝜓(𝐺𝑖 , 𝑥). ♦

The first property that one expects of a forcing relation is that it is stable under
condition extension. This is left as an exercise.

Exercise 11.3.5. Let 𝑝 and 𝑞 be two conditions, and 𝑖 < 2. Show that for
every 𝑠 ∈ {1, . . . , 𝑛} and every Σ0

𝑠 and Π0
𝑠 -formula 𝜑(𝐺), if 𝑝 ⊩ 𝜑(𝐺𝑖) and

𝑞 ≤ 𝑝, then 𝑞 ⊩ 𝜑(𝐺𝑖).10 10: Note that the closure under extension
of the syntactic question also holds if the
side is not valid.

★

There is an interplay between the syntactic forcing relation and the forcing
questions. Indeed, the proof that the syntactic forcing relation for Π0

𝑠 -formulas
implies the semantic ones uses the validity of the forcing question for lower

188 11 Higher jump cone avoidance

levels, while the proof of validity of the forcing question involves the syntactic
forcing relation at the same level. We therefore start with the proof of validity
of Definition 11.3.3, which is a straightforward generalization of Lemma 9.7.5
and is left as an exercise.

Exercise 11.3.6. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with valid part 𝑖 and
𝜑(𝐺) be a Σ0

𝑠 -formula for 𝑠 ∈ {1, . . . , 𝑛 − 1}. Prove that

1. if 𝜎𝑖 ?⊢𝜑(𝐺), then there is an extension 𝑞 of 𝑝 such that 𝑞 ⊩ 𝜑(𝐺𝑖) ;
2. if 𝜎𝑖 ?⊬𝜑(𝐺), then there is an extension 𝑞 of 𝑝 such that 𝑞 ⊩ ¬𝜑(𝐺𝑖).

★

The following trivial lemma shows that if a Π0
𝑠 -formula is syntactically forced

on a valid part, then progress can be made on forcing the Π0
𝑠 -formula.

Lemma 11.3.7. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with valid part 𝑖 and
𝜑(𝐺) ≡ ∀𝑥𝜓(𝐺, 𝑥) be a Π0

𝑠 -formula for some 𝑠 ∈ {2, . . . , 𝑛}. If 𝑝 ⊩ 𝜑(𝐺𝑖),
then for every 𝑥 ∈ ℕ, there is an extension 𝑞 ≤ 𝑝 such that 𝑞 ⊩ 𝜓(𝐺𝑖 , 𝑥). ★

Proof. Fix 𝑥 ∈ ℕ. Since 𝑝 ⊩ 𝜑(𝐺𝑖), then in particular, for 𝜌 = ∅, 𝜎𝑖 ?⊢𝜓(𝐺, 𝑥).
By Exercise 11.3.6, there is an extension 𝑞 of 𝑝 such that 𝑞 ⊩ 𝜓(𝐺𝑖 , 𝑥).

We are now ready to prove that the syntactic forcing relation implies the se-
mantic one on valid sides.

Lemma 11.3.8. Let 𝑝 be a condition, 𝑖 < 2 be a side and 𝜑(𝐺) be a Σ0
𝑠 or

Π0
𝑠 -formula for some 𝑠 ∈ {1, . . . , 𝑛}. If 𝑝 ⊩ 𝜑(𝐺𝑖), then 𝜑(𝐺F,𝑖) holds for

every sufficiently generic filter Fcontaining 𝑝 and whose side 𝑖 is valid.1111: Recall that a side 𝑖 < 2 is valid in a
filter F if the side is valid for every 𝑝 ∈ F.
Every filter has at least a valid side.

★

Proof. By induction over the complexity of the formula 𝜑. The case 𝑠 = 1 is
easy and 𝜑(𝐺F,𝑖) even holds for every filter Fcontaining 𝑝, with no regard
to genericity or to validity of the side. Suppose 𝑠 ≥ 2. If 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥)
for some Π0

𝑠−1-formula 𝜓, then by definition, there is some 𝑥 ∈ ℕ such
that 𝑝 ⊩ 𝜓(𝐺𝑖 , 𝑥), so by induction hypothesis, 𝜓(𝐺F,𝑖 , 𝑥) holds for every
sufficiently generic filter Fcontaining 𝑝 and whose side 𝑖 is valid. In particular,
𝜑(𝐺F,𝑖) holds for every such filter F. If 𝜑(𝐺) ≡ ∀𝑥¬𝜓(𝐺, 𝑥) for some Π0

𝑠−1-
formula 𝜓, then we claim that for every 𝑥 ∈ ℕ, the following class D𝑥 is dense
below 𝑝:

D𝑥 = {𝑞 : side 𝑖 of 𝑞 is not valid ∨ 𝑞 ⊩ ¬𝜓(𝐺𝑖 , 𝑥)}

Indeed, fix 𝑥 ∈ ℕ and let 𝑟 = (𝜏0 , 𝜏1 , 𝑌) be an extension of 𝑝. If side 𝑖 of 𝑟 is not
valid, then 𝑟 ∈ D𝑥 , in which case we are done. Otherwise, by Exercise 11.3.5,
𝑟 ⊩ 𝜑(𝐺𝑖), so, unfolding the definition, for 𝜌 = ∅, 𝜏𝑖 ?⊢¬𝜓(𝐺𝑖 , 𝑥), so by
Exercise 11.3.6, there is an extension 𝑞 ≤ 𝑟 such that 𝑞 ⊩ ¬𝜓(𝐺𝑖 , 𝑥), in
which case 𝑞 ∈ D𝑥 . Thus, D𝑥 is dense below 𝑝.

Let Fbe a sufficiently generic filter containing 𝑝 and whose side 𝑖 is valid.
Since D𝑥 is dense below 𝑝 for every 𝑥 ∈ ℕ, F∩ D𝑥 ≠ ∅ for every 𝑥 ∈
ℕ. Moreover, since side 𝑖 is valid in F, then for 𝑞 ∈ F∩ D𝑥 , we have
𝑞 ⊩ ¬𝜓(𝐺𝑖 , 𝑥). By induction hypothesis, ¬𝜓(𝐺F,𝑖 , 𝑥) holds, and this for
every 𝑥 ∈ ℕ, so 𝜑(𝐺F,𝑖 , 𝑥) holds.

Forcing question on top level. The design of the forcing question for Σ0
𝑛

formulas is exactly the one of Theorem 9.7.1. It consists of defining two forcing

11.3 Pigeonhole principle 189

questions: a disjunctive one which works if both sides of the condition are valid,
and in case one side is invalid, one designs a degenerate non-disjunctive forc-
ing question exploiting the failure of validity. We define both forcing questions
and leave their proofs as exercises.

Definition 11.3.9. Given a condition 𝑝 = (𝜎0 , 𝜎1 , 𝑋) and a pair of Σ0
𝑛 for-

mulas 𝜑0(𝐺) and 𝜑1(𝐺), with 𝜑𝑖(𝐺) ≡ ∃𝑥𝜓𝑖(𝐺, 𝑥), define 𝑝 ?⊢𝜑0(𝐺0) ∨
𝜑1(𝐺1) to hold if for every 2-partition 𝑍0 ∪ 𝑍1 = 𝑋, there is some 𝑖 < 2,
some 𝑥 ∈ ℕ and some 𝜌 ⊆ 𝑍𝑖 such that 𝜎𝑖 ∪ 𝜌 ?⊢𝜓𝑖(𝐺, 𝑥). ♦

Exercise 11.3.10. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with both valid parts
and 𝜑0(𝐺), 𝜑1(𝐺) be two Σ0

𝑛-formulas. Prove that

1. if 𝑝 ?⊢𝜑0(𝐺0) ∨ 𝜑1(𝐺1), then there is an extension 𝑞 of 𝑝 such that
𝑞 ⊩ 𝜑(𝐺𝑖) for some 𝑖 < 2;

2. if 𝑝 ?⊬𝜑0(𝐺0) ∨ 𝜑1(𝐺1), then there is an extension 𝑞 of 𝑝 such that
𝑞 ⊩ ¬𝜑(𝐺𝑖) for some 𝑖 < 2. ★

A witness of invalidity of part 𝑖 of a condition 𝑝 = (𝜎0 , 𝜎1 , 𝑋) is a Σ0
1(M𝑛−2)

large class V⊇ ⟨UM𝑛−2
𝐷𝑛−2

⟩ such that 𝑋 ∩ 𝐴𝑖 ∉ V.

Definition 11.3.11. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with witness of inva-
lidity Von part 1 − 𝑖, and let 𝜑(𝐺) ≡ ∃𝑥𝜓(𝐺, 𝑥) be a Σ0

𝑛 formula. Define
𝑝 ?⊢V𝜑(𝐺𝑖) to hold if for every 2-partition 𝑍0⊔𝑍1 = 𝑋 such that 𝑍1−𝑖 ∉ V,
there is some 𝑥 ∈ ℕ and some 𝜌 ⊆ 𝑍𝑖 such that 𝜎𝑖 ∪ 𝜌 ?⊢𝜓𝑖(𝐺, 𝑥). ♦

Exercise 11.3.12. Let 𝑝 = (𝜎0 , 𝜎1 , 𝑋) be a condition with witness of invalidity
Von part 1 − 𝑖, and let 𝜑(𝐺) be a Σ0

𝑛 formula. Prove that

1. if 𝑝 ?⊢V𝜑(𝐺𝑖), then there is an extension of 𝑝 forcing 𝜑(𝐺𝑖);
2. if 𝑝 ?⊬V𝜑(𝐺𝑖), then there is an extension 𝑞 ≤ 𝑝 such that 𝑞 ⊩ ¬𝜑(𝐺𝑖).

★

By compactness, both forcing questions for Σ0
𝑛-formulas are Σ0

1(M𝑛−1). We
are now ready to prove Theorem 11.3.1.

Suppose first there is a condition 𝑝 with some invalid part 1 − 𝑖. Let Fbe a
sufficiently generic filter containing 𝑝 and let𝐺𝑖 = 𝐺F,𝑖 . Then part 𝑖 is valid in F.
By Lemma 11.3.7, the syntactic forcing relation implies the semantic forcing
relation on part 𝑖. By Exercise 11.3.12 and by adapting Theorem 9.3.5, for

every Turing functional Φ𝑒 , there is some condition 𝑞 ∈ F forcing Φ
𝐺
(𝑛−1)
𝑖

𝑒 ≠ 𝐶,
so 𝐶 is not Δ0

𝑛(𝐺𝑖).

Suppose now that for every condition, both parts are valid. Let Fbe a suffi-
ciently generic filter, and let 𝐺𝑖 = 𝐺F,𝑖 for 𝑖 < 2. By Lemma 11.3.7, the syntac-
tic forcing relation implies the semantic forcing relation on both parts. By Exer-
cise 11.3.10 and by adapting Exercise 11.2.5, for every pair of Turing functionals

Φ𝑒0 ,Φ𝑒1 , there is some condition 𝑞 ∈ F forcing Φ
𝐺
(𝑛−1)
0

𝑒0 ≠ 𝐶 ∨ Φ
𝐺
(𝑛−1)
1

𝑒1 ≠ 𝐶.
By a pairing argument, there is some 𝑖 < 2 such that 𝐶 is not Δ0

𝑛(𝐺𝑖). This
completes the proof of Theorem 11.3.1.

190 11 Higher jump cone avoidance

11.4 Computable ordinals

In order to extend iterated jump control to transfinite levels, one first needs to
develop a theory of computable ordinals. There are often two approaches to
define a mathematical structure : the axiomatic approach (top-down) and the
constructive one (bottom-up). For instance, an ordinal can either be defined
as the order type of a well-order, or using von Neumann definition, as the set
of its smaller ordinals. We shall see that the effective counterparts of these
definitions coincide, yielding a robust notion of computable ordinal.12

12: We assume the reader has some famil-
iarity with the classical theory of ordinals.

Definition 11.4.1. An ordinal 𝛼 is computable if it is finite or it is the order-
type of a computable1313: Actually, one could have replaced “com-

putable” by “polynomial-time computable”,
“arithmetic”, or even “hyperarithmetic”, this
would have yielded exactly the same class
of ordinals, even-though the equivalence is
highly non-trivial.

well-order on ℕ. ♦

First, note from the above definition that every computable ordinal is witnessed
by the program of a computable well-order. There are therefore only countably
many ordinals. We first show that one can replace “computable” by “c.e.” in
the above definition of a computable ordinal.

Lemma 11.4.2. Let <𝑅 be a c.e. total order on ℕ. Then <𝑅 is computable.★

Proof. By totality of <𝑅, (𝑎, 𝑏) ∉<𝑅 iff 𝑎 = 𝑏 or (𝑏, 𝑎) ∈<𝑅. Thus, <𝑅 is both
c.e. and co-c.e., hence is computable.

We shall now prove that the computable ordinals form an initial segment of the
ordinals.

Lemma 11.4.3. Let <𝑅 be a c.e. total order on an infinite set 𝐴 ⊆ ℕ. Then
there is a c.e. total order <𝑆 on ℕ with the same order type as <𝑅. ★

Proof. First, note that 𝐴 is c.e., since 𝐴 = {𝑎 ∈ ℕ : ∃𝑏((𝑎, 𝑏) ∈<𝑅
∨(𝑏, 𝑎) ∈<𝑅)} by totality of <𝑅. Thus, there is a computable bijection 𝑓 :
ℕ → 𝐴. Then, <𝑆= {(𝑓 −1(𝑎), 𝑓 −1(𝑏) : (𝑎, 𝑏) ∈<𝑅}.

Suppose now that 𝛼 is a computable ordinal, as witnessed by a computable
well-order <𝑅 on ℕ, and let 𝛽 < 𝛼. Then either 𝛽 is finite, in which case it
is computable by definition, or 𝛽 is the order type of <𝑅 restricted to {𝑏 ∈
ℕ : 𝑏 <𝑅 𝑎} for some 𝑎 ∈ ℕ with infinitely many predecessors. Then by
Lemma 11.4.3 and Lemma 11.4.2, 𝛽 is the order type of a computable well-
order on ℕ, thus is a computable ordinal. Since the computable ordinals form a
countable initial segment of the ordinals, then there is a least non-computable
ordinal.

Definition 11.4.4. Let 𝜔𝑐𝑘
1 denote the least non-computable ordinal.1414: “ck” stands for “Church Kleene”, who

introduced the concept in [91].
♦

The representation of a computable ordinal using well-orders is not the most
effective, in that given a computable well-order <𝑅 on ℕ and some 𝑎 ∈ ℕ, one
cannot computably decide wether 𝑎 is a successor element or a limit. We now
give an alternative and more constructive definition of the computable ordinals,
which can be seen as an effective counterpart of von Neumann definition.

Definition 11.4.5 (Kleene’s O). Let <O be the least partial order on ℕ such
that 1 <O 2, satisfying the following closures:15

15: The choice of 2𝑏 to code the successor
of 𝑏 and 3 · 5𝑒 to code for a limit ordinal with
cofinal sequence Φ𝑒 is arbitrary. The only
requirement is to have a unique notation to
be able to deconstruct the inductive defini-
tion and distinguish the successor and limit
cases. For instance, one could have defined
3𝑒+1 instead of 3 · 5𝑒 .

(1) If 𝑎 <O 𝑏 then 𝑎 <O 2𝑏
(2) For every total function Φ𝑒 : ℕ → ℕ, if ∀𝑛(Φ𝑒(𝑛) <O Φ𝑒(𝑛 + 1)),

11.4 Computable ordinals 191

19: As noted Chong and Liu [92], not ev-
ery path can be extended into a maximal
path. Indeed, with poor choices at the 𝜔-
branching levels, one might obtain only 𝜔2

for instance.

then for every 𝑛 ∈ ℕ, Φ𝑒(𝑛) <O 3 · 5𝑒 .

Let O be the domain of <O.16 16: The sets <O and O are both Π1
1-

complete.
♦

The above definition might seem quite cryptic, and deserves some explanation.
Each element 𝑎 of O can be evaluated into a computable ordinal |𝑎|, by
transfinite induction17

17: In order to be allowed to use transfinite
induction, one must actually first check that
<O is a well-founded partial ordering. One
can define an natural enumeration of <O by
transfinite induction on the ordinals, such
that if 𝑎 <O 𝑏 and 𝑏 <O 𝑐, then 𝑎 <O 𝑏 is
enumerated at an earlier stage than 𝑏 <O 𝑐.
It follows that any infinite decreasing <O-
sequence would yield an infinite decreasing
sequence of ordinals.

as follows: First, |1| = 𝟘. If 2𝑎 ∈ O, then |2𝑎| = |𝑎| + 𝟙.
Last, if 3 · 5𝑒 ∈ O, then |3 · 5𝑒 | = sup𝑛 |𝜙𝑒(𝑛)|. To avoid confusion, we write
𝟘, 𝟙, . . . for the finite ordinals and keep the standard font 0, 1, . . . for their
codes.18

18: One must be careful in distinguishing
the constructible code 1 from the ordinal 𝟙.
Indeed, the code 1 denotes the ordinal 𝟘.

Definition 11.4.6. An ordinal 𝛼 is constructible if 𝛼 = |𝑎| for some 𝑎 ∈ O.♦

The main advantage of constructible ordinals is that one can directly know from
a code 𝑎 whether it codes for 𝟘, for a successor ordinal, or is a limit ordinal. In
the latter case, one can even effectively find a cofinal sequence of codes.

Exercise 11.4.7. Show that the constructible ordinals are downward-closed.★

Every finite ordinal 𝑛 admits a unique code in O, namely, the 𝑛-fold power
of two. The ordinal 𝜔, on the other hand, admits infinitely many codes in O,
since there exist countably many computable strictly increasing sequences of
finite ordinals. More generally, the limit step introduces infinitely many codes,
and one can thus see O as a tree, which is 𝜔-branching at limit steps. A
maximal path19 through this tree is a linearly ordered subset of O which is
downward-closed, and cofinal in 𝜔𝑐𝑘

1 .

Exercise 11.4.8. Show that for every 𝑎 ∈ O, the set {𝑏 ∈ O : 𝑏 <O 𝑎} is
uniformly c.e. and linearly ordered.20 20: Although <O is Π1

1, the restriction of the
order to {𝑏 ∈ O : 𝑏 <O 𝑎} is uniformly c.e.
in 𝑎.

★

The same way Turing-invariant operators on sets induce operations on the
Turing degrees, one can study the effectivity of operations on ordinals by
defining functions over their codes. The following exercise shows that ordinal
addition is computable.

Exercise 11.4.9. Let +O : ℕ2 → ℕ be total computable function defined by
𝑎 +O 1 = 𝑎, 𝑎 +O 2𝑏 = 2𝑎+O𝑏 , 𝑎 +O 3 · 5𝑒 = 3 · 5 𝑓 (𝑒 ,𝑎), where 𝑓 (𝑒 , 𝑎) is the
code of a function21

21: Note that this definition involves
Kleene’s fixpoint theorem, as the definition
of 𝑓 uses +O. Also note that 𝑎 ≤O 𝑎 +O 𝑏

but not necessarily 𝑏 ≤O 𝑎 +O 𝑏 because
of the limit case.

such that Φ 𝑓 (𝑒 ,𝑎)(𝑛) = 𝑎 +OΦ𝑒(𝑛), and 𝑎 +O 𝑏 = 1 if 𝑏 is
not in any of those forms. Show that for every 𝑎, 𝑏 ∈ O, |𝑎| + |𝑏| = |𝑎 +O 𝑏|.★

Given a non-empty c.e. set of codes of constructible ordinals, its supremum is
again constructible, but not uniformly computable. One can however uniformly
compute an upper bound:

Lemma 11.4.10 (Sacks [93]). There is a total computable function 𝑓 : ℕ →
ℕ such that if 𝑊𝑒 ⊆ O, then 𝑓 (𝑒) ∈ O and sup𝑎∈𝑊𝑒

|𝑎| ≤ | 𝑓 (𝑒)|.22

22: Note that we do not require <O to be
total on 𝑊𝑒 . In other words, the inequality
holds for ordinals, one does not satisfy 𝑎 <O

𝑓 (𝑒) for every 𝑎 ∈𝑊𝑒 .
★

Proof. One can without loss of generality assume that 𝑊𝑒 is infinite, by
enumerating all the constructible codes of finite ordinals. For every 𝑒 ∈ ℕ, let
𝑓 (𝑒) = 3 ·5𝑎 where Φ𝑎(𝑛) returns the finite ordinal sum (using Exercise 11.4.9)
of the 𝑛 first distinct elements enumerated in 𝑊𝑒 , different from 1 (the code
of 𝟘). One therefore has Φ𝑎(𝑛) <O Φ𝑎(𝑛+1) for every 𝑛 ∈ ℕ, hence 3·5𝑎 ∈ O.
Moreover, by construction, sup𝑎∈𝑊𝑒

|𝑎| ≤ sup𝑛 |Φ𝑎(𝑛)| = |3 · 5𝑎| = | 𝑓 (𝑒)|.

192 11 Higher jump cone avoidance

24: It seems at first sight that this is just a
complicated reformulation of a simple notion.
However, the topological considerations are
very useful to understand why Post theo-
rem holds for the arithmetic hierarchy, but
not for classes over 2ℕ . Indeed, since the
Borel hierarchy collapses over the discrete
topology, every Borel set is open, hence is
effectively open relative to an appropriate
oracle, while the Borel hierarchy is strict on
the Cantor space, hence some Π0

2 classes
are not Π0

1(𝐴) for any oracle 𝐴.

We shall now prove that the constructible ordinals coincide with the computable
ones. Following the intuition, a code for a constructible ordinal carries more
information than a computable well-order, in that one can computably transform
a code 𝑎 ∈ O into a program for a computable well-order of order type |𝑎|,
while the reverse translation is not computable.

Theorem 11.4.11 (Kleene, Markwald)
Computable and constructible ordinals coincide.

Proof. Let 𝑎 ∈ O be a code for a constructible ordinal 𝛼. If 𝛼 < 𝜔, then
it is computable by definition. If 𝛼 is infinite, then the relation <O restricted
to {𝑏 ∈ O : 𝑏 <O 𝑎} is c.e. By Lemma 11.4.3 and Lemma 11.4.2, there is a
computable order over ℕ with the same order type, thus 𝛼 is computable.

Suppose now that 𝛼 is a computable ordinal. If 𝛼 < 𝜔, then the 𝛼-fold power
of 2 yields a constructible code for 𝛼, hence hence 𝛼 is constructible. If 𝛼 is
infinite, then there is a computable well-order <𝑅 on ℕ of order type 𝛼. Let
𝑓 : ℕ → ℕ be the function of Lemma 11.4.10, and let 𝑔 : ℕ → ℕ be the
total computable function which on 𝑎 computes the code 𝑒𝑎 of the c.e. set
𝑊𝑒𝑎 = {𝑔(𝑏) : 𝑏 <𝑅 𝑎}, and outputs 𝑓 (𝑒𝑎). One can prove by induction over 𝑎
that 𝑔(𝑎) ∈ ℕ and |𝑔(𝑎)| is at least the order type of <𝑅 restricted to the
elements below 𝑎. Let 𝑊𝑒 = {𝑔(𝑎) : 𝑎 ∈ ℕ}, then | 𝑓 (𝑒)| ≥ sup𝑎 |𝑔(𝑎)|, so
| 𝑓 (𝑒)| is at least the order type of <𝑅.23

23: One could be tempted to rather con-
sider 3 · 5𝑖 where Φ𝑖(𝑎) = 𝑔(𝑎). However,
although |𝑔(𝑎)| < |𝑔(𝑎 + 1)|, one does not
have in general 𝑔(𝑎) <O 𝑔(𝑎+1), thus 3 ·5𝑖
is not a valid constructible code.

11.5 Hyperarithmetic hierarchy

The arithmetic hierarchy corresponds to the finite levels of the effective coun-
terpart to the Borel hierarchy over ℕ, equipped with the discrete topology.24

We now generalize the arithmetic hierarchy to transfinite levels, and prove
the corresponding generalization of Post theorem, namely, every level of the
hierarchy is effectively open relative to the appropriate iteration of the halting
set.

Although the arithmetic hierarchy is usually defined in terms of alternations of
quantifiers, the generalization to transfinite levels which require to use infinitary
effective conjunctions and disjunctions to handle the limit cases. One therefore
rather defines the hyperarithmetic hierarchy in terms of codes.

Definition 11.5.1. The hyperarithmetic codes are defined by induction over
the computable ordinals2525: One could actually define the notion of

Σ0
𝛼-code for arbitrary ordinals. However, an

easy induction along the ordinals shows that
every Σ0

𝛼-code is Σ0
𝛽 for some 𝛽 < 𝜔𝑐𝑘1 ,

hence the hierarchy does not go beyond the
computable ordinals.

26

26: Because Σ0
𝛼-codes do not distinguish

the successor case from the limit case, one
cannot uniformly compute a constructible
code 𝑎 ∈ O from a Σ0

|𝑎|-code.

.

1. A Σ0
1-code of a set 𝐴 is a pair ⟨0, 𝑒⟩ such that 𝑊𝑒 = 𝐴.

2. A Π0
𝛼-code of a set 𝐴 is a pair ⟨1, 𝑒⟩, where 𝑒 is a Σ0

𝛼-code of the
set ℕ \ 𝐴.

3. A Σ0
𝛼-code of a set 𝐴 =

⋃
𝑛 𝐴𝑛 is a pair ⟨2, 𝑒⟩ where𝑊𝑒 is non-empty,

and enumerates Π0
𝛽𝑛

-codes of sets 𝐴𝑛 such that sup𝑛(𝛽𝑛 + 𝟙) = 𝛼.
♦

A set 𝐴 is Σ0
𝛼 (resp. Π0

𝛼) if it admits a Σ0
𝛼-code (resp. a Π0

𝛼-code). A set 𝐴
is Δ0

𝛼 if it is both Σ0
𝛼 and Π0

𝛼. An easy induction shows that the finite levels
correspond to the arithmetic hierarchy.

11.5 Hyperarithmetic hierarchy 193

28: One could for instance define ∅(𝜔)
as

⊕
𝑛 ∅(𝑛), but also as

⊕
𝑛 ∅(2𝑛), among

many possibilities.
29: Since constructible codes are integers,
it would be confusing to write ∅(𝑎) for an |𝑎|-
iteration of the Turing jump. One therefore
traditionally uses the notation 𝐻𝑎 , standing
for “hyperarithmetic”.

Exercise 11.5.2. Show that the Σ0
𝛼 sets are closed under effective countable

unions and finite intersections. Moreover, those closure are uniform in Σ0
𝛼-

codes. ★

Exercise 11.5.3. Show that if 𝐴 is either Σ0
𝛼 or Π0

𝛼, then 𝐴 is Δ0
𝛼+𝟙 uniformly

in a Σ0
𝛼 or a Π0

𝛼-code of 𝐴. ★

The following lemma requires a bit more work, thus is fully proven.

Lemma 11.5.4. If𝐴 isΔ0
𝛼 and 𝐵 isΣ0

1(𝐴), then 𝐵 isΣ0
𝛼 uniformly in aΔ0

𝛼-code
of 𝐴 and a c.e. index of 𝐵.27 27: A Δ0

𝛼-code is nothing but a pair of a
Σ0
𝛼-code and a Π0

𝛼-code.
★

Proof. Say 𝐵 = 𝑊𝐴
𝑒 . Then 𝐵 = {𝑛 : ∃𝜎 (𝑛 ∈ 𝑊𝜎

𝑒 ∧ ∀𝑖 < |𝜎| ((𝜎(𝑖) =

0 ∧ 𝑖 ∉ 𝐴) ∨ (𝜎(𝑖) = 1 ∧ 𝑖 ∈ 𝐴))}. By induction on 𝛼, given 𝜎 ∈ 2<ℕ and
𝑖 < 2, one can uniformly compute a Σ0

𝛼-code of a set 𝐴𝜎,𝑖 such that 𝐴𝜎,𝑖 = ℕ

if 𝜎(𝑖) = 𝐴(𝑖) and 𝐴𝜎,𝑖 = ∅ otherwise. Then 𝐵 =
⋃

𝜎(𝑊𝜎
𝑒 ∩⋂

𝑖<|𝜎| 𝐴𝜎,𝑖). By
Exercise 11.5.2, 𝐵 is Σ0

𝛼.

The following exercise is proven by a simple induction over codes, and will be
useful later.

Exercise 11.5.5. Let 𝑓 : ℕ → ℕ be a total computable function and 𝐴 be a
Σ0
𝛼-set. Show that 𝑓 [𝐴] = { 𝑓 (𝑛) : 𝑛 ∈ 𝐴} is Σ0

𝛼 uniformly in a Σ0
𝛼-code of 𝐴

and a c.e. index of 𝑓 . ★

We now define transfinite iterations of the Turing jump to state the generalized
Post theorem. In the limit case, one naturally wants to join a cofinal sequence of
previous iterations. This raises some canonicity issues, as there exist infinitely
many cofinal sequences already at the level of 𝜔, and they yield different sets28.
We will therefore iterate the jump along constructible codes of ordinals.29

Definition 11.5.6. For every 𝑎 ∈ O, let 𝐻𝑎 be defined inductively as follows.

1. 𝐻1 = ∅
2. 𝐻2𝑎 = 𝐻′

𝑎

3. 𝐻3·5𝑒 =
⊕

𝑛 𝐻Φ𝑒 (𝑛). ♦

By Spector [94], if 𝑎 and 𝑏 are two constructible codes for an ordinal 𝛼, then
𝐻𝑎 ≡𝑇 𝐻𝑏 . Therefore, this hierarchy defines iterations of the Turing jump over
the Turing degrees, and one can write 0(𝛼) for the 𝛼-iterate of the Turing jump.
The following proposition might be surprising at first, as the transfinite iterations
are shifted with respect to the finite levels.

Proposition 11.5.7. For every constructible code 𝑎 ∈ Owith |𝑎| ≥ 𝜔, 𝐻𝑎 is
Δ0
|𝑎| uniformly in 𝑎. ★

Proof. By induction along O starting with |𝑎| = 𝜔.

Suppose first 𝑎 = 2𝑏 codes of a successor ordinal. Then, by induction hypoth-
esis, 𝐻𝑏 is Δ0

|𝑏| uniformly in 𝑏. By Lemma 11.5.4, 𝐻𝑎 = 𝐻′
𝑏

is Σ0
|𝑏| uniformly

in 𝑏, so by Exercise 11.5.3, 𝐻𝑎 is Δ0
|𝑎| uniformly in 𝑎.

Suppose now 𝑎 = 3 · 5𝑒 codes for a limit ordinal. Here, for every 𝑛, we have
two cases: either Φ𝑒(𝑛) is a constructible code of a finite ordinal, in which

194 11 Higher jump cone avoidance

case Post’s theorem yields that 𝐻Φ𝑒 (𝑛) is Σ0
|Φ𝑒 (𝑛)|+𝟙 uniformly in 𝑛 and 𝑒,

or Φ𝑒(𝑛) is a constructible code of an infinite ordinal. In the latter case, by
induction hypothesis, 𝐻Φ𝑒 (𝑛) is Δ0

|Φ𝑒 (𝑛)| uniformly in 𝑛 and 𝑒, in which case by
Exercise 11.5.3 it is again Σ0

|Φ𝑒 (𝑛)|+𝟙 uniformly in 𝑛 and 𝑒. Note that one can
computably decide in which case we are, since being a constructible code of
a finite ordinal is decidable. Thus, we can assume in both cases that 𝐻Φ𝑒 (𝑛) is
Σ0
|Φ𝑒 (𝑛)|+𝟙 uniformly in 𝑛 and 𝑒.

By Exercise 11.5.5, for each 𝑛, the set 𝐵𝑛 = {⟨𝑚, 𝑛⟩ : 𝑚 ∈ 𝐻Φ𝑒 (𝑛)} is
Σ0
|Φ𝑒 (𝑛)|+𝟙 uniformly in 𝑛 and 𝑒. Then 𝐻𝑎 =

⋃
𝑛 𝐵𝑛 is Σ0

|𝛼| uniformly in 𝑎. By

Exercise 11.5.3, 𝐻Φ𝑒 (𝑛) is Σ0
|Φ𝑒 (𝑛)|+𝟚 uniformly in 𝑛 and 𝑒. By Exercise 11.5.5,

for each 𝑛, the set 𝐶𝑛 = {⟨𝑚, 𝑛⟩ : 𝑚 ∈ 𝐻Φ𝑒 (𝑛)} is Σ0
|Φ𝑒 (𝑛)|+𝟚 uniformly in 𝑛

and 𝑒. Thus, 𝐻𝑎 =
⋃
𝑛 𝐶𝑛 is Σ0

|𝛼| uniformly in 𝑎. It follows that 𝐻𝑎 is Δ0
|𝛼|

uniformly in 𝑎.

Corollary 11.5.8
For every constructible code 𝑎 ∈ O,

1. if |𝑎| < 𝜔, then 𝐻𝑎 is Σ0
|𝑎| uniformly in 𝑎;

2. if |𝑎| ≥ 𝜔, then 𝐻2𝑎 is Σ0
|𝑎| uniformly in 𝑎.

Proof. The first case holds by Post’s theorem. The second case is immediate
by Proposition 11.5.7 and Lemma 11.5.4.

The bound is actually tight, and one can prove with some extra work that 𝐻2𝑎

is Σ0
|𝑎|-complete when |𝑎| ≥ 𝜔. Together with Post’s theorem, this yields the

following generalized Post theorem:

Theorem 11.5.9 (Monin and Patey [4])
Fix some 𝑎 ∈ O.

1. If |𝑎| < 𝜔, then the set 𝐻𝑎 is Σ0
|𝑎|-complete uniformly in 𝑎.

2. If |𝑎| ≥ 𝜔, then the set 𝐻2𝑎 is Σ0
|𝑎|-complete uniformly in 𝑎.

11.6 Higher recursion theory

Beyond the definition of a robust notion of computable ordinal, and the exten-
sion of the arithmetic hierarchy to transfinite levels, there is a whole theory
generalizing computability theory along computable ordinals, called higher
recursion theory. Its development goes far beyond the scope of this book. We
however state some of its main concepts and theorems, which will be useful
for transfinite jump control. One might refer to Sacks [93], Chong and Yu [92]
or to Monin and Patey [4] for an introduction to higher recursion theory.

11.6.1 Hyperarithmetic reduction

Many natural properties on sets induce operations or relations over sets by
considering their relativized form. The most basic example is the notion of

11.6 Higher recursion theory 195

32: By Kleene’s normal form theorem, 𝜑
can even be taken Π0

1.

33: A function 𝑔 dominates 𝑓 if 𝑔(𝑥) ≥
𝑓 (𝑥) for every 𝑥. Some authors define it as
𝑔(𝑥) ≥ 𝑓 (𝑥) for all but finitely many 𝑥. This
difference does not matter in this context.

Turing machine, whose relativization yields the Turing reduction. One can also
relativize the arithmetic hierarchy, yielding the arithmetic reduction by letting 𝑋
be arithmetically reducible to 𝑌 if 𝑋 is Σ0

𝑛(𝑋) for some 𝑛 ∈ ℕ. Similarly, one
can naturally define the notion of 𝑌-computable ordinal, with 𝜔𝑌1 denoting the
least non-𝑌-computable ordinal. The Π1

1(𝑌) set O𝑌 of 𝑌-constructible codes
is defined accordingly, with all c.e. operators replaced by 𝑌-c.e. operators.30

30: If 𝑎 ∈ O𝑋 ∩ O𝑌 , the interpretation |𝑎|𝑌
of a 𝑌-constructible code might differ from
its interpretation |𝑎|𝑋 . For convenience, we
might assume that for every 𝑎 ∈ O∩ O𝑌 ,
|𝑎| = |𝑎|𝑌 .

We shall see that most sets 𝑌 satisfy 𝜔𝑌1 =

𝜔𝑐𝑘1 . In other words, it is an “anomaly” to
compute non-computable ordinals. How-
ever, even if 𝜔𝑌1 = 𝜔𝑐𝑘1 , computable ordi-
nals will have in general more codes in O𝑌

than in O.

One then defines Σ0
𝛼(𝑌) classes for 𝛼 < 𝜔𝑌1 and the sets 𝐻𝑌

𝑎 for 𝑎 ∈ O𝑌 . All
the theorems of the previous sections are uniform in 𝑌. In particular, 𝐻𝑌

2𝑎 is
uniformly Σ0

|𝑎|𝑌 if |𝑎|𝑌 ≥ 𝜔.

Definition 11.6.1. A set 𝑋 is hyperarithmetically reducible31 31: It is very important to note that 𝑎 ∈ O𝑌

and not simply 𝑎 ∈ O. Indeed, 𝑌 might com-
pute some non-computable ordinals.

to a set 𝑌 (writ-
ten 𝑋 ≤ℎ 𝑌) if it is Σ0

𝛼(𝑌) for some 𝛼 < 𝜔𝑌1 , or equivalently if there is

some 𝑎 ∈ O𝑌 and 𝑒 ∈ ℕ such that 𝑋 = Φ
𝐻𝑌
𝑎

𝑒 . ♦

The hyperarithmetic reduction is a very robust notion, in that it admits various
characterizations of very different nature. A set 𝑋 ⊆ ℕ is Σ1

1(𝑌) if it can
be written of the form {𝑛 ∈ ℕ : ∃𝑋𝜑(𝑋,𝑌, 𝑛)}, where 𝜑 is an arithmetic
formula.32 A set 𝑋 is Π1

1(𝑌) if its complement is Σ1
1(𝑌), and Δ1

1(𝑌) if it is both
Σ1

1(𝑌) and Π1
1(𝑌). A 𝑌-modulus of a set 𝑋 is a function 𝑓 : ℕ → ℕ such

that for every 𝑔 : ℕ → ℕ dominating33 𝑓 , 𝑔 ⊕ 𝑌 ≥𝑇 𝑋. Last, a set 𝑋 is
𝑋-computably encodable if for every infinite set 𝐴 ⊆ ℕ, there is an infinite
subset 𝐵 ⊆ 𝐴 such that 𝐵 ⊕ 𝑌 ≥𝑇 𝑋. The following theorem shows that all
these definitions coincide.

Theorem 11.6.2 (Groszek and Slaman [95], Solovay [19], Kleene [96])
Let 𝑋 and 𝑌 be two sets. The following are equivalent:

1. 𝑋 ≤ℎ 𝑌;
2. 𝑋 is Δ1

1(𝑌);
3. 𝑋 admits a 𝑌-modulus;
4. 𝑋 is 𝑌-computably encodable.

There exists a whole correspondence34

34: This correspondence is imperfect, in
particular because the true higher counter-
part of the integers is 𝜔𝑐𝑘1 . It follows that
there is a better correspondence between
classical computability theory and metare-
cursion theory, a theory which studies the
subsets of 𝜔𝑐𝑘1 from a computational view-
point. See Sacks [93] for an introduction to
both theories.

between classical computability theory
and higher recursion theory. In this correspondence, the Π1

1 sets play the role
of higher c.e. sets, the hyperarithmetic sets are both the higher finite and higher
computable sets, and Kleene’s O is the higher halting set.

The following theorem is known as the Σ1
1 majoration theorem.

Theorem 11.6.3 (Spector [94])
Let 𝑋 ⊆ O be a Σ1

1 set. Then sup𝑎∈𝑋 |𝑎| < 𝜔𝑐𝑘
1 .35

35: This theorem is actually uniform in the
following sense: one can computably find
a constructible code 𝑏 ∈ O such that
sup𝑎∈𝑋 |𝑎| ≤ |𝑏| from a Σ1

1-code of 𝑋.

Corollary 11.6.4
Let 𝑓 : ℕ → O be a total Π1

1-function.36 36: A function is Π1
1 if its graph is Π1

1.Then sup𝑛 | 𝑓 (𝑛)| < 𝜔𝑐𝑘
1 .

Proof. The graph 𝐺 𝑓 of 𝑓 can be written of the form {(𝑥, 𝑦) : ∀𝑋Φ𝑋
𝑒 (𝑥, 𝑦)↓}.

Since 𝑓 is total, 𝐺 𝑓 = {(𝑥, 𝑦) : ∀𝑧∃𝑋(𝑧 ≠ 𝑦 → Φ𝑋
𝑒 (𝑥, 𝑧)↑}, which is a Σ1

1
set, so 𝑓 is Δ1

1. In particular, the range of 𝑓 is a Σ1
1 subset of O, so by the Σ1

1
majoration theorem, sup𝑛 | 𝑓 (𝑛)| < 𝜔𝑐𝑘

1 .

196 11 Higher jump cone avoidance

11.6.2 Hyperjump operator

As mentioned, Kleene’s O is the higher counterpart of the halting set. The rela-
tivization of the halting set induces an operation on the Turing degrees called
the Turing jump. Similarly, the map 𝑋 ↦→ O𝑋 is compatible with the hyperarith-
metic reduction, and therefore induces an operation on the hyperarithmetic
degrees, called the hyperjump.

Recall that given two sets 𝑋,𝑌, 𝑋 ≤𝑇 𝑌 iff 𝑋′ ≤𝑚 𝑌′. The following theorem
states its higher counterpart.

Theorem 11.6.5 (Sacks [93])
Fix two sets 𝑋,𝑌. Then 𝑋 ≤ℎ 𝑌 iff O𝑋 ≤𝑚 O𝑌 .

Proof. Suppose first 𝑋 ≤ℎ 𝑌. Then 𝑋 is Δ1
1(𝑌) by Theorem 11.6.2, but

since O𝑋 is Π1
1(𝑋), then O𝑋 is Π1

1(𝑌).37
37: This is true in general: if 𝑋 is Π1

1(𝑌)
and 𝑌 is Δ1

1(𝑍), then 𝑋 is Π1
1(𝑍). Since O𝑌 is Π1

1(𝑌)-complete for the
many-one reduction38

38: The proof that O is Π1
1-complete for the

many-one reduction relativizes in a strong
way: for every set𝑌 and every Π1

1(𝑌) set 𝑋,
there is a computable function 𝑓 : ℕ → ℕ

such that 𝑋 = {𝑛 : 𝑓 (𝑛) ∈ O𝑌}.

, O𝑋 ≤𝑚 O𝑌 .

Suppose now O𝑋 ≤𝑚 O𝑌 . Since 𝑋 and 𝑋 are Π1
1(𝑋), then 𝑋 ≤𝑚 O𝑋 and

𝑋 ≤𝑚 O𝑋 . It follows by transitivity of the many-one reduction that 𝑋 ≤𝑚 O𝑌

and 𝑋 ≤𝑚 O𝑌 . Since O𝑌 is Π1
1(𝑌), both 𝑋 and 𝑋 are Π1

1(𝑌), so 𝑋 is Δ1
1(𝑌),

hence 𝑋 ≤ℎ 𝑌 by Theorem 11.6.2.

One deduces from the previous theorem that the hyperjump operator is a
hyperdegree-theoretic operation. The following theorem states in a relativized
form that the notion of computable ordinal is robust, in that any hyperarithmetic
ordinal is computable.

Theorem 11.6.6 (Spector [94])
Fix two sets 𝑋,𝑌. If 𝑋 ≤ℎ 𝑌, then 𝜔𝑋

1 ≤ 𝜔𝑌1 .

Proof. Let 𝑓 : ℕ → ℕ be the partial 𝑌-computable function witnessing the
uniformity of the Σ1

1 majoration theorem relativized to 𝑌 (Theorem 11.6.3), that
is, if 𝐴 ⊆ O𝑌 is a Σ1

1(𝑌) set with Σ1
1(𝑌)-code 𝑐, then 𝑓 (𝑐) ∈ O𝑌 is such that

sup𝑎∈𝐴 |𝑎|𝑌 ≤ | 𝑓 (𝑐)|𝑌 .

We prove, by transfinite induction over the 𝑋-constructible codes, the existence
of a partial 𝑌-computable function 𝑔 : ℕ → ℕ such that for every 𝑎 ∈ O𝑋 ,
𝑔(𝑎) ∈ O𝑌 and |𝑎|𝑋 ≤ |𝑔(𝑎)|𝑌 . Let 𝑎 ∈ O𝑋 .

Suppose first 𝑎 = 1 codes for 𝟘. Letting 𝑔(𝑎) = 1, we have |𝑎|𝑋 = |𝑔(𝑎)|𝑌 .

Suppose now 𝑎 = 2𝑏 codes for a successor ordinal. Then by induction hy-
pothesis, 𝑔(𝑏) ∈ O𝑌 and |𝑏|𝑋 ≤ |𝑔(𝑏)|𝑌 . Letting 𝑔(𝑎) = 2𝑔(𝑏), we have
|𝑎|𝑋 = |𝑏|𝑋 + 𝟙 ≤ |𝑔(𝑏)|𝑌 + 𝟙 = |𝑔(𝑎)|𝑌 .

Suppose last 𝑎 = 3 · 5𝑒 codes for a limit ordinal. Then for every 𝑛, by induction
hypothesis, 𝑔(Φ𝑋

𝑒 (𝑛)) ∈ O𝑌 and |Φ𝑋
𝑒 (𝑛)|𝑋 ≤ |𝑔(Φ𝑋

𝑒 (𝑛))|𝑌 . Since𝑋 isΔ1
1(𝑌),

the set 𝐴 = {𝑔(Φ𝑋
𝑒 (𝑛)) : 𝑛 ∈ ℕ} ⊆ O𝑌 is Σ1

1(𝑌). Furthermore, a Σ1
1(𝑌)-

code 𝑐 of 𝐴 can be found uniformly in 𝑒. Let 𝑔(𝑎) = 𝑓 (𝑐).

Last, the following theorem relates the hypercomputation of Kleene’s O to
the computation of a non-computable ordinal. It implies in particular that the
hyperjump is strictly increasing in the hyperdegrees.

11.7 Transfinite jump control 197

Theorem 11.6.7 (Spector [94])
Let 𝑋 be a set. Then 𝑋 ≥ℎ O iff 𝜔𝑋

1 > 𝜔𝑐𝑘
1 .39

39: This statement relativizes as follows:
let 𝑋,𝑌 be sets such that 𝑋 ≥ℎ 𝑌. Then
𝑋 ≥ℎ O𝑌 iff 𝜔𝑋1 > 𝜔𝑌1 . In particular, the
hypothesis 𝑋 ≥ℎ 𝑌 is necessary for the
equivalence to hold.

11.6.3 Classes of reals

One can define an effective Borel hierarchy for the Cantor space as one did
for the discrete topology on ℕ. This yields the notions of Σ0

𝛼 and Π0
𝛼 classes

of reals for every 𝛼 < 𝜔𝑐𝑘
1 . The notions of Σ0

𝛼-code and Π0
𝛼-code for classes

are defined accordingly.

Many previous theorems about the arithmetic hierarchy relativize uniformly
in the oracle. They enable to give canonical representations of the effective
Borel hierarchy using iterations of the halting set. Recall that every Σ0

𝑘
class of

reals is of the form {𝑋 : 𝑛 ∈ 𝑋(𝑘)} for some 𝑛 ∈ ℕ. The generalization to the
transfinite levels yields the following theorem.

Theorem 11.6.8 (Monin and Patey [4])
Fix some 𝑎 ∈ O such that |𝑎| ≥ 𝜔. A class A ⊆ 2ℕ is Σ0

|𝑎| iff there is
some 𝑛 ∈ ℕ such that A= {𝑋 : 𝑛 ∈ 𝐻𝑋

2𝑎}.40
40: Note again the shift in indices between
the finite levels and the transfinite levels.

Given a set 𝑌 and 𝛽 < 𝜔𝑌1 , we let O𝑌<𝛽 = {𝑎 ∈ O : |𝑎|𝑌 < 𝛽}. Among the
classes of reals, we shall be particularly interested in the following family of
classes:

Theorem 11.6.9 (Spector [94])
For every 𝑛 ∈ ℕ and 𝑎 ∈ O, the class {𝑋 : 𝑛 ∈ O𝑋

<|𝑎|} is Σ0
|𝑎|+𝟙 uniformly

in 𝑛 and 𝑎.

11.7 Transfinite jump control

Transfinite jump control involves different sets of techniques, depending on
whether one wants to control a fixed level in the hyperarithmetic hierarchy,
or the hyperjump itself. Indeed, 𝛼-jump control for a fixed level 𝛼 < 𝜔𝑐𝑘

1 is
achieved by designing a Σ0

𝛼-preserving forcing question for Σ0
𝛼-classes, while

hyperjump control furthermore requires to consider 𝐺-computable ordinals
𝛼 < 𝜔𝐺

1 , where 𝐺 is the generic set being built. This section is therefore
divided into two parts, each focusing on one problematic.

11.7.1 𝛼-jump control

As usual, we illustrate the technique with the simplest notion of forcing, namely,
Cohen forcing, and with 𝛼-jump cone avoidance.

Theorem 11.7.1 (Feferman [90])
Fix a non-zero 𝛼 < 𝜔𝑐𝑘

1 and let 𝐶 be a non-Δ0
𝛼 set. For every sufficiently

Cohen generic filter F, 𝐶 is not Δ0
𝛼(𝐺F).

198 11 Higher jump cone avoidance

Proof. This proof is a generalization of Theorem 11.2.1 to transfinite levels.
Contrary to finite levels which can be represented by arithmetic formulas,
defining a notion of Σ0

𝛼-formula for 𝛼 ≥ 𝜔 would require to work with some
effective infinitary logic, with effective countable disjunctions and intersections.
It is therefore more convenient to define the forcing relation in terms of classes.

Definition 11.7.2. Let 𝜎 ∈ 2<ℕ be a Cohen condition, and B ⊆ 2ℕ be a
Σ0
𝛼 class for 𝛼 < 𝜔𝑐𝑘

1 .41
41: The notation 𝜎 ?⊢B is a shorthand for
𝜎 ?⊢𝐺 ∈ B. At finite levels, B can be writ-
ten as {𝑋 ∈ 2ℕ : 𝜑(𝑋)} for some Σ0

𝑛 -
formula 𝜑 and 𝜎 ?⊢B iff 𝜎 ?⊢𝜑(𝐺). 1. For 𝛼 = 𝟙, let 𝜎 ?⊢B hold if there is some 𝜏 ⪰ 𝜎 such that [𝜏] ⊆ B.

2. For 𝛼 > 𝟙, B is of the form
⋃
𝑛 B𝛽𝑛 where B𝛽𝑛 is Π0

𝛽𝑛
. Let 𝜎 ?⊢B

hold if there is some 𝜏 ⪰ 𝜎 and some 𝑛 ∈ ℕ such that 𝜏 ?⊢B𝛽𝑛 .4242: The class B𝛽𝑛 is Π0
𝛽𝑛

, and the forc-
ing question for Π-formulas is induced from
the one for Σ-formulas. Thus, 𝜏 ?⊢B𝛽𝑛 is a
shorthand for 𝜏 ?⊬(2ℕ \ B𝛽𝑛)

♦

We start by proving that the forcing question for Σ0
𝛼-classes is Σ0

𝛼-preserving
uniformly in its parameters, for 𝛼 < 𝜔𝑐𝑘

1 .

Lemma 11.7.3. For every non-zero 𝛼 < 𝜔𝑐𝑘
1 , every Σ0

𝛼 class B ⊆ 2ℕ and
every Cohen condition 𝜎 ∈ 2<ℕ . The relation 𝜎 ?⊢B is Σ0

𝛼 uniformly in 𝜎 and
a Σ0

𝛼-code 𝑐 of B. ★

Proof. By induction over 𝛼. For 𝛼 = 𝟙, 𝑐 = ⟨0, 𝑒⟩ and B=
⋃

𝜏∈𝑊𝑒
[𝜏]. Thus,

𝜎 ?⊢B iff there is some 𝜏 ∈𝑊𝑒 such that [𝜎] ∩ [𝜏] ≠ ∅, which is a Σ0
1 relation

uniformly in 𝜎 and ⟨0, 𝑒⟩.
For 𝛼 > 𝟙, 𝑐 = ⟨2, 𝑒⟩ and B =

⋃
𝑛 B𝑛 where B𝑛 is a Π0

𝛽𝑛
class of Π0

𝛽𝑛
-

code 𝑐𝑛 ∈ 𝑊𝑒 . Then 𝜎 ?⊢B iff there is some 𝑛 ∈ ℕ and some 𝜏 ⪰ 𝜎 such
that 𝜏 ?⊬(2ℕ \ B𝑛). By induction hypothesis, the relation 𝜏 ?⊢(2ℕ \ B𝑛) is
Σ0
𝛽𝑛

uniformly in a Σ0
𝛽𝑛

-code of (2ℕ \ B𝑛), thus 𝜏 ?⊢B𝑛 is Π0
𝛽𝑛

uniformly in a
Π0

𝛽𝑛
-code of B𝑛 . Thus, the overall relation is Σ0

sup𝑛 (𝛽𝑛+𝟙)
, hence is Σ0

𝛼.

The following lemma shows that the definition of the forcing question meets a
strong version of its specifications.

Lemma 11.7.4. Let 𝜎 ∈ 2<ℕ be a Cohen condition and B ⊆ 2ℕ be a Σ0
𝛼

class for 𝛼 < 𝜔𝑐𝑘
1 .

1. If 𝜎 ?⊢B, then there is an extension 𝜏 ⪰ 𝜎 forcing 𝐺 ∈ B.
2. If 𝜎 ?⊬B, then 𝜎 forces 𝐺 ∉ B. ★

Proof. We prove simultaneously both items inductively on 𝛼.

Base case: 𝛼 = 𝟙. If 𝜎 ?⊢B, then, letting 𝜏 ⪰ 𝜎 be such that [𝜏] ⊆ B, for
every filter F containing 𝜏, 𝐺F ∈ B. It follows that 𝜏 is an extension of 𝜎
forcing 𝐺 ∈ B. Conversely, if 𝜎 does not force 𝐺 ∉ B, then there is a filter F
containing 𝜎 such that 𝐺F ∈ B. Then, since B is open in Cantor space, there
is a finite 𝜏 ≺ 𝐺F such that [𝜏] ⊆ B. Since 𝜎 ≺ 𝐺F, by taking 𝜏 long enough,
one has 𝜎 ≺ 𝜏, thus 𝜎 ?⊢B.

Inductive case: 𝛼 > 𝟙. Say B =
⋃
𝑛 B𝑛 , where B𝑛 is Π0

𝛽𝑛
. If 𝜎 ?⊢B, then

there is some 𝑛 ∈ ℕ and some 𝜏 ⪰ 𝜎 such that 𝜏 ?⊢B𝑛 . By induction
hypothesis, there is some 𝜌 ⪰ 𝜏 forcing 𝐺 ∈ B𝑛 . In particular, 𝜌 is an
extension of 𝜎 forcing 𝐺 ∈ B. If 𝜎 ?⊬B, then for every 𝑛 ∈ ℕ and every
𝜏 ⪰ 𝜎, 𝜏 ?⊬B𝑛 . By induction hypothesis, for every 𝑛 ∈ ℕ and every 𝜏 ⪰ 𝜎,
there is some 𝜌 ⪰ 𝜏 forcing 𝐺 ∉ B𝑛 . In other words, for every 𝑛 ∈ ℕ, the
set of all 𝜌 forcing 𝐺 ∉ B𝑛 is dense below 𝜎. Thus, for every sufficiently
generic filter Fcontaining 𝜎 and for every 𝑛 ∈ ℕ, there is some 𝜌 ∈ F forcing
𝐺 ∉ B𝑛 , hence 𝐺 ∉

⋃
𝑛 B𝑛 . In other words, 𝜎 forces 𝐺 ∉ B.

11.7 Transfinite jump control 199

43: By Corollary 11.5.8, for 𝛼 ≥ 𝜔, the
following class is Σ0

𝛼 uniformly in 𝑥 and 𝑣:

B𝑥,𝑣 = {𝑋 : Φ𝐻
𝑋
𝑎

𝑒 (𝑥)↓= 𝑣}

The following diagonalization lemma is a straightforward generalization of
Lemma 3.2.2. Fix some 𝑎 ∈ O such that |𝑎| = 𝛼. Recall that a set is 𝐻𝑌

𝑎 -
computable iff 𝛼 < 𝜔 and it is Δ0

𝛼+𝟙(𝑌), or 𝛼 ≥ 𝜔 and it is Δ0
𝛼(𝑌). For

simplicity, we shall handle only the case 𝛼 ≥ 𝜔, since the finite case is
Lemma 11.2.4.

Lemma 11.7.5. For every Cohen condition 𝜎 ∈ 2<ℕ and every Turing index 𝑒,
there is an extension 𝜏 ⪰ 𝜎 forcing Φ

𝐻𝐺
𝑎

𝑒 ≠ 𝐶. ★

Proof. Consider the following set43

𝑈 = {(𝑥, 𝑣) ∈ ℕ × 2 : 𝑝 ?⊢{𝑋 : Φ𝐻𝑋
𝑎

𝑒 (𝑥)↓= 𝑣}}

Since the forcing question is Σ0
𝛼-preserving, the set 𝑈 is Σ0

𝛼. There are three
cases:

▶ Case 1: (𝑥, 1− 𝐶(𝑥)) ∈ 𝑈 for some 𝑥 ∈ ℕ. By Lemma 11.7.4(1), there
is an extension 𝜏 ⪰ 𝜎 forcing Φ

𝐻𝐺
𝑎

𝑒 (𝑥)↓= 1 − 𝐶(𝑥).
▶ Case 2: (𝑥, 𝐶(𝑥)) ∉ 𝑈 for some 𝑥 ∈ ℕ. By Lemma 11.7.4(2), there is

an extension 𝜏 ⪰ 𝜎 forcing Φ
𝐻𝐺
𝑎

𝑒 (𝑥)↑ or Φ𝐻𝐺
𝑎

𝑒 (𝑥)↓≠ 𝐶(𝑥).
▶ Case 3: None of Case 1 and Case 2 holds. Then 𝑈 is a Σ0

𝛼 graph of
the characteristic function of 𝐶, hence 𝐶 is Δ0

𝛼. This contradicts our
hypothesis.

We are now ready to prove Theorem 11.7.1. Let Fbe a sufficiently generic
filter for Cohen forcing, and let 𝐺F =

⋃
F. By genericity of F, 𝐺F is an infinite

binary sequence. If 𝛼 < 𝜔, by Lemma 11.2.4 𝐶 ≰ 𝐺
(𝛼−1)
F

. If 𝛼 ≥ 𝜔, by
Lemma 11.7.5, 𝐶 ≰𝑇 𝐻

𝐺F
𝑎 . In both cases, 𝐶 is not Δ0

𝛼(𝐺F). This completes
the proof of Theorem 11.7.1.

Exercise 11.7.6. Let (ℙ,≤) be the primitive recursive Jockusch-Soare forcing,
that is, ℙ is the set of all infinite primitive recursive binary trees 𝑇 ⊆ 2<ℕ ,
partially ordered by inclusion. Fix a non-zero 𝛼 < 𝜔𝑐𝑘

1 .

1. Adapt the proof of Theorem 9.4.1 to design a Σ0
𝛼-preserving forcing

question for Σ0
𝛼-formulas.

2. Deduce that for every non-Δ0
𝛼 set 𝐶 and every sufficiently generic ℙ-

filter F, 𝐶 is not Δ0
𝛼(𝐺F). ★

11.7.2 Hyperjump control

Hyperjump control can be seen as the higher counterpart of first-jump con-
trol. Recall that the hyperjump of a set 𝑋 is the set O𝑋 , that is, Kleene’s O
relative to 𝑋. The goal of this section is to develop a set of tools to prove that,
given a sufficiently generic filter F, 𝜔𝐺F

1 = 𝜔𝑐𝑘
1 . From this, it follows that the

levels of the relativized hyperarithmetic hierarchy are left unchanged, reducing
hyperjump control to 𝛼-jump control for every 𝛼 < 𝜔𝑐𝑘

1 .

For this, we first need to define sets and classes slightly more complex than
the hyperarithmetic hierarchy, but still in the Borel realm. Recall that, although
the notion of Σ0

𝛼-code can be defined for every ordinal 𝛼, by the Σ1
1 majoration

theorem, the corresponding hierarchy collapses at the level of 𝜔𝑐𝑘
1 , that is,

every Σ0
𝛼 set is Σ0

𝛽 for some 𝛽 < 𝜔𝑐𝑘
1 . One can however extend the family of

200 11 Higher jump cone avoidance

47: The function (𝑎, 𝑛) ↦→ 2𝑎𝑛 is defined
inductively by 2𝑎0 = 𝑎 and 2𝑎

𝑛+1 = 22𝑎𝑛 .

48: The set O𝐺<𝛼 is the set of all codes 𝑎 ∈
O𝐺 such that |𝑎|𝐺 < 𝛼. Note that O𝐺

<𝜔𝑐𝑘1
≠

O in general. We can however assume for
convenience that O⊆ O𝐺

<𝜔𝑐𝑘1
.

sets and classes by considering effective unions along Π1
1 sets of ordinals. A

hyperarithmetic code is a Σ0
𝛼-code for some 𝛼 < 𝜔𝑐𝑘

1 , and a Π1
1-code of a

set 𝐴 ⊆ ℕ is a code of a Π1
1-formula defining 𝐴.

Definition 11.7.7.

1. A Σ0
𝜔𝑐𝑘

1
-code of a class B⊆ 2ℕ is a pair ⟨3, 𝑒⟩, where 𝑒 is Π1

1-code

of set 𝐴 ⊆ ℕ such that B =
⋃
𝑒∈𝐴 B𝑒 , where B𝑒 is the class of

hyperarithmetic code 𝑒.44

44: As explained, this notion does not co-
incide with the naive definition of Σ0

𝜔𝑐𝑘1
in

terms of effective countable union of hyper-
arithmetic sets. The set of hyperarithmetic
codes of the union must be non-Σ1

1 in or-
der to properly extend the hyperarithmetic
hierarchy.

2. A Π0
𝜔𝑐𝑘

1
-code of a class B⊆ 2ℕ is a pair ⟨1, 𝑒⟩, where 𝑒 is aΣ0

𝜔𝑐𝑘
1

-code

of the class 2ℕ \ B.
3. A Σ0

𝜔𝑐𝑘
1 +𝟙-code of a class B =

⋃
𝑛 B𝑛 is a pair ⟨2, 𝑒⟩ where 𝑊𝑒 is

non-empty and enumerates Π0
𝜔𝑐𝑘

1
-codes of the classes B𝑛 . ♦

A class B⊆ 2ℕ is Σ0
𝜔𝑐𝑘

1
(Π0

𝜔𝑐𝑘
1

, Σ0
𝜔𝑐𝑘

1 +1
) if it admits a corresponding code. One

can define the notions of Σ0
𝜔𝑐𝑘

1
, Π0

𝜔𝑐𝑘
1

and Σ0
𝜔𝑐𝑘

1 +𝟙 for sets accordingly. In the

case of sets, Π1
1 and Σ0

𝜔𝑐𝑘
1

sets coincide. For classes on the other hand, every

Σ0
𝜔𝑐𝑘

1
class is Π1

1, but the converse is not true.45

45: From a topological viewpoint, every
Σ0
𝜔𝑐𝑘1 +𝟙

class is Borel. The Borel hierar-

chy does not collapse on the Cantor space,
and there exists effectively co-analytic (Π1

1)
classes which are not Borel. On the other
hand, as mentioned before, every set of in-
tegers is open in the discrete topology on ℕ,
so there is no contradiction to the equiva-
lence between Π1

1 and Σ0
𝜔𝑐𝑘1

sets.
It will be sometimes more convenient to represent a Σ0

𝜔𝑐𝑘
1

class as a count-
able union along O. The following lemma shows that the two definitions are
equivalent.

Lemma 11.7.8. A class B ⊆ 2ℕ is Σ0
𝜔𝑐𝑘

1
iff B =

⋃
𝑎∈O D𝑎 , where D𝑎 is

hyperarithmetic uniformly in 𝑎.46
46: Note that one can computably switch
from one representation to the other. ★

Proof. Suppose first B =
⋃
𝑒∈𝐴 B𝑒 , where 𝐴 is Π1

1 and B𝑒 is the class of
hyperarithmetic code 𝑒. Since O is Π1

1-complete for the many-one reduction,
there is a total computable function 𝑓 : ℕ → ℕ such that 𝑒 ∈ 𝐴 iff 𝑓 (𝑒) ∈ O.
One can furthermore suppose that 𝑓 is injective and increasing, since given
a code 𝑎 ∈ O and 𝑛 ∈ ℕ, 2𝑎𝑛 ∈ O iff 𝑎 ∈ O.47 In particular, the range of 𝑓
is computable. For every 𝑎 ∈ O, D𝑎 = B𝑓 −1(𝑎) if 𝑎 is in the range of 𝑓 , and
D𝑎 = ∅ otherwise. Note that D𝑎 is Σ0

𝛽 for some 𝛽 < 𝜔𝑐𝑘
1 , and a Σ0

𝛽-code
of D𝑎 can be found uniformly in 𝑎. By construction, B=

⋃
𝑎∈O D𝑎 .

Suppose now B=
⋃
𝑎∈O D𝑎 , where D𝑎 is hyperarithmetic uniformly in 𝑎. Let

𝑓 : ℕ → ℕ be a partial computable function such that 𝑓 (𝑎) is a hyperarithmetic
code of D𝑎 for every 𝑎 ∈ O. Here again, one can suppose that 𝑓 is injective
and increasing, since one can computably transform a hyperarithmetic code
into a larger hyperarithmetic code of the same class. Let 𝐴 = { 𝑓 (𝑎) : 𝑎 ∈ O}.
The set 𝐴 is Π1

1 as it is the image of a Π1
1 set by a computable injective function.

Thus B=
⋃
𝑒∈𝐴 B𝑒 , where B𝑒 is the class of hyperarithmetic code 𝑒.

As usual, Cohen forcing provides a simple example to illustrate the use of the
forcing question. We therefore prove that Cohen genericity preserves 𝜔𝑐𝑘

1 .

Theorem 11.7.9 (Feferman [90])
For every sufficiently Cohen generic filter F, 𝜔𝐺F

1 = 𝜔𝑐𝑘
1 .

Proof. Suppose 𝜔𝐺
1 > 𝜔𝑐𝑘

1 , then there is an element 𝑎 ∈ O𝐺 which codes
for 𝜔𝑐𝑘

1 . Since 𝜔𝑐𝑘
1 is a limit ordinal, 𝑎 = 3 · 5𝑒 , where ∀𝑛Φ𝐺

𝑒 (𝑛)↓∈ O𝐺
<𝜔𝑐𝑘

1
and

11.7 Transfinite jump control 201

with sup𝑛 |Φ𝐺
𝑒 (𝑛)|𝐺 = 𝜔𝑐𝑘

1 .48 We shall therefore naturally work with Σ0
𝜔𝑐𝑘

1 +𝟙
classes. We first extend the forcing question to Σ0

𝜔𝑐𝑘
1

and Σ0
𝜔𝑐𝑘

1 +𝟙 classes,

assuming the existence of a Σ0
𝛼-preserving forcing question for Σ0

𝛼-formulas
(see the proof of Theorem 11.7.1).

Definition 11.7.10. Let 𝜎 ∈ 2<ℕ be a Cohen condition, and B=
⋃
𝑎∈OB𝑎

be a Σ0
𝜔𝑐𝑘

1
class.49 49: By Lemma 11.7.8, B can be written of

this form.
Let 𝜎 ?⊢B hold if there is some 𝑎 ∈ O and some 𝜏 ⪰ 𝜎

such that 𝜏 ?⊢B𝑎 . ♦

The forcing question for a Σ0
𝜔𝑐𝑘

1
-class B is Σ0

𝜔𝑐𝑘
1

uniformly in a Σ0
𝜔𝑐𝑘

1
-code of B.

One easily proves that the forcing question meets its specifications. The proof
is left as an exercise.

Exercise 11.7.11. Let 𝜎 ∈ 2<ℕ be a Cohen condition, and B=
⋃
𝑎∈OB𝑎 be

a Σ0
𝜔𝑐𝑘

1
class. Prove that

1. if 𝜎 ?⊢B, then there is an extension of 𝜎 forcing 𝐺 ∈ B;
2. if 𝜎 ?⊬B, then there is an extension of 𝜎 forcing 𝐺 ∉ B. ★

We now extend the forcing question to Σ0
𝜔𝑐𝑘

1 +𝟙 classes.

Definition 11.7.12. Let 𝜎 ∈ 2<ℕ be a Cohen condition, and B =
⋃
𝑛 B𝑛

be a Σ0
𝜔𝑐𝑘

1 +𝟙 class. Let 𝜎 ?⊢B hold if there is some 𝑛 ∈ ℕ and some 𝜏 ⪰ 𝜎

such that 𝜏 ?⊢B𝑛 .50 50: The class B𝑛 is Π0
𝜔𝑐𝑘1

, so 𝜏 ?⊢B𝑛 is

a shorthand for 𝜏 ?⊬(2ℕ \ B𝑛). The forc-
ing question for Σ0

𝜔𝑐𝑘1 +𝟙
-classes is Σ0

𝜔𝑐𝑘1 +𝟙
-

preserving, but we are not going to use this
fact in the proof.

♦

The forcing question for Σ0
𝜔𝑐𝑘

1 +𝟙 classes meets its specification, but one can
actually prove a stronger version of it, in the negative case. Recall that, given
a set 𝑌 and 𝛽 < 𝜔𝑌1 , we let O𝑌<𝛽 = {𝑎 ∈ O : |𝑎|𝑌 < 𝛽}.

Lemma 11.7.13. Let 𝜎 ∈ 2<ℕ be a Cohen condition, and B=
⋃
𝑛
⋂
𝑎∈OB𝑛,𝑎

be a Σ0
𝜔𝑐𝑘

1 +𝟙 class, where B𝑛,𝑎 is hyperarithmetic uniformly in 𝑛 and 𝑎.51 51: Every Σ0
𝜔𝑐𝑘1 +𝟙

class can be written of

this form thanks to Lemma 11.7.8.
1. If 𝜎 ?⊢B, then there is an extension of 𝜎 forcing 𝐺 ∈ B;
2. If 𝜎 ?⊬B, then there is some 𝛽 < 𝜔𝑐𝑘

1 and an extension of 𝜎 forcing
𝐺 ∉

⋃
𝑛
⋂
𝑎∈O<𝛽 B𝑛,𝑎 .52

52: Note that B⊆ ⋃
𝑛
⋂
𝑎∈O<𝛽 B𝑛,𝑎 .

★

Proof. Suppose 𝜎 ?⊢B. Then there is some 𝑛 ∈ ℕ and some 𝜏 ⪰ 𝜎 such
that 𝜏 ?⊢⋂𝑎∈OB𝑛,𝑎 . By Exercise 11.7.11, there is an extension 𝜌 ⪰ 𝜏 forcing
𝐺 ∈ ⋂

𝑎∈OB𝑛,𝑎 , hence forcing 𝐺 ∈ B.

Suppose 𝜎 ?⊬B. For every 𝑛 and every 𝜏 ⪰ 𝜎, 𝜏 ?⊬
⋂
𝑎∈OB𝑛,𝑎 , in other words,

𝜏 ?⊢⋃𝑎∈O(2ℕ \ B𝑛,𝑎). Unfolding the definition, for every 𝑛, and every 𝜏 ⪰ 𝜎,
there is some 𝜌 ⪰ 𝜏 and some 𝑎 ∈ O such that 𝜌 ?⊢(2ℕ \B𝑛,𝑎). Given 𝑛 ∈ ℕ

and 𝜏 ⪰ 𝜎, let 𝑓 (𝑛, 𝜏) = 𝑎 for some 𝑎 ∈ O such that there some 𝜌 ⪰ 𝜏 for
which 𝜌 ?⊢(2ℕ \ B𝑛,𝑎). The function 𝑓 is Π1

1 and total, so by Corollary 11.6.4,
there is some 𝛽 < 𝜔𝑐𝑘

1 such that sup𝑛,𝜏⪰𝜎 | 𝑓 (𝑛, 𝜏)| < 𝛽. Thus, for every
𝑛 ∈ ℕ and every 𝜏 ⪰ 𝜎, there is some 𝜌 ⪰ 𝜏 and some 𝑎 ∈ O<𝛽 such that
𝜌 ?⊢(2ℕ \B𝑛,𝑎), and by definition of the forcing question, there is some 𝜇 ⪰ 𝜌
forcing 𝐺 ∉ B𝑛,𝑎 . For every 𝑛, let 𝐷𝑛 be the set of 𝜇 such that for some 𝑎 ∈
O<𝛽, 𝜇 forces 𝐺 ∉ B𝑛,𝑎 . The set 𝐷𝑛 is dense below 𝜎 for every 𝑛 ∈ ℕ, so
for every sufficiently generic filter F containing 𝜎, F∩ 𝐷𝑛 ≠ ∅, and thus
𝐺F ∉

⋃
𝑛
⋂
𝑎∈O<𝛽 B𝑛,𝑎 .

202 11 Higher jump cone avoidance

The following lemma is an immediate application of Lemma 11.7.13. The core
argument actually lies in Lemma 11.7.13 rather than Lemma 11.7.14.

Lemma 11.7.14. Let 𝜎 ∈ 2<ℕ be a Cohen condition and Φ𝑒 be a Turing
functional. There is an extension 𝜏 ⪰ 𝜎 forcing one of the following:

1. ∃𝑛 ∀𝛼 < 𝜔𝑐𝑘
1 Φ𝐺

𝑒 (𝑛) ∉ O𝐺<𝛼;
2. ∃𝛽 < 𝜔𝑐𝑘

1 ∀𝑛 Φ𝐺
𝑒 (𝑛) ∈ O𝐺<𝛽. ★

Proof. By Spector [94], the class B𝑛,𝑎 = {𝑋 : Φ𝑋
𝑒 (𝑛) ∉ O𝑋

<|𝑎|} is hyper-
arithmetic uniformly in 𝑛 ∈ ℕ and 𝑎 ∈ O. It follows that the class B =⋃
𝑛
⋂
𝑎∈OB𝑛,𝑎 is Σ0

𝜔𝑐𝑘
1 +𝟙. If 𝜎 ?⊢B, then by Lemma 11.7.13(1), there is an

extension forcing 𝐺 ∈ B, in other words forcing ∃𝑛 ∀𝛼 < 𝜔𝑐𝑘
1 Φ𝐺

𝑒 (𝑛) ∉ O𝐺<𝛼.
If 𝜎 ?⊬B, then by Lemma 11.7.13(2), there is some 𝛽 < 𝜔𝑐𝑘

1 and an extension
of 𝜎 forcing 𝐺 ∉

⋃
𝑛
⋂
𝑎∈O<𝛽 B𝑛,𝑎 , in other words forcing ∀𝑛Φ𝐺

𝑒 (𝑛) ∈ O𝐺<𝛽.

We are now ready to prove Theorem 11.7.9. Let Fbe a sufficiently generic
filter for Cohen forcing. Suppose for the contradiction that 𝜔𝐺F

1 > 𝜔𝑐𝑘
1 . Then

there is some 𝑎 ∈ O𝐺F which codes for 𝜔𝑐𝑘
1 . Since 𝜔𝑐𝑘

1 is a limit ordi-
nal, 𝑎 = 3 · 5𝑒 , where ∀𝑛Φ𝐺F

𝑒 (𝑛) ↓∈ O
𝐺F

<𝜔𝑐𝑘
1

and with sup𝑛 |Φ
𝐺F
𝑒 (𝑛)|𝐺 =

𝜔𝑐𝑘
1 . By Lemma 11.7.14, either ∃𝑛 ∀𝛼 < 𝜔𝑐𝑘

1 Φ
𝐺F
𝑒 (𝑛) ∉ O

𝐺F
<𝛼 , or ∃𝛽 <

𝜔𝑐𝑘
1 ∀𝑛 Φ

𝐺F
𝑒 (𝑛) ∈ O

𝐺F

<𝛽 , in which case sup𝑛 |Φ𝐺
𝑒 (𝑛)|𝐺 ≤ 𝛽 < 𝜔𝑐𝑘

1 . In both

cases, this yields a contradiction, so 𝜔𝐺F

1 = 𝜔𝑐𝑘
1 . This completes the proof of

Theorem 11.7.9.

Combining Theorem 11.7.9 and Theorem 11.7.1, we obtain cone avoidance
for the hyperarithmetic reduction.

Corollary 11.7.15 (Feferman [90])
Let 𝐶 be a non-hyperarithmetic set. For every sufficiently generic Cohen
filter F, 𝐶 ≰ℎ 𝐺F.

Proof. Let Fbe a sufficiently generic Cohen filter. By Theorem 11.7.1, 𝐶 is
not Δ0

𝛼(𝐺F) for any 𝛼 < 𝜔𝑐𝑘
1 , and by Theorem 11.7.9, 𝜔𝐺F

1 = 𝜔𝑐𝑘
1 . It follows

that 𝐶 is not Δ0
𝛼(𝐺F) for any 𝛼 < 𝜔𝐺F

1 , thus 𝐶 ≰ℎ 𝐺F.

The following contains the core property to prove that every sufficiently generic
filter preserves 𝜔𝑐𝑘

1 .

Definition 11.7.16. Given a notion of forcing (ℙ,≤), a forcing question is
Σ0
𝜔𝑐𝑘

1 +𝟙-majoring if for every Σ0
𝜔𝑐𝑘

1 +𝟙 class B=
⋃
𝑛
⋂
𝑎∈OB𝑛,𝑎 where B𝑛,𝑎

is hyperarithmetic uniformly in 𝑛 and 𝑎, for every condition 𝑝 ∈ ℙ such
that 𝑝 ?⊬B, there is some 𝛽 < 𝜔𝑐𝑘

1 and an extension 𝑞 ≤ 𝑝 forcing 𝐺 ∉⋃
𝑛
⋂
𝑎∈O<𝛽 B𝑛,𝑎 . ♦

We leave the abstract theorem as an exercise.

Exercise 11.7.17. Let (ℙ,≤) be a notion of forcing, with a Σ0
𝜔𝑐𝑘

1 +𝟙-majoring

forcing question. Prove that for every sufficiently generic filter F, 𝜔𝐺F

1 = 𝜔𝑐𝑘
1 .★

11.7 Transfinite jump control 203

Exercise 11.7.18. Let (ℙ,≤) be the primitive recursive Jockusch-Soare forc-
ing, that is, ℙ is the set of all infinite primitive recursive binary trees 𝑇 ⊆ 2<ℕ ,
partially ordered by inclusion.

1. Show the existence of a Σ0
𝜔𝑐𝑘

1 +𝟙-majoring forcing question.

2. Deduce that for every sufficiently generic filter F, 𝜔𝐺F

1 = 𝜔𝑐𝑘
1 . ★

Bibliography

[1] Stephen G. Simpson. ‘Partial Realizations of Hilbert’s Program’. In: J. Symbolic Logic 53.2 (1988), pp. 349–363.
doi: 10.2307/2274508 (cited on pages 2, 93).

[2] Barry S. Cooper. Computability Theory. CRC Press, 2003 (cited on page 9).

[3] Robert I. Soare. ‘Turing Computability’. In: Theory and Applications of Computability. Springer (2016) (cited on
pages 9, 39, 40).

[4] B Monin and L Patey. ‘Calculabilité: Degrés Turing, Théorie Algorithmique de l’aléatoire, Mathématiques à
Rebours’. In: Hypercalculabilité, Calvage et Mounet (2022) (cited on pages 9, 194, 197).

[5] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Vol. 1. Cambridge University Press, 2009 (cited
on pages 9, 93, 98, 137).

[6] Damir D Dzhafarov and Carl Mummert. Reverse mathematics: problems, reductions, and proofs. Springer
Nature, 2022 (cited on page 9).

[7] Denis R Hirschfeldt. ‘Slicing the Truth’. In: Lecture Notes Series, Institute for Mathematical Sciences, National
University of Singapore 28 (2015). Publisher: World Scientific Publishing (cited on pages 9, 103).

[8] Joseph R. Shoenfield. ‘On Degrees of Unsolvability’. In: Annals of Mathematics (1959). Publisher: JSTOR,
pp. 644–653 (cited on pages 21, 100, 112).

[9] Carl G. Jockusch Jr. and Robert I. Soare. ‘Π0
1 Classes and Degrees of Theories’. In: Trans. Amer. Math. Soc.

173 (1972), pp. 33–56. doi: 10.2307/1996261 (cited on pages 23, 44, 81, 110).

[10] David Seetapun and Theodore Slaman. ‘On the Strength of Ramsey’s Theorem’. In: Notre Dame Journal of
Formal Logic 36.4 (1995). Publisher: University of Notre Dame, pp. 570–582 (cited on pages 26, 29, 30).

[11] Damir D Dzhafarov and Carl G. Jockusch. ‘Ramsey’s Theorem and Cone Avoidance’. In: The Journal of
Symbolic Logic 74.2 (2009). Publisher: Cambridge University Press, pp. 557–578 (cited on pages 26, 27).

[12] Jiayi Liu. ‘RT2
2 does not Imply WKL0’. In: The Journal of Symbolic Logic (2012). Publisher: JSTOR, pp. 609–620

(cited on pages 26, 56–58, 60, 62, 177, 179).

[13] Carl G. Jockusch and Frank Stephan. ‘A Cohesive Set which is not High’. In: Mathematical Logic Quarterly
39.1 (1993). Publisher: Wiley Online Library, pp. 515–530 (cited on pages 27, 48, 137).

[14] Ludovic Patey. ‘The Weakness of Being Cohesive, Thin or Free in Reverse Mathematics’. In: Israel J. Math.
216.2 (2016), pp. 905–955. doi: 10.1007/s11856-016-1433-3 (cited on pages 27, 130).

[15] Wei Wang. ‘Some Logically Weak Ramseyan Theorems’. In: Advances in Mathematics 261 (2014), pp. 1–25
(cited on pages 30, 129, 130, 133, 138, 183).

[16] Carl G. Jockusch. ‘Ramsey’s Theorem and Recursion Theory’. In: The Journal of Symbolic Logic 37.2 (1972).
Publisher: Cambridge University Press, pp. 268–280 (cited on pages 31, 38, 137).

[17] Denis R. Hirschfeldt and Carl G. Jockusch. ‘On Notions of Computability-Theoretic Reduction between Π1
2

Principles’. In: J. Math. Log. 16.1 (2016), pp. 1650002, 59. doi: 10.1142/S0219061316500021 (cited on
page 31).

[18] Rod Downey et al. Relationships between Computability-Theoretic Properties of Problems. 2019 (cited on
pages 32, 34, 35).

[19] Robert M. Solovay. ‘Hyperarithmetically encodable sets’. In: Trans. Amer. Math. Soc. 239 (1978), pp. 99–122.
doi: 10.2307/1997849 (cited on pages 33, 195).

[20] Webb Miller and D. A. Martin. ‘The degrees of hyperimmune sets’. In: Z. Math. Logik Grundlagen Math. 14
(1968), pp. 159–166. doi: 10.1002/malq.19680140704 (cited on page 33).

[21] E. Herrmann. ‘Infinite chains and antichains in computable partial orderings’. In: J. Symbolic Logic 66.2 (2001),
pp. 923–934. doi: 10.2307/2695053 (cited on pages 38, 83).

https://doi.org/10.2307/2274508
https://doi.org/10.2307/1996261
https://doi.org/10.1007/s11856-016-1433-3
https://doi.org/10.1142/S0219061316500021
https://doi.org/10.2307/1997849
https://doi.org/10.1002/malq.19680140704
https://doi.org/10.2307/2695053

[22] R. G. Downey. ‘Computability theory and linear orderings’. In: Handbook of recursive mathematics, Vol. 2.
Vol. 139. Stud. Logic Found. Math. North-Holland, Amsterdam, 1998, pp. 823–976. doi: 10.1016/S0049-
237X(98)80047-5 (cited on page 38).

[23] Denis R. Hirschfeldt and Richard A. Shore. ‘Combinatorial Principles Weaker Than Ramsey’s Theorem for
Pairs’. In: Journal of Symbolic Logic 72.1 (2007), pp. 171–206 (cited on pages 38, 46, 83, 87, 88, 91, 115).

[24] Dana Scott. ‘Algebras of Sets Binumerable in Complete Extensions of Arithmetic’. In: Proc. Sympos. Pure
Math. Vol. 5. 1962, pp. 117–121 (cited on page 41).

[25] Clifford Spector. ‘On Degrees of Recursive Unsolvability’. In: Ann. of Math. (2) 64 (1956), pp. 581–592. doi:
10.2307/1969604 (cited on page 42).

[26] Stephen C. Kleene and Emil L. Post. ‘The Upper Semi-Lattice of Degrees of Recursive Unsolvability’. In: Annals
of Mathematics (1954). Publisher: JSTOR, pp. 379–407 (cited on page 43).

[27] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. ‘On the Strength of Ramsey’s Theorem for Pairs’.
In: The Journal of Symbolic Logic 66.1 (2001). Publisher: Cambridge University Press, pp. 1–55 (cited on
pages 48, 49, 52, 103, 183).

[28] Rod Downey et al. ‘A Δ0
2 Set with no Infinite Low Subset in either it or its Complement’. In: Journal of Symbolic

Logic 66.3 (2001), pp. 1371–1381 (cited on pages 51, 173).

[29] C. T. Chong, Theodore A. Slaman, and Yue Yang. ‘The metamathematics of stable Ramsey’s theorem for
pairs’. In: J. Amer. Math. Soc. 27.3 (2014), pp. 863–892. doi: 10.1090/S0894-0347-2014-00789-X (cited
on pages 52, 118, 173).

[30] Stephen Flood. ‘Reverse mathematics and a Ramsey-type König’s lemma’. In: J. Symbolic Logic 77.4 (2012),
pp. 1272–1280. doi: 10.2178/jsl.7704120 (cited on page 58).

[31] Benoît Monin and Ludovic Patey. ‘Pigeons do not jump high’. In: Advances in Mathematics 352 (2019), pp. 1066–
1095 (cited on pages 58, 148, 149, 153, 158, 186).

[32] Lu Liu. ‘Cone avoiding closed sets’. In: Trans. Amer. Math. Soc. 367.3 (2015), pp. 1609–1630. doi: 10.1090/
S0002-9947-2014-06049-2 (cited on pages 58, 66, 69).

[33] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer Science &
Business Media, 2010 (cited on page 63).

[34] André Nies. Computability and Randomness. Vol. 51. Oxford University Press, 2009 (cited on page 63).

[35] Gregory J. Chaitin. ‘A Theory of Program Size Formally Identical to Information Theory’. In: Journal of the ACM
(JACM) 22.3 (1975). Publisher: ACM New York, NY, USA, pp. 329–340 (cited on page 63).

[36] Leonid A. Levin. ‘Laws of Information Conservation (Nongrowth) and Aspects of the Foundation of Probability
Theory’. In: Problemy Peredachi Informatsii 10.3 (1974). Publisher: Russian Academy of Sciences, pp. 30–35
(cited on page 63).

[37] Laurent Bienvenu, Ludovic Patey, and Paul Shafer. ‘On the Logical Strengths of Partial Solutions to Mathematical
Problems’. In: Trans. London Math. Soc. 4.1 (2017), pp. 30–71. doi: 10.1112/tlm3.12001 (cited on pages 70,
80).

[38] David B. Posner and Robert W. Robinson. ‘Degrees Joining to 0’’. In: Journal of Symbolic Logic (1981).
Publisher: JSTOR, pp. 714–722 (cited on page 72).

[39] Carl G. Jockusch and Richard A. Shore. ‘Pseudo-Jump Operators. II: Transfinite Iterations, Hierarchies and
Minimal Covers’. In: The Journal of Symbolic Logic 49.4 (1984). Publisher: JSTOR, pp. 1205–1236 (cited on
page 72).

[40] Antonio Montalbán. ‘Open questions in reverse mathematics’. In: Bull. Symbolic Logic 17.3 (2011), pp. 431–454.
doi: 10.2178/bsl/1309952320 (cited on page 76).

[41] Carl G Jockusch Jr. ‘Degrees of Functions with no Fixed Points’. In: Studies in Logic and the Foundations of
Mathematics. Vol. 126. Elsevier, 1989, pp. 191–201 (cited on page 77).

[42] Andrey Bovykin and Andreas Weiermann. ‘The strength of infinitary Ramseyan principles can be accessed by
their densities’. In: Ann. Pure Appl. Logic 168.9 (2017), pp. 1700–1709. doi: 10.1016/j.apal.2017.03.005
(cited on pages 80, 88).

https://doi.org/10.1016/S0049-237X(98)80047-5
https://doi.org/10.1016/S0049-237X(98)80047-5
https://doi.org/10.2307/1969604
https://doi.org/10.1090/S0894-0347-2014-00789-X
https://doi.org/10.2178/jsl.7704120
https://doi.org/10.1090/S0002-9947-2014-06049-2
https://doi.org/10.1090/S0002-9947-2014-06049-2
https://doi.org/10.1112/tlm3.12001
https://doi.org/10.2178/bsl/1309952320
https://doi.org/10.1016/j.apal.2017.03.005

[43] Manuel Lerman, Reed Solomon, and Henry Towsner. ‘Separating Principles Below Ramsey’s Theorem for
Pairs’. In: Journal of Mathematical Logic 13.02 (2013), p. 1350007 (cited on pages 80, 82, 88, 92).

[44] Ludovic Patey. ‘Iterative Forcing and Hyperimmunity in Reverse Mathematics’. English. In: CiE. Evolving
Computability. Ed. by Arnold Beckmann, Victor Mitrana, and Mariya Soskova. Vol. 9136. Lecture Notes in
Computer Science. Springer International Publishing, 2015, pp. 291–301. doi: 10.1007/978-3-319-20028-
6_30 (cited on page 80).

[45] Ludovic Patey. ‘The Reverse Mathematics of Ramsey-Type Theorems’. PhD thesis. Université Paris Diderot,
2016 (cited on pages 82, 133, 134).

[46] Ludovic Patey. ‘Partial Orders and Immunity in Reverse Mathematics’. In: Computability 7.4 (2018), pp. 323–339.
doi: 10.3233/com-170071 (cited on pages 84, 86, 88, 89, 91).

[47] Denis R. Hirschfeldt et al. ‘The Strength of some Combinatorial Principles Related to Ramsey’s Theorem for
Pairs’. In: Computational Prospects of Infinity, Part II: Presented Talks, World Scientific Press, Singapore (2008),
pp. 143–161. doi: 10.1142/9789812796554_0008 (cited on pages 87, 141, 173, 182).

[48] William W Tait. ‘Finitism’. In: The Journal of Philosophy (1981), pp. 524–546 (cited on page 93).

[49] Theodore A Marcia J. Groszek Slaman. ‘On Turing Reducibility’. In: () (cited on pages 94, 109).

[50] Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic.
Berlin: Springer-Verlag, 1998 (cited on pages 94–97, 106, 109, 119).

[51] J. B. Paris and L. A. S. Kirby. Σ𝑛-Collection Schemas in Arithmetic. 1978. doi: 10.1016/s0049-237x(08)
72003-2 (cited on pages 95, 97).

[52] R. Kaye, J. Paris, and C. Dimitracopoulos. ‘On parameter free induction schemas’. In: J. Symbolic Logic 53.4
(1988), pp. 1082–1097. doi: 10.2307/2274606 (cited on page 95).

[53] Charles Parsons. ‘On a Number Theoretic Choice Schema and its Relation to Induction’. In: Intuitionism and
Proof Theory (Proc. Conf., Buffalo, N.Y., 1968). North-Holland, Amsterdam, 1970, pp. 459–473 (cited on
page 96).

[54] Theodore A. Slaman. ‘Σ𝑛-Bounding and Δ𝑛-Induction’. In: 132 (2004), pp. 2449–2449. doi: 10.1090/s0002-
9939-04-07294-6 (cited on page 97).

[55] Harvey Friedman. ‘Systems on Second Order Arithmetic with Restricted Induction I, II’. In: Journal of Symbolic
Logic 41 (1976), pp. 557–559 (cited on page 98).

[56] Harvey Martin Friedman. ‘Subsystems of Set Theory and Analysis’. PhD Thesis. Massachusetts Institute of
Technology, 1967 (cited on page 98).

[57] António M. Fernandes, Fernando Ferreira, and Gilda Ferreira. ‘Analysis in weak systems’. In: Logic and
computation. Vol. 33. Tributes. Coll. Publ., [London], 2017, pp. 231–261 (cited on page 99).

[58] Henry Towsner. ‘On maximum conservative extensions’. In: Computability 4.1 (2015), pp. 57–68 (cited on
page 100).

[59] Stephen G. Simpson and Rick L. Smith. ‘Factorization of polynomials and Σ0
1 induction’. In: vol. 31. 2-3. Special

issue: second Southeast Asian logic conference (Bangkok, 1984). 1986, pp. 289–306. doi: 10.1016/0168-
0072(86)90074-6 (cited on pages 103–105).

[60] David R Belanger. ‘Conservation theorems for the cohesiveness principle’. In: arXiv preprint arXiv:2212.13011
(2022) (cited on pages 104, 112, 114).

[61] Jeffry L. Hirst. ‘Combinatorics in Subsystems of Second Order Arithmetic’. PhD thesis. Pennsylvania State
University, Aug. 1987 (cited on page 104).

[62] Marta Fiori-Carones et al. ‘An isomorphism theorem for models of Weak König’s Lemma without primitive
recursion’. In: arXiv preprint arXiv:2112.10876 (2021) (cited on pages 105, 108, 109, 159).

[63] Leszek Aleksander Kołodziejczyk and Keita Yokoyama. ‘Categorical characterizations of the natural numbers
require primitive recursion’. In: Ann. Pure Appl. Logic 166.2 (2015), pp. 219–231. doi: 10.1016/j.apal.2014.
10.003 (cited on page 106).

[64] C. T. Chong and K. J. Mourad. ‘The degree of a Σ𝑛 cut’. In: Ann. Pure Appl. Logic 48.3 (1990), pp. 227–235.
doi: 10.1016/0168-0072(90)90021-S (cited on page 106).

https://doi.org/10.1007/978-3-319-20028-6_30
https://doi.org/10.1007/978-3-319-20028-6_30
https://doi.org/10.3233/com-170071
https://doi.org/10.1142/9789812796554_0008
https://doi.org/10.1016/s0049-237x(08)72003-2
https://doi.org/10.1016/s0049-237x(08)72003-2
https://doi.org/10.2307/2274606
https://doi.org/10.1090/s0002-9939-04-07294-6
https://doi.org/10.1090/s0002-9939-04-07294-6
https://doi.org/10.1016/0168-0072(86)90074-6
https://doi.org/10.1016/0168-0072(86)90074-6
https://doi.org/10.1016/j.apal.2014.10.003
https://doi.org/10.1016/j.apal.2014.10.003
https://doi.org/10.1016/0168-0072(90)90021-S

[65] Keita Yokoyama. ‘On conservativity for theories in second order arithmetic’. In: Proceedings of the 10th Asian
Logic Conference. World Scientific. 2010, pp. 375–386 (cited on pages 109, 117).

[66] C. T. Chong, Theodore A. Slaman, and Yue Yang. ‘Π1
1-conservation of combinatorial principles weaker than

Ramsey’s theorem for pairs’. In: Adv. Math. 230.3 (2012), pp. 1060–1077. doi: 10.1016/j.aim.2012.02.025
(cited on pages 109, 114, 115).

[67] Richard Kaye. Models of Peano Arithmetic. 1991 (cited on page 109).

[68] Petr Hájek. ‘Interpretability and fragments of arithmetic’. In: Arithmetic, proof theory, and computational com-
plexity (Prague, 1991). Vol. 23. Oxford Logic Guides. Oxford Univ. Press, New York, 1993, pp. 185–196 (cited
on pages 110, 112).

[69] Quentin Le Houérou, Ludovic Levy Patey, and Keita Yokoyama. ‘Conservation of Ramsey’s theorem for pairs
and well-foundedness’. In: arXiv preprint arXiv:2402.11616 (2024) (cited on pages 115, 120–122).

[70] C. T. Chong, Steffen Lempp, and Yue Yang. ‘On the role of the collection principle for Σ0
2-formulas in second-

order reverse mathematics’. In: Proc. Amer. Math. Soc. 138.3 (2010), pp. 1093–1100. doi: 10.1090/S0002-
9939-09-10115-6 (cited on page 115).

[71] Alexander P. Kreuzer and Keita Yokoyama. ‘On principles between Σ1- and Σ2-induction, and monotone
enumerations’. In: J. Math. Log. 16.1 (2016), pp. 1650004, 21. doi: 10.1142/S0219061316500045 (cited on
pages 118, 119).

[72] Petr Hájek and Jeff Paris. ‘Combinatorial principles concerning approximations of functions’. In: Arch. Math.
Logik Grundlag. 26.1-2 (1986/87), pp. 13–28. doi: 10.1007/BF02017489 (cited on page 118).

[73] Ludovic Patey. ‘Somewhere over the Rainbow Ramsey Theorem for Pairs’. Submitted. Available at http:
//arxiv.org/abs/1501.07424. 2015 (cited on page 128).

[74] Friedman. Fom:53:Free Sets and Reverse Math and Fom:54:Recursion Theory and Dynamics (cited on
page 129).

[75] François G. Dorais et al. ‘On uniform relationships between combinatorial problems’. In: Trans. Amer. Math.
Soc. 368.2 (2016), pp. 1321–1359. doi: 10.1090/tran/6465 (cited on page 130).

[76] Ludovic Patey. Ramsey-Like Theorems and Moduli of Computation. 2019 (cited on page 130).

[77] Vasco Brattka, Matthew Hendtlass, and Alexander P. Kreuzer. ‘On the uniform computational content of
computability theory’. In: Theory Comput. Syst. 61.4 (2017), pp. 1376–1426. doi: 10.1007/s00224-017-
9798-1 (cited on page 137).

[78] Benoît Monin and Ludovic Patey. SRT22 does not imply COH in Omega-Models. 2019 (cited on pages 137,
165, 166, 168, 173–178, 180, 181).

[79] Peter A. Cholak et al. ‘Free sets and reverse mathematics’. In: Reverse mathematics 2001. Vol. 21. Lect. Notes
Log. Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 104–119 (cited on page 137).

[80] Barbara F. Csima and Joseph R. Mileti. ‘The strength of the rainbow Ramsey theorem’. In: J. Symbolic Logic
74.4 (2009), pp. 1310–1324. doi: 10.2178/jsl/1254748693 (cited on pages 137, 183).

[81] Benoît Monin and Ludovic Patey. The Weakness of the Pigeonhole Principle under Hyperarithmetical Reductions.
2019 (cited on pages 138, 150, 152).

[82] Wei Wang. ‘The Definability Strength of Combinatorial Principles’. In: J. Symb. Log. 81.4 (2016), pp. 1531–1554.
doi: 10.1017/jsl.2016.10 (cited on pages 141, 185).

[83] Quentin Le Houérou, Ludovic Levy Patey, and Ahmed Mimouni. The reverse mathematics of the pigeonhole
hierarchy. 2024 (cited on pages 143, 151–153, 164).

[84] Donald A. Martin. ‘Classes of Recursively Enumerable Sets and Degrees of Unsolvability’. In: Mathematical
Logic Quarterly 12.1 (1966). Publisher: Wiley Online Library, pp. 295–310 (cited on page 143).

[85] Ludovic Patey. ‘Controlling Iterated Jumps of Solutions to Combinatorial Problems’. In: Computability 6.1 (2017),
pp. 47–78. doi: 10.3233/COM-160056 (cited on page 146).

[86] Benoit Monin and Ludovic Patey. ‘Partition genericity and pigeonhole basis theorems’. In: J. Symb. Log. 89.2
(2024), pp. 829–857. doi: 10.1017/jsl.2022.69 (cited on pages 147, 149, 150).

https://doi.org/10.1016/j.aim.2012.02.025
https://doi.org/10.1090/S0002-9939-09-10115-6
https://doi.org/10.1090/S0002-9939-09-10115-6
https://doi.org/10.1142/S0219061316500045
https://doi.org/10.1007/BF02017489
http://arxiv.org/abs/1501.07424
http://arxiv.org/abs/1501.07424
https://doi.org/10.1090/tran/6465
https://doi.org/10.1007/s00224-017-9798-1
https://doi.org/10.1007/s00224-017-9798-1
https://doi.org/10.2178/jsl/1254748693
https://doi.org/10.1017/jsl.2016.10
https://doi.org/10.3233/COM-160056
https://doi.org/10.1017/jsl.2022.69

[87] Stephen Flood. ‘A packed Ramsey’s theorem and computability theory’. In: Trans. Amer. Math. Soc. 367.7
(2015), pp. 4957–4982. doi: 10.1090/S0002-9947-2015-06164-9 (cited on page 147).

[88] Ludovic Patey. ‘Open Questions About Ramsey-Type Statements in Reverse Mathematics’. In: Bull. Symb.
Log. 22.2 (2016), pp. 151–169. doi: 10.1017/bsl.2015.40 (cited on page 159).

[89] Wei Wang. ‘Cohesive sets and rainbows’. In: Ann. Pure Appl. Logic 165.2 (2014), pp. 389–408. doi: 10.1016/
j.apal.2013.06.002 (cited on page 183).

[90] S. Feferman. ‘Some applications of the notions of forcing and generic sets’. In: Fund. Math. 56 (1964/65),
pp. 325–345. doi: 10.4064/fm-56-3-325-345 (cited on pages 184, 197, 200, 202).

[91] Alonzo Church and Stephen C. Kleene. ‘Formal Definitions in the Theory of Ordinal Numbers’. In: Fundamenta
Mathematicae 28.1 (1937), pp. 11–21 (cited on page 190).

[92] Chi Tat Chong and Liang Yu. Recursion Theory: Computational Aspects of Definability. Vol. 8. Walter de Gruyter
GmbH & Co KG, 2015 (cited on pages 191, 194).

[93] Gerald E. Sacks. Higher Recursion Theory. Vol. 2. Cambridge University Press, 2017 (cited on pages 191,
194–196).

[94] Clifford Spector. ‘Recursive Well-Orderings’. In: The Journal of Symbolic Logic 20.2 (1955). Publisher: JSTOR,
pp. 151–163 (cited on pages 193, 195–197, 202).

[95] Marcia J Groszek and Theodore A Slaman. ‘Moduli of Computation (Talk)’. In: Buenos Aires, Argentina (2007)
(cited on page 195).

[96] Stephen C. Kleene. ‘Hierarchies of Number-Theoretic Predicates’. In: Bulletin of the American Mathematical
Society 61.3 (1955), pp. 193–213 (cited on page 195).

https://doi.org/10.1090/S0002-9947-2015-06164-9
https://doi.org/10.1017/bsl.2015.40
https://doi.org/10.1016/j.apal.2013.06.002
https://doi.org/10.1016/j.apal.2013.06.002
https://doi.org/10.4064/fm-56-3-325-345

Alphabetical Index

(RT1
2)′, 173

<O, 190
𝐻𝑎 , 193
𝑀-index, 40
[𝑋]𝑛 , 26
[𝜎], 10
Δ0

0, 12
Δ0
𝑛 , 10

L(A), 166
L𝑋 , 147
L⟨𝑋𝜈 :𝜈∈𝐼⟩ , 166
M[𝐺], 98
O𝑋 , 196
Φ𝑋
𝑒 , 9

Φ𝑋
𝑒 (𝑥)[𝑠], 9

Π0
𝑛 , 10

Σ0
𝑛 , 10

U
M,𝐼
𝐶

, 167
UM
𝐶

, 149
2<ℕ , 10
2ℕ , 10
≤𝑇 , 9
≤𝑐 , 14
≤ℎ , 195
IΓ, 95
LΓ, 95
𝜔-model, 13
𝜋𝐽(A), 167
𝜔𝑐𝑘

1 , 190
ℎ-immune, 77
𝑛-generic, 43

aca
ACA0, 13

ADS, 83, 88
amenable, see regularity
antichain, 83
approximation

Δ0
2, 11

c.e., 11
arithmetic

bounded formula, 95
formula, 12
hierarchy, 10
Peano, 12
Robinson, 12

array
c.e., 77

avoidance

c.b-trace, 65
cone, 19
DNC, 71
jump cone, 138
jump DNC, 160
jump PA, 159
PA, 53

basis
low, 37
weakly low, 47

big five, 13
binary

tree, 11
BME∗, 118

c.b-immunity, 83
preservation, 83

c.b-trace avoidance, 65
c.e., see computably

enumerable
𝑘-array, 83
approximation, 11
array, 11, 77

CAC, 83
Cantor

space, 10
chain, 83
Chong-Mourad lemma, 106
class

M-cohesive, 151
M-minimal, 151
Π0

𝛼, 197
Π0

𝜔𝑐𝑘
1

, 200

Σ0
𝛼, 197

Σ0
𝜔𝑐𝑘

1 +𝟙, 200

Σ0
𝜔𝑐𝑘

1
, 200

large, 148
non-trivial, 148
partition regular, 146
projection, 167

code
Δ0
𝛼, 192

Π0
𝛼, 192

Π0
𝜔𝑐𝑘

1
, 200

Σ0
𝛼, 192

Σ0
𝜔𝑐𝑘

1 +𝟙, 200

Σ0
𝜔𝑐𝑘

1
, 200

hyperarithmetic, 192, 199
coded

𝑀-coded, 95
ideal, 40
set, 95

COH, 26, 137, 143
Cohen

forcing, 14
cohesive, 26

class, 151
cohesiveness, 143
collection

scheme, 96
coloring

𝑘-bounded, 133, 160,
183

compatible
valuation, 56

comprehension
Δ0

1, 13
computable

ordinal, 190
reduction, 14
set, 9

computably
dominated, 11
enumerable, 10

condition
forcing, 14
Mathias, 23

cone
avoidance, 19
jump avoidance, 138
strong avoidance, 20
strong jump avoidance,

138
conservation

Π1
1, 93

conservative
extension, 94
theory, 93

constant-bound
immunity, 83

constant-bound trace avoidance,
65

constructible
ordinal, 191

control
first-jump, 19

degree
high, 10
low, 10
PA, 12
Turing, 10

dense
class, 15

density
forcing, 15

diagonally non-computable, 11,
53

DNC, see diagonally
non-computable

avoidance, 71
degree, 69
function, 53, 69

DNC, 86
dominating function, 11
domination, 11

EM, 79, 124
enumeration

bounded, 118
monotone, 118

Erdős-Moser
theorem, 79

essential
formula, 88

exact pair, 42
exp, 95
extension

forcing, 14

filter
forcing, 15
generic, 15

first-jump
control, 19

first-order
part, 13

forcing
Cohen, 14
condition, 14
density, 15
Dzhafarov-Jockusch, 27
extension, 14
filter, 15
genericity, 15
Jockusch-Soare, 14
Mathias, 23
notion, 14

question, 24
relation, 16, 140

forcing question
(Σ0

𝑛 ,Π
0
𝑛)-merging, 102

Γ-extremal, 88, 117
Γ-merging, 54
Π0
𝑛-extremal, 88, 181

Σ0
𝑛-compact, 33

Σ0
𝑛-preserving, 24

Σ0
𝜔𝑐𝑘

1 +𝟙-majoring, 202

c.b. Σ0
𝑛-compact, 86

countably Γ-merging, 71
disjunctive, 29
finitely Γ-merging, 67
uniformly Σ0

𝑛-preserving,
116

weak Γ-merging, 56
weakly finitely Γ-merging,

68
forcing relation

strong, 139
formula

Δ0
0, 12

Σ0
1, 12

arithmetic, 12
essential, 88

Friedberg jump inversion
formalized theorem, 112

FS𝑛 , 129
function

dominating, 11
domination, 11
hyperimmune, 11
principal, 11, 45

generic
filter, 15
sufficiently, 15

ground model, 103

hierarchy
arithmetic, 10
hyperarithmetic, 192

high, 10
homogeneous, 26

for a tree, 58
hyperarithmetic

code, 192, 199
hierarchy, 192
reduction, 195

hyperimmune
function, 11
set, 11, 77

hyperimmune-free, 11

hyperimmunity
dependent, 88
preservation, 33, 80, 89

hyperjump, 196

ideal
coded, 40
jump, 14
Scott, 14, 53
topped, 13
Turing, 13

immune, 73
immunity

constant-bound, 83
effective, 77
preservation, 73

index
Δ0

1, 39
Σ0

1, 39
canonical, 39
lowness, 40
Scott ideal, 40
set, 169
Turing ideal, 40

induction
Δ0
𝑛 , 97

Σ0
1, 13

scheme, 95
instance, 19
isomorphism

theorem, 103
theory, 105

Jockusch-Soare
forcing, 14

jump
cone avoidance, 138
DNC avoidance, 138,

160
higher, 196
hyperimmunity

preservation, 138
ideal, 14
model, 103
PA avoidance, 159

jump control
arithmetic, 183
iterated, 183
second, 137

König
lemma, 14
weak lemma, 19
weak weak lemma, 64

Kolmogorov
complexity, 63

large
class, 148
product class, 165

least principle, 95
Δ0
𝑛 , 97

Lebesgue
density theorem, 64
measure, 63

lemma
Chong-Mourad, 106
König, 14

linear
order, 88

low, 10
basis, 37
index, 40
weak basis, 47

low𝑛 , 47

Mathias
condition, 23
forcing, 23
pre-condition, 118

measure
Lebesgue, 63
of a tree, 63

minimal
class, 151

MLR, see Martin-Löf random
model, 13

𝜔-model, 13
ground, 103
jump, 103
topped, 94

monotone
enumeration, 118

natural
product, 119
sum, 119

𝜔-extension, 94
oracle, 9
order

linear, 88
partial, 83

ordinal
computable, 190
constructible, 191

PA, 12
avoidance, 53

part
first-order, 13
second-order, 13

partial
order, 83

partition regular
class, 146

path, 11
piecewise coded, see

regularity
pigeonhole principle, 26, 153,

173
pre-condition

Mathias, 118
pre-homogeneous, 31
preservation

c.b-immunity, 83
dependent hyperimmunity,

89
hyperimmunity, 33, 80
immunity, 73
jump DNC, 138
jump hyperimmunity, 138
non-Σ0

1 definition, 31
of weakness, 75

principal
function, 45

principle
ascending descending

sequence, 83, 88
bounded monotone

enumeration, 118
chain antichain, 83
cohesiveness, 26, 137,

143
pigeonhole, 26, 153, 173

problem, 19
instance, 19
solution, 19

product
natural, 119

product class
large, 165

projection, 167
property

effectiveness, 37
genericity, 37
weakness, 75

question
forcing, 24

Ramsey-type
weak König’s lemma, 58

random
Martin-Löf, 63

randomness, 62
RCA0, 12
RCA∗

0, 103
recursive, see computable
recursively enumerable, see

computably
enumerable

reduction
computable, 14
hyperarithmetic, 195

regularity
𝑀-regular, 95

relation
forcing, 16, 140
semantic forcing, 16
strong forcing, 139

reverse mathematics, 12
RRT𝑛

𝑘
, 133, 183

RT𝑛
𝑘
, 26

RWKL, 58

scheme
Γ-least, 95
collection, 96

Scott
ideal, 14

second-jump control, 137
second-order

part, 13
set

Δ0
𝛼, 192

Π0
𝛼, 192

Σ0
𝛼, 192

cohesive, 137
computable, 9
free, 129
hyperimmune, 11
rainbow, 160, 183
thin, 129, 159

Shore blocking, 110
solution, 19
space

Cantor, 10
statement

ADS, 83, 88
BME∗, 118
CAC, 83
COH, 26, 137, 143
DNC, 86
EM, 79, 124
FS𝑛 , 129
RRT𝑛

𝑘
, 133, 183

RT𝑛
𝑘
, 26

RWKL, 58
TS𝑛 , 129, 159
WF(𝛼), 119

strong avoidance
cone, 20
jump cone, 138
jump PA, 159

strong forcing
relation, 139

sufficiently generic, 15
sum

natural, 119

theorem
Σ1

1 majoration, 195
cone avoidance basis, 22
Erdős-Moser, 79, 124
free set, 129
isomorphism, 103
Lebesgue density, 64
Liu, 62

low basis, 44
rainbow Ramsey, 133, 160,

183
Ramsey, 26
Seetapun, 29
thin set, 129, 159

theory
ACA0, 13
RCA0, 12
RCA∗

0, 103
WKL0, 13
WKL∗0, 104
WWKL0, 64
isomorphism, 105

topped
ideal, 13
model, 94

tournament, 79, 124
sub-tournament, 79
transitive, 79, 124

trace

of a class, 65
tree

binary, 11
TS𝑛 , 129, 159
Turing

degree, 10
functional, 9
ideal, 13
jump, 10
reduction, 9

use property, 10

valuation, 56

weakness
preservation, 75
property, 75

WF(𝛼), 119
WKL0, 13
WKL∗0, 104
WWKL0, 64

	Contents
	Introduction
	Mathematical problems

	Mathematical problems
	Separation theory

	Separation theory
	Jump control

	Jump control
	Audience

	Audience
	Book structure

	Book structure
	Prerequisites
	Computability theory

	Computability theory
	Turing degree
	Arithmetic hierarchy
	Function growth
	DNC and PA degrees
	Reverse mathematics

	Reverse mathematics
	Base theory
	Models of RCA0
	Big Five
	Computable reductions
	Effective forcing

	Effective forcing
	Filter and genericity
	Forcing relation
	First jump control
	Cone avoidance
	Context and motivation

	Context and motivation
	First examples

	First examples
	Forcing question

	Forcing question
	Seetapun's theorem

	Seetapun's theorem
	Preserving definitions

	Preserving definitions
	Preserving hyperimmunities

	Preserving hyperimmunities
	Lowness
	Motivation

	Motivation
	Indices

	Indices
	Coding ideals

	Coding ideals
	Basic constructions

	Basic constructions
	Weak preservation

	Weak preservation
	Beyond '

	Beyond '
	Ramsey's theorem for pairs

	Ramsey's theorem for pairs
	Compactness avoidance
	PA avoidance

	PA avoidance
	Weak merging

	Weak merging
	Ramsey-type WKL

	Ramsey-type WKL
	Liu's theorem

	Liu's theorem
	Randomness

	Randomness
	Avoiding closed classes

	Avoiding closed classes
	DNC and compactness

	DNC and compactness
	DNC avoidance

	DNC avoidance
	Comparing avoidances

	Comparing avoidances
	Custom properties
	Separation framework

	Separation framework
	Immunity and variants

	Immunity and variants
	Hyperimmunity and WKL

	Hyperimmunity and WKL
	Erdős-Moser theorem

	Erdős-Moser theorem
	Partial orders

	Partial orders
	Linear orders

	Linear orders
	Conservation theorems
	Context and motivation

	Context and motivation
	Induction and collection

	Induction and collection
	Conservation over RCA0

	Conservation over RCA0
	Isomorphism theorem

	Isomorphism theorem
	Conservation over B02

	Conservation over B02
	Shore blocking and BME

	Shore blocking and BME
	Forcing design
	Core concepts

	Core concepts
	Erdős-Moser theorem

	Erdős-Moser theorem
	Free set theorem

	Free set theorem

	Higher jump control
	Jump cone avoidance
	Context and motivation

	Context and motivation
	Use first-jump control

	Use first-jump control
	Forcing and density

	Forcing and density
	Weak König's lemma

	Weak König's lemma
	Cohesiveness principle

	Cohesiveness principle
	Partition regularity

	Partition regularity
	Largeness
	Effective classes
	M-minimal classes
	M-cohesive classes
	Pigeonhole principle

	Pigeonhole principle
	Jump compactness avoidance
	Context and motivation

	Context and motivation
	Jump PA avoidance

	Jump PA avoidance
	Mathias forcing and COH

	Mathias forcing and COH
	Product largeness

	Product largeness
	Effective classes
	Projections
	Index sets
	Product Mathias forcing

	Product Mathias forcing
	Pigeonhole principle

	Pigeonhole principle
	Jump DNC avoidance

	Jump DNC avoidance
	Higher jump cone avoidance
	Context and motivation

	Context and motivation
	First examples

	First examples
	Pigeonhole principle

	Pigeonhole principle
	Computable ordinals

	Computable ordinals
	Hyperarithmetic hierarchy

	Hyperarithmetic hierarchy
	Higher recursion theory

	Higher recursion theory
	Hyperarithmetic reduction
	Hyperjump operator
	Classes of reals
	Transfinite jump control

	Transfinite jump control
	-jump control
	Hyperjump control

	Bibliography
	Alphabetical Index

